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Abstract 

Practitioners often use the central limit theorem as justification for invoking the normal 

approximation for the convolution of few independent random variables. We focus on the 

convolution of independent nonnegative continuous random variables and advocate the use of the 

lognormal approximation instead of the normal. Among popular distributions, the lognormal 

distribution is unique in the sense that it satisfies elementary conditions that the convolution of a 

small number of continuous nonnegative random variables must satisfy and yet it converges to 

the normal when the number of random variables grows large. Therefore, one can use it as the 

basis of an alternative central limit theorem for nonnegative random variables. 
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Introduction: 

Let X denote the convolution of n ≥ 2 independent, nonnegative and continuous random variables 

(rv’s) with positive means and finite coefficients of variation; we may refer to these rv’s as the 

components. If we denote the mean of component j by μj and its variance by σj
2
, then it is well 

known that the mean and variance of X, μX and σX
2
, are given by μX = Σμj and  σX

2
 = Σσj

2
 (due to 

statistical independence). We do not require the components to be identically distributed, but 

they must satisfy the regularity conditions of the central limit theorem (CLT); i.e., when n → ∞, 

no single component should dominate the convolution. Equivalently, we require that as n → ∞, 

μj/μX → 0 and σj
2
/σX

2
 → 0 for all j. Denote the density function of X by fX(x) and that of 

component j by fj(x). Whereas fj(0) > 0 is allowed (e.g., if the component is distributed 

exponentially), it is easy to show by a limiting argument that fX(0) = 0. For small n, if the 

components have very high coefficients of variation, the coefficient of variation of X may also be 

high (although it must tend to zero when n grows large). Finally, when n → ∞, the CLT applies. 

We list these observations as three conditions: 

(i) fX(x) = 0 for x ≤ 0, 

(ii) σX/μX is unbounded, 

(iii) as n → ∞, fX(x) → 
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The vast majority of conventional distributions do not satisfy all three conditions. The normal 

distribution is disqualified by (i), as the normal rv is not nonnegative. When we limit ourselves to 

nonnegative rv’s, distributions that satisfy condition (i) often violate condition (ii). Conversely, 

most distributions that satisfy condition (ii), such as Weibull or gamma, violate condition (i) 

because they rely on fX(0) > 0 in cases with high σX/μX. The most notable exception is the 

lognormal. We show that it satisfies all three conditions. But first, for completeness, we provide 

the conversion formulas necessary to fit a lognormal distribution for X based on the parameters 
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μX and σX
2
. Recall that the lognormal random variable is based on a core normal random variable 

with mean m and variance s
2
, and the random variable is defined as the exponent of that core. 

The density function is, 
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and the mode is equal to exp(m − s
2
). To evaluate m and s, let cv = σX/μX, and we have,  

)1ln( 22 cvs  ; 
2

ln
2s

m x    

If we wish to approximate the sum of n lognormal rv’s with parameters mj and variance sj
2
 we 

must first evaluate their means and variances, each given by, 

μj = exp(mj + sj
2
/2); σj

2
 = μj

2
[exp(sj

2
) − 1] 

Given these parameters, we can proceed to calculate μX and σX
2
, and then calculate m and s. Such 

calculations are easy to program and hence should cause no difficulty in practice.  

 We can show that condition (i) is satisfied by the lognormal distribution because as x → 

0
+
, ln x → −∞. Condition (ii) is satisfied because cv is unconstrained. To show that condition (iii) 

is satisfied, all the following claims are subject to the stipulation that n → ∞. By the law of large 

numbers, cv = σX/μX → 0 (because μj > 0 and σj/μj is finite for all j). But s
2
 = ln(1 + cv

2
) so as cv 

→ 0, s
2
 → cv

2
 and, equivalently, s → cv. Also, for any x in the support of the distribution, x/μX 

→ 1 almost surely. Therefore, xs → σX and thus  22 Xxs  . It remains to show that (ln x 

− m)/s → (x − μX)/σX. We can write x = μX(x/μX), so ln x = ln μX + ln(x/μX). But x/μX → 1 so 

ln(x/μX) → (x − μX)/μX. Recall that m = ln μX − s
2
/2 and s

2
/2 → 0, so m → ln μX. Substituting 

these values for ln x and m we obtain (ln x − m)/s → (x − μX)/sμX. Finally, sμX → σX, thus 

completing the proof. 

 To illustrate the efficacy of using the lognormal approximation we use it to represent the 
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k-Erlang distribution for various k values. We tested the mean absolute deviation (MAD) of the 

lognormal approximation, as a fraction of the mean, and compared it with that of the normal 

distribution. The results are given in the first four columns of Table 1. 

 

Table 1: Comparing the relative MAD of k-Erlang and Chi-Square approximations with k d.f. 
Erlang Case    Chi-Square Case   

k= Normal Lognormal Ratio  d.f. Normal Lognormal Ratio 

1 0.314351 0.123926 0.394229  1 0.599782 0.202787 0.338102 

2 0.159869 0.070044 0.438132  2 0.314351 0.123926 0.394229 

3 0.107003 0.048841 0.456447  3 0.212118 0.089476 0.421823 

4 0.08038- 0.037492 0.466434  4 0.159869 0.070044 0.438132 

5 0.064357 0.030422 0.472708  5 0.128215 0.057551 0.448865 

6 0.053658 0.025595 0.477011  6 0.107003 0.048841 0.456447 

7 0.046008 0.022090 0.480143  7 0.091803 0.042421 0.462083 

8 0.040266 0.019429 0.482526  8 0.080380 0.037492 0.466434 

9 0.035798 0.017341 0.484399  9 0.071483 0.033589 0.469893 

10 0.032223 0.015657 0.485909  10 0.064357 0.030422 0.472708 

12 0.026857 0.013112 0.488196  12 0.053658 0.025595 0.477011 

14 0.023024 0.011278 0.489844  14 0.046008 0.022090 0.480143 

16 0.020147 0.009894 0.491089  16 0.040266 0.019429 0.482526 

18 0.017910 0.008813 0.492062  18 0.035798 0.017341 0.484399 

20 0.016120 0.007945 0.492843  20 0.032223 0.015657 0.485909 

25 0.012897 0.006375 0.494257  25 0.025784 0.012599 0.488656 

30 0.010748 0.005323 0.495205  30 0.021490 0.010541 0.490507 

40 0.008062 0.004002 0.496395  40 0.016120 0.007945 0.492843 

50 0.006450 0.003206 0.497112  50 0.012897 0.006375 0.494257 

75 0.004300 0.002142 0.498073  75 0.008599 0.004267 0.496156 

100 0.003225 0.001608 0.498555  100 0.006450 0.003206 0.497112 

150 0.002150 0.001073 0.499040  150 0.004300 0.002142 0.498073 

200 0.001613 0.000805 0.499284  200 0.003225 0.001608 0.498555 

By the table, it is evident that the relative MAD of the lognormal approximation is at most 50% 

of the normal’s in this case (i.e., the approximation is at least two times better). We obtained very 

similar results for the chi-square distribution, as shown in the subsequent columns of the table. 

Notice that, due to the larger variance of the chi-square distribution, convergence seems to be 

exactly twice as fast for the Erlang case. 

 Our results for these two cases are very encouraging: the lognormal approximation not 

only avoids violating conditions (i) and (ii) but also outperforms the normal approximation for 
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high k values for which the normal is highly unlikely to violate the conditions. On the one hand, 

when components are symmetric, if the normal approximation is highly unlikely to yield a 

negative result then the advantage goes to the normal (because a symmetric result is 

advantageous in that case). On the other hand, however, typical nonnegative rv’s in practice are 

usually skewed to the right, in which case the lognormal tends to outperform the normal. 

 

Conclusion: 

We showed that the lognormal distribution satisfies three necessary conditions that a convolution 

of nonnegative continuous rv’s must satisfy. It must have zero density at any nonpositive 

argument, it must support any coefficient of variation, and it must not violate the central limit 

theorem (CLT). Whereas most popular distributions that we might consider fail in one or more of 

these conditions—e.g., the normal fails the first two—the lognormal satisfies all of them. 

Therefore, we can formulate an alternative CLT for such rv’s by replacing the normal distribution 

as the limiting case by the lognormal. That is, as n → ∞, the distribution of the convolution of n 

independent nonnegative continuous random variables with positive means and finite coefficients 

of variation tends to lognormal. When we use this version of the CLT as the basis of an 

approximation for the convolution of few rv’s, the results do not share the main weaknesses of 

the analogous normal approximation, namely that negative realizations are possible and the 

density at 0 is positive. Nonetheless, because the lognormal distribution always has a positive 

skew, the normal approximation may be better in the practical sense when the probability of 

nonpositive realizations is negligible and the components are not skewed, or skewed to the left. 

We believe that practical nonnegative random variables do tend to be positively skewed, and 

hence the use of the lognormal distribution is usually warranted. 


