
Research Notes for Chapter 9*

After discussing sources for the results in Chapter 9 and providing the proof of Theorem
9.5, we list some additional published results, including classical stochastic models. Then
we provide preliminary analysis for safe scheduling in parallel machines. There are
precious few, if any, published results in this area, so our purpose here is, again, to
encourage further research.

Sources and Comments

Algorithm 9.1 is due to McNaughton (1959). Theorems 9.1 and 9.3 are due to Graham
(1969), although the details of our proofs are different. Theorem 9.2 follows a template
presented by Portougal (1993). The details of an efficient implementation of the Multifit
algorithm are described by Coffman, Garey and Johnson (1978). Subsequently, error
bounds for the Multifit algorithm have been refined, although its worst-case performance
has not yet been discovered. The result given in the chapter, that M/M* ≤ 72/61, is due to
Friesen and Langston (1986). An overview of further results is given by Kao and Elsayed
(1990), but this continues to be an active research area and readers can easily find newer
results. The idea to start off with an LPT application before implementing Multifit was
tested by Lee and Massey (1988). They do not develop an error bound for this combination,
but they provide an empirical study that suggests the size of the improvements possible.
They also observe that the combined algorithm requires much less searching than Multifit
alone. Although the proof of Theorem 9.2 does not extend to the Multifit algorithm, the
combination of Multifit and LPT must still be asymptotically optimal—as we stated in the
chapter—for the simple reason that it can only improve upon an asymptotically optimal
solution.
 Lee (1991) addresses a variation of the parallel machine model where the machines
are not all available at time zero. Instead, machine i has a release date, ri ≥ 0, and is
unavailable until that moment (see Exercise 9.5). This model would be appropriate in
situations where jobs are released to the shop periodically (for example, every morning)
and where, for each machine, the jobs of one batch must be cleared before a new batch can
be started. It is still possible to use list scheduling in this environment, and Theorem 9.2
holds for any such list. Lee shows that LPT list scheduling yields an error bound of 3/2 –
1/2m. The following table compares this bound with the error bound in the basic model, as
given by Theorem 9.3.

* The Research Notes series (copyright © 2009, 2019 by Kenneth R. Baker and Dan Trietsch) accompanies
our textbook Principles of Sequencing and Scheduling, Wiley (2009, 2019). The main purposes of the
Research Notes series are to provide historical details about the development of sequencing and scheduling
theory, expand the book’s coverage for advanced readers, provide links to other relevant research, and
identify important challenges and emerging research areas. Our coverage may be updated on an ongoing
basis. We invite comments and corrections.

Citation details: Baker, K.R. and D. Trietsch (2019) Research Notes for Chapter 9 in Principles of
Sequencing and Scheduling (Wiley, 2019). URL: http://faculty.tuck.dartmouth.edu/principles-sequencing-
scheduling/.

 Machines m 2 3 4 5 10 20
 ri = 0 1.17 1.22 1.25 1.27 1.30 1.32
 ri ≥ 0 1.25 1.33 1.38 1.40 1.45 1.48

Lee goes on to show that the error bound can be reduced to 4/3 by exploiting information
about the ri values. See Chang and Hwang (1999) for slightly improved bounds. Lee, He
and Tang (2000) point out that Lee’s original results rely on the assumption that all
machines participate in the processing. Without that assumption, better results can be
obtained. Better results can also be obtained for two machines (He, 1999).
 Theorems 9.1 and 9.3 provide error bounds for increasingly more detailed heuristic
procedures for identical parallel machines and unrelated jobs. When we consider uniform
machines, the performance ratio of 19/12 for LPT list scheduling that we cited in the
chapter is due to Dobson (1984). Even naive dispatching (assigning the next job on the list
to the first available machine, regardless of speed) is still asymptotically optimal, as long
as machine speeds are finite. The proof of Theorem 9.2 fails only for the more general case
of unrelated machines, where each machine processes each job at a different speed.
Algorithm 9.2 is due to Hu (1961). Algorithm 9.3 is due to Coffman and Graham (1972).
They also discuss the potential advantage of preemption in that case, as presented in the
chapter. Recall that although Algorithm 9.3 generalizes the longest-path notion of
Algorithm 9.2 to arbitrary precedence relations, this generalization provides optimal
schedules only for two machines and only for unit-length jobs. Beyond two machines, no
further generalization seems possible, even with unit-length jobs. With regard to the
number of machines, the makespan problem is NP-hard for m ≥ 3, even for sets of unit-
length jobs, and the corresponding worst-case bound is given by Theorem 9.4. See Lam
and Sethi (1977) for details. The application of SPT for flowtime minimization appears in
Conway, Maxwell and Miller (1967). They also show how to apply SPT to uniform
machines. Horowitz and Sahni (1976) render the algorithm in detail and provide a proof of
optimality. The seminal results about the use of SWPT dispatching are due to Eastman,
Even and Isaacs (1964). We now repeat their lower bound and—within our proof of
Theorem 9.5—an upper bound, which is also due to them.

Theorem 9.5: A Proof

Recall from the chapter that the experiment by Baker and Merten (1973) showed that the
SWPT heuristic is effective and especially so for large n, which inspired Theorem 9.5.
Recall also that we defined

B(1) = the minimal value of Fw for the given job set if there were only one
machine (obtained via SWPT), and

B(n) = the minimal value of Fw for the given job set if there were n machines
(obtained by assigning each job to a different machine)

leading to the lower bound for m machines (1 ≤ m ≤ n)

B(m) =
1

2m [(m – 1)B(n) + 2B(1)] (9.4)

Theorem 9.5. When processing times and weights are sampled from distributions with

finite variances, Algorithm H1 with R = SWPT is asymptotically
optimal with probability 1.

Proof.

»» Without loss of generality, we assume that all processing times are strictly positive.
Otherwise, jobs with zero processing times would be scheduled first and contribute zero to
the objective function value. Because B(n) = ∑pjwj, (9.4) can be rewritten B(m) = B(1)/m
+ 0.5(m – 1)∑pjwj/m. Eastman, Even, and Isaacs (1964) also provided an upper bound for
H1 with R sequenced by SWPT, namely B(1)/m + (m – 1)∑pjwj/m. To prove the theorem it
is sufficient to show that when the gap between the bounds is divided by a lower bound
(including any value B ≤ B(m)), the result tends to zero as n tends to infinity; i.e., as n →
∞, [0.5(m – 1) ∑pjwj/m] / B(m) → 0 (w.p.1). We show that in terms of expected values.
Convergence w.p.1 then follows by the Law of Large Numbers.
 Let p0.5 be the median processing time, similarly let w0.5 be the median weight, and
let λ = max{E(p | p > p0.5)/E(p | p < p0.5), E(w | w > w0.5)/E(w | w < w0.5)}. Because all
processing times are strictly positive, λ is finite. By (9.4) we see that B(m) > B(1)/m. But
m is fixed, so it is sufficient to show that as n → ∞, E[∑pjwj]/E[B(1)] → 0, or, equivalently,
that E[B(n)]/E[B(1)] → 0. Because processing times are sampled independently from a
distribution with a finite variance, for any given sample of n processing times, when we
sample job (n + 1), E[p(n + 1)]/∑ j = 1, …, n pj = 1/n. Similarly, for any ε > 0 (but as small as we
may wish) there exists a value n0 ≥ 2λ/ε such that for any n ≥ n0, E[p(n + 1)]/∑ j = 1, …, n δ(pj
≤ p0.5)pj < ε (i.e., by the δ(pj ≤ p0.5) function we select only the smaller 50% of the sample).
An analogous result holds for weights. Let B0(1) be the minimal weighted flowtime of the
first n0 jobs on a single machine, and let B0(n0) = ∑pjwj where the summation is for j = 1,
…, n0. For any n > n0, suppose we add job (n + 1) at the correct position in the SWPT
sequence of the first n jobs. Without loss of generality, assume it should be placed between
jobs [k] and [k + 1], but continue to identify the other jobs by their former positions; so the
sequence becomes [1], [2], …, [k], (n + 1), [k + 1], …, [n − 1], [n]. Job (n + 1) contributes
p(n + 1)w(n + 1) to B(n + 1) and we now check how much it contributes to B(1). We distinguish
two cases. In Case 1, k ≥ n/2, and we focus on the flowtime of the inserted item. In case 2,
k < n/2, and we focus on the additional flowtime imposed on the subsequent items from
the inserted item onwards. Either way, the result is a strict lower bound on the additional
flowtime that the insertion entails. Consider case 1 first. The flowtime of jobs [1] through
[k] is not changed. The flowtime of job (n + 1) itself is given by p(n + 1) + ∑ j = 1, …, k p[j], and
it should be multiplied by w(n + 1). In case 2, jobs [k + 1], …, [n − 1] all have p(n + 1) added
to their flowtimes, thus adding p(n + 1) ∑ j = k + 1, …, n w[j] to B(1). In case 1, after dividing the
expected increase of both B(n + 1) and B(1) by p(n + 1), we see that the former increases by
less than ε times the increase of the latter. In case 2, the same observation applies after

dividing by w(n + 1). Therefore, for any n > n0, each unit added to B0(n0) implies at least 1/ε
(> n0) units added to B0(1). In the limit, as n → ∞, E[∑pjwj]/E[B(1)] < ε, but ε is as small
as we wish so the limit is 0. ««

Unrelated Machines

Consider the Cmax problem with parallel unrelated machines, denoted Rm | | Cmax.* It is
straightforward to formulate the problem as an integer program. To that end, define an
indicator variable xij as 1 if job j is assigned to machine i, or 0 otherwise. The total load on
machine i is thus ∑ j pijxij and Cmax ≥ ∑ jpijxij. The task is to minimize Cmax subject to m such
constraints (one for each machine). Additional constraints of the form ∑ i xij = 1 are used for
each job to assure that it will be assigned exactly once. It follows that small instances can be
readily solved by generic IP solvers. Nonetheless, the problem is NP-hard in the strong sense
and more tailored approaches and heuristics are required for large instances. Horowitz and
Sahni (1976) present both optimal and ε-approximation algorithms. They do not provide
computational results, however. Ibarra and Kim (1977) present heuristics with worst case
error bounds of O(m). Davis and Jaffe (1981) present heuristics with O(m0.5) worst case
error bounds, again without computational results. Van de Velde (1993) presents and tests
a new optimization algorithm based on Lagrangian relaxation, and a new heuristic. The
former solves to optimality some instances with up to 200 jobs and 20 machines, but not
all combinations can be solved without violating a bound of 100,000 nodes in the search
tree. The results indicate that average computation time increases with the number of
machines more so than with the number of jobs, but large variation exists among problems
of the same size (which is the rule and not the exception with implicit enumeration
algorithms). Reportedly, good exact solutions were obtained by Martello, Soumis and Toth
(1997) and by Mokotoff and Chrétienne (2002), both utilizing strong cuts. Ghirardi and
Potts (2005) apply a version of beam search that allows revisiting previous decisions by
re-sequencing existing branches in the search tree. They also discuss earlier contributions
in detail. Empirical results concerning good heuristics for this problem indicate that they may
be asymptotically optimal. For instance, Potts (1985) observes that if we solve the LP
relaxation of the problem, then at most m − 1 jobs have to be split to fractional parts. A
heuristic solution is to keep the allocation of the n − m + 1 other jobs as a partial schedule and
assign the fractional jobs optimally. The heuristic is polynomial for any given m (because we
can schedule the m − 1 jobs by complete enumeration in constant time), but it becomes
exponential when m is not fixed. Whereas the worst-case error bound of this heuristic is 2, in
practice it is much better. Indeed, it is immediate to show that this heuristic is asymptotically
optimal, as n/m → ∞, if jobs follow reasonable regularity conditions. It is also easy to show
that scheduling the fractional jobs by a secondary heuristic can overcome the exponential
complexity when m is not given, and yet retain asymptotic optimality: for that purpose, it does
not even matter how these jobs are allocated. An open research question is to prove asymptotic
optimality for other such heuristics and to compare their convergence rates. Finally, the
observation that at most m − 1 jobs have to be split into fractional parts in the LP relaxation
provides another perspective on the role of m in the computational difficulty of the problem.
One can construct a branch and bound procedure for the problem, branching on such fractional
variables. Initially, there would be up to m − 1 nodes on which to branch, but each such node

* Here, R is the notation for unrelated parallel machines whereas uniform machines would be denoted by Q.

could lead to m potential offspring, and so on. Hence, for large m, even a depth-first branching
designed to obtain an initial upper bound could take significantly longer than with small m.
 The Fw-problem with unrelated machines, Rm | | ∑wjCj has also received a fair amount
of attention. The problem is strongly NP-hard unless m is fixed, in which case it remains NP-
hard but only in the ordinary sense. When all weights are equal, however, there is an easy
polynomial solution by a reduction to an LP assignment problem or to a related network
flow problem. The first such solution was given by Horn (1973). Horn loads machines
backwards and observes that if job j is allocated to the kth position (from the end) on
machine i, it contributes kpij to the total flowtime downstream. That value is taken as the
cost of allocating job j to machine i at that position. The waiting time part of the flowtime
of the job is accounted for as part of the total downstream flowtime contribution of
upstream jobs, if any. What remains is to match the n jobs to the nm possible positions so
as to minimize the total cost. To see that this problem is identical to an LP assignment
problem, we can introduce n(m − 1) dummy jobs, with zero costs, to fill the empty positions
in an nm by nm assignment tableau. Alternatively, we can solve the problem as a network
flow model. Both models have well-known polynomial time algorithms. The weighted case
is more complex: recall that even for identical machines it is already NP-hard. Nonetheless,
more than one set of authors discovered independently that tight bounds can be obtained by a
mathematical programming approach using column generation (van den Akker, Hoogeveen,
and Van De Velde, 1999; Chen and Powell, 1999), thus enabling optimal solutions for
moderate-sized instances. That approach is applicable to identical, uniform or unrelated
machines. As discussed by van den Akker, Hoogeveen and Van De Velde, it also applies to
similar problems where, after allocating the jobs to machines, the sequence on each machine
is easy to obtain. An example is the weighted number of tardy jobs problem where only on-
time jobs must be allocated, and given such an allocation the schedule of the jobs selected to
be on time follows EDD.

Stochastic Counterpart Parallel Machine Models

The observation that heuristics are sometimes more robust when applied to stochastic models
is due to Weiss (1992). That seems to occur often when the heuristic is asymptotically
optimal in the deterministic case. One such instance is the m-machine Cmax-problem with
exponentially distributed jobs. As stated in the chapter, LEPT dispatching is not only
optimal but also yields the stochastically minimal makespan. That feature follows from a
more general result given by Weber (1982). Weber also lists earlier sources that showed
that LEPT solves the stochastic counterpart (that is, that it yields the minimal expected
makespan). By contrast, SEPT minimizes total flowtime for the exponential distribution.
Thus an inherent conflict appears to exist between the two main objectives, makespan and
flowtime. In addition to the paper by Weber (1982), relevant results and earlier sources
also appear in Weber, Varaiya and Warland (1986) and in Pinedo (2002).

On the Variance Ratio and the Value of Information

In Example 9.7 we showed that although LEPT dispatching achieves an expected
makespan larger than the deterministic counterpart, it does provide a 10% savings relative
to assigning jobs to machines at the outset (from 7.004 to 6.271). This result illustrates an

important point: in the stochastic case, the use of dispatching implicitly involves collecting
useful information during the process. By following LEPT, we implicitly collect
information about the processing times of the jobs with the highest processing time
variances, because in the exponential case those are also the jobs with the highest mean
processing times. To generalize this insight beyond the exponential distribution, let X0 be
a nonnegative random variable with μ0 = 1, a finite variance and a given cdf, H0(x). Suppose
that all job processing times have distributions with the same shape as that of X0 in the
following sense: if pj has mean μj and distribution Hj(x), then Hj(x) = H0(x/μj). That is, the
processing time cdfs are essentially identical except for scaling by their means. In such a
case, all coefficients of variation are equal to a single constant, cv. Furthermore, the
processing times are stochastically ordered. When all processing times are exponential,
they fit this template (with cv = 1). Lognormal processing times with constant cv fit the
template as well.
 By variance ratio we refer to the ratio of variance to the mean. If we calculate the
variance ratios of these processing times, we obtain

σj
2/μj = cv2μj

Because cv is a constant, the variance ratios are ordered by the means. Thus, for the
exponential case and any other constant cv case, SEPT is equivalent to sorting by smallest
variance ratio (SVR), whereas LEPT is equivalent to sorting by largest variance ratio
(LVR). We also expect random variables with high coefficients of variation to have high
variance ratios as compared to jobs with the same mean but smaller coefficients of
variation. Broadly speaking, we can say that we gain more information from completed
jobs with higher variance ratios. But if each job has its own coefficient of variation, cvj,
then the variance ratio is cvj

2μj. Therefore, by LVR sequencing with non-similar jobs
(whose distributions are not scaled copies of each other), we favor jobs with high
coefficients of variation and high means. By completing a job, we gain perfect information
about its processing time, whereas unprocessed jobs are still subject to variance. By
sequencing LVR, we resolve the maximal amount of variance per unit of expected
processing time in a greedy manner. We effectively postpone the jobs that are closest to
deterministic so we can utilize the machines better towards the end of the schedule. In
contrast, if we were to leave high variance jobs to the end, we would risk incurring a large
gap between the completion times of the first machine and the last machine.
 Intuitively, LEPT would likely be most attractive when coefficients of variation are
low, whereas LVR becomes attractive when coefficients of variation are high. In addition,
the amount of information available with dispatching is also a function of the coefficient
of variation. Thus, the ability to implement dispatching (which implies the ability to change
tentative sequencing decisions quickly), is especially important in a stochastic environment
because it facilitates better use of information. For instances where LEPT and LVR are not
identical, a heuristic approach is to sort by max{μj, σj

2/μj}. The idea here is to schedule both
very long jobs and highly variable jobs early, but σj

2/μj = cv2μj so max{μj, σj
2/μj} is achieved

by some σj
2/μj only if that job has cvj

2 > 1. (Recall that for exponential variables cv2 = 1.)
Jobs with cvj

2 > 1, however, tend to have decreasing completion rates, so if they don’t finish
early they are likely to take more than μj. Another heuristic is to dispatch by λµj + (1 −
λ)(σj

2/µj), where 0 ≤ λ ≤ 1. By simulating the results of various λ values (using a stored

sample) we can choose a good λ value. Similarly, but not identically (because the variance
ratio is not a linear function of the mean and the variance), we could use the mean and the
variance directly; i.e., λµj + (1 − λ)σj

2, where 0 ≤ λ ≤ 1. The latter approach is identical to
the one we presented in the Research Notes for Chapter 8 for the safe scheduling versions
of the shortest route problem and the TSP. It remains an open question which of the two
combinations (mean and variance ratio or mean and variance) is more effective.
Theoretically, we could even use a more elaborate combination giving weight not only to
mean and variance but also to the variance ratio directly: λ1µj + λ2σj

2 + (1 − λ1 − λ2)(σj
2/µj).

Stochastic Load Balancing for Makespan Minimization and for Safe Scheduling

As we have seen, dispatching is effective for balancing loads across multiple machines.
We observed that phenomenon for highly variable jobs and for deterministic processing
times. In both cases, list scheduling heuristics, which are inherently suited for dispatching,
provide good performance bounds and asymptotically optimal sequences. We now turn to
non-dispatching solutions where we must allocate the jobs to machines in advance. This
analysis is important in practice because dynamic dispatching is not always possible. For
example, the machines may reflect separate plants that are far apart or jobs require
preparations that cannot be easily changed. In chapter 18 we refer to such preparations as
implicit subprojects. The need for such preparations is quite common. Sometimes the
practical response is to freeze the schedule for a given period of time and allow changes
only later. That approach implies a rolling horizon type of planning that is essentially
equivalent to a dynamically updated non-dispatching schedule. Thus it is important to
address non-dispatching schedules even if we recognize that we may change them later.
Yet one more reason to use a static allocation is that by dynamic dispatching aimed at
minimizing the makespan, we tend to increase (and often even maximize) the flowtime or
the weighted flowtime. In the deterministic case, the remedy is to reverse the sequence on
each machine after the allocation step, to SPT or to SWPT. Similarly, for any static
allocation, we can use SEPT or SWEPT for each machine. But it is impossible to reverse
a dispatch-based sequence and still maintain its efficient use of information. This conflict
lies at the heart of the question whether we should use dynamic dispatching or schedule in
advance. If we wish to utilize the information revealed during processing, then dynamic
dispatching is imperative, but it is not cost free and not always possible.*
 Although preemption may be prohibited in such models—especially when the
reason we use a fixed schedule is the need to prepare in advance for every job—we may
nonetheless allow preemption as a relaxation to obtain bounds. Suppose we could split each
job into stochastically independent parts such that if we assign a fraction 0 < f < 1 of job j
to one part, then the expected processing time of this part is fµj and its variance is fσj

2.
Calculating the variance ratio for this part we obtain fσj

2/fµj = σj
2/µj. That is, the variance

ratio of the part equals that of the whole job (which implies that the coefficient of variation

* In Chapter 18 we discuss the weighted flowtime objective in a project environment. In that case, flowtime
is measured from the start of an activity until the end of the project. In such an environment the conflict
between makespan and flowtime disappears serendipitously. A similar serendipitous structure applies in our
current context when all jobs are delivered to the customer together but flowtime is only measured from their
release date (which in turn is a decision variable). One can view the delivery to the customer as a single
project. To utilize dispatching in such an environment involves making release dates decisions dynamically
for the next few jobs. These decisions depend on the status of the jobs currently in process.

is not the same). With this flexibility, a simple idea is to divide each job into m equal
statistically independent parts, each with 1/m of the mean and 1/m of the variance, and
allocate one part to each machine. Clearly, the distribution of the total processing time of
each machine would be the same. This allocation would yield the most balanced allocation
possible. One might hypothesize that such a perfectly balanced allocation would be optimal
for makespan minimization as well as for minimizing safety time and expected E/T cost.
Such a hypothesis would be only partly true, however. We first discuss to what extent that
hypothesis is true and then we expose its weakness. We start with supportive evidence for
the validity of this conjecture for the case of independent normal processing times with two
machines. (The normality assumption is not restrictive in this case because the sum of
independent random variables tends to be normal.) We show that balancing the load
minimizes the expected makespan, which supports the hypothesis. Nonetheless, we also
prove a counterintuitive result: for the purpose of minimizing the expected makespan, it
does not matter how the variance is allocated between the two machines even though a
Jensen gap is involved.

Theorem RN9.1. For jobs with independent normal processing time distributions

processed on two machines with a makespan objective and no
dispatching, the optimal deterministic counterpart job allocation is also
optimal for the stochastic counterpart.

Proof.

»» For any given allocation of jobs to machines, let X denote the (normal) distribution of
the convolution of the jobs assigned to machine 1, and let Y denote the convolution for the
other jobs. Without loss of generality, assume μX ≤ μY and let Δ = μY − μX, σ2 = σX

2 + σY
2,

and z = −Δ/σ. Our task is to show that minimizing Δ is optimal for the stochastic counterpart
makespan problem, regardless of the variance allocation. If σ = 0, the theorem is trivial;
therefore, equivalently, we must show that maximizing z towards 0 is optimal. The
expected makespan of the shop is given by E(max{X, Y}) = μY + E((X − Y)+). But by
symmetry with (B.16), E(max{X, Y}) = μY + σ [φ(z) + zΦ(z)]. Let μ0 denote the total mean
workload divided by 2 (that is, μY when Δ = 0), so we can write:

E(max{X, Y}) = μY + σ [φ(z) + zΦ(z)] = μ0 + σ [φ(z) − z[0.5 − Φ(z)]] ; z ≤ 0

Because z ≤ 0, we have 0.5 ≥ Φ(z), so −z[0.5 − Φ(z)] ≥ 0. Taking the derivative by z, we
obtain

]5.0)([}],[max{ −Φ= zYX
dz
d σ

For z < 0, Φ(z) < 0.5 and the derivative is negative. Thus, increasing z towards 0 balances
the load and reduces the expected makespan. ««

 This particular proof cannot be generalized to more than two machines. It is also
specific to the normal distribution, although it could be extended to any other distribution
by the central limit theorem, as well as to jobs with linearly associated processing times.
However, our analysis so far concerns the stochastic counterpart problem and does not
imply that variance allocation is immaterial for safe scheduling purposes. Indeed, in safe
scheduling, the whole distribution of the makespan counts, whereas Theorem RN9.1
concerns only the mean. Figure RN9.1 depicts the distribution of the makespan for four
two-machine instances with an equal average load on each machine of 20 time units. The
total variance on both machines is 17. That total variance is allocated to the two machines
as per the next table, where we also list the resulting standard deviations and the ratios
between those values.

 Case 1 Case 2 Case 3 Case 4

variance stdev variance stdev variance stdev variance stdev
Machine

1
17 4.12 16 4 13.6 3.69 8.5 2.92

Machine
2

0 0 1 1 3.4 1.84 8.5 2.92

ratio ∞ ∞ 16 4 4 2 1 1

The figure was generated by numerical calculations performed by an Excel spreadsheet.
These calculations utilize the equation Fmax(x) = F1(x)F2(x). The expected makespan in all
cases is about 21.65. As the table indicates, in case 1, the variance is allocated fully to
machine 1 whereas the other machine has deterministic processing time. This case has the
longest tail to the right and a vertical segment at μ0 (=20). The second case, depicted by a
red line, involves a variance allocation in a ratio of 1:16 (i.e., standard deviations ratio of
1:4). The third case, depicted by a blue line, involves a variance allocation in a ratio of 1:4
(i.e., the standard deviations are 1:2), and the last case, in green, depicts a perfectly
balanced variance allocation. Consider safe scheduling models with prescribed service
levels. By the figure it is quite clear that for any service level target below 0.25 (the point
where all cdfs intersect), the balanced case is best, between 0.25 and approximately 0.7,
the unbalanced distribution is optimal (and it can be shown to be optimal at least between
0.25 and 0.5 in general), the perfectly balanced case is preferred again for higher service
levels above 0.9 whereas the other two cases are approximately optimal between 0.7 & 0.8
and 0.8 & 0.9. (It is difficult to select the precise balance that is optimal at that range, but
the differences are small.) The important point is that no single policy is universally
optimal. The issue becomes even more complicated when we have the option to trade off
mean and variance. We elaborate on these points below.

Figure RN9.1: The makespan cdf for balanced and unbalanced variance allocations

 To study the tradeoff between mean and variance, we shift our focus to the problem
of setting a due date so as to trade off tightness against expected tardiness. Assume that
machine loads are not perfectly balanced and consider a case where the maximum
processing time of some machine exceeds the due date. If a particular machine has both
the maximum mean and maximum variance then it is more likely to be the one that is most
tardy. Now consider the case where machine 1 has lower load but higher variance. In that
case, because the difference between two normal variables is normal, the probability
machine 1 completes last is less than 50%. However, if machine 1 is last, it may be more
likely to also be tardy, and when tardiness is sufficiently large, it is more likely to be due
to machine 1. The intuitive conclusion is that to some extent at least mean and variance
can be traded off against each other. We show that this intuition is correct when the optimal
service level exceeds 50%. To this end, assume that we have more jobs than machines (n
> m) and that we are allowed to preempt at most m − 1 jobs. Assume further that we use
some predetermined list and follow the pattern of Algorithm 9.1, but not necessarily such
that the deterministic counterpart will be optimized: that is, we can specify different mean
loads on each machine. (Instead of the one M* value in the original algorithm, we now
specify a different target for each machine such that the sum of the targets equals the total
workload.) Define the criticality of machine i, denoted κi, as the probability that it will be
the last one to complete its load and thus determine the makespan. Given any initial list for
the algorithm to follow, we can specify the targets in such a way that given criticality
objectives would be achieved (and it does not really matter if we know how to do so
efficiently as long as such targets exist). In the perfectly balanced case, the criticalities of

 10 15 20 25 30 35

0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

all machines are equal, but so is the mean load on each machine. Under the current
restriction, however, it may not be possible to achieve both equal loading and equal
criticalities. If no single job dominates the makespan, however, it is possible to preempt
jobs (i.e., set the load targets for the given initial sequence used by the algorithm) in such
a way that the criticalities will be equal, whereas by setting equal load targets we can obtain
equal loading (but not both at the same time). The question is which is more important.

Theorem RN9.2. Given a preliminary list, and subject to the use of Algorithm 9.1 with

appropriate load targets to preempt at most m − 1 jobs, the expected
makespan is minimized by loading the machines in such a way that all
criticalities equal 1/m.

Proof.

»» We prove the theorem for two machines, by contradiction. The proof can be extended
to m ≥ 2 machines by induction, but we omit the details. Assume a loading with unequal
criticalities minimizes the makespan. Let Mi denote the makespan of the jobs on machine
i and notice that the expected makespan is given by

κ1E(M1 | machine 1 is critical) + κ2E(M2 | machine 2 is critical).

In spite of the conditioning, if we transfer δ units of expected load from one machine to the
other, the conditional expectations change by −δ and +δ, respectively (although the
probability of the relevant event increases with the load). Without loss of generality,
suppose that κ1 > κ2, then it is possible to transfer a small enough load δ from the last job
scheduled on machine 1 to the first job on machine 2 (i.e., change the fractions of that job
allocated to each machine) so that κ1 still exceeds 0.5. This transfer increases the expected
load on machine 2 and reduces it on machine 1. As a result, with a probability > 0.5, we
reduce E(M1 | machine 1 is critical) by δ and with the complementary probability, we
increase E(M2 | machine 2 is critical) by δ. Hence, the expected makespan must decrease
at least by (κ1 − κ2)δ > 0 (where κ1 and κ2 are the new values), thus contradicting the
assumption that the solution was optimal. ««

 For two machines with normal distributions and equal loads the condition is indeed
satisfied: the criticalities of the two machines are equal. A similar argument can be used to
prove the following safe scheduling result:

Theorem RN9.3. Given a preliminary list, and subject to the use of Algorithm 9.1 (with

appropriate load targets) to preempt at most m − 1 jobs, let the objective
be to set a due date d and minimize

 d + γE(T)

 Then we should set the due date and balance the load on the machines in
such a way that all machine criticalities equal 1/mγ.

 By setting m = 1 we see that this is a generalization of Theorem 7.2, and indeed the
optimal service level is precisely the same, namely (γ − 1)/γ. But for m ≥ 2 and γ ≥ 2 (the
minimal value for which the service level is 50% or higher), it follows that the due date
should be set no earlier than the highest mean (or the machine with the highest mean will
violate the due date more than 50% of the time and when the due date is violated, tardiness
is implied). In this scenario, two equally-loaded machines with different variances will not
satisfy the equilibrium condition of the theorem. Instead, the one with the higher variance
will tend to contribute more than its share of maxima, and therefore it will tend to have
excessive criticality. Thus we see that there is a tradeoff between mean and variance even
for two machines with normal processing times when the required service level is at least
50%.
 Theorems RN9.2 and RN9.3 provide necessary conditions for the respective
objectives. The conditions are not sufficient because they do not guarantee the best
allocation of jobs to machines (except for the jobs that are selected to be preempted, whose
parts are indeed allocated optimally). But by selecting the best preliminary list in each case,
we can try to improve the objective. For a sufficiently high service level, however, we may
use the results above—such as the right tail of the balanced case in Figure RN9.1 and the
observation that we need a service level above 50% to interpret Theorem RN9.3 as we
did—to argue that the best list is the one that yields a solution that is as balanced as
possible, not only in terms of the necessary condition (equal criticalities) but also in terms
of balanced load. That is, we look for the most balanced loading that satisfies the theorems.
Now, if we remove the relaxation and allow no preemption, the results suggest that we can
measure the quality of an allocation by some measure of criticality balance as well as some
measure of load balance. For example, we may use λ(κmax − κmin) + (1 − λ)(μmax − μmin),
where 0 ≤ λ ≤ 1 and μmax (μmin) is the mean load on the most (least) loaded machine. Here,
λ = 0 corresponds to the deterministic counterpart solution, whereas λ = 1 addresses
criticalities only. A more direct approach is to estimate the objective function value. This,
in turn, can be done by employing a stored sample. It is clear, however, that optimizing the
objective is not easier than the deterministic case, and for this reason we now return our
attention to heuristics. (For convenience, we ignore the case in which one job dictates the
makespan distribution, which is inherently easy.)
 As we discussed already, LPT can be generalized in two "pure" ways: LEPT and
LVR. We also introduced the idea to use the maximum of μj and σj

2/μj to represent job j.
However, LVR is inherently associated with dynamic dispatching, whereas now we assume
a static sequence. For this reason, our concern boils down to measuring the total mean load
and the total variance on each machine, and hence there is no particular reason to use LVR.
LEPT is more applicable, and may indeed produce a useful initial solution, but it is not
sufficient because it ignores the variance completely. So we should look for another
adaptation for LPT, if possible. Furthermore, we should also consider whether we can
generalize Multifit. Recall that in the deterministic case, there is an advantage to starting
the Multifit procedure with an upper bound obtained by LPT. Ideally, we should generalize
both approaches for joint application. Unlike the deterministic case, however, we cannot

make the assumption that all processing times must be integers. That assumption is not
crucial, as we can always approximate continuous numbers by integers. The challenge is
to measure each job by a single scalar that is more sophisticated than the expected
processing time, because both LPT and Multifit rely on the use of a single scalar for each
job.
 To make progress here it is useful to consider the lower bound associated with a
perfectly balanced load. Furthermore, we assume that 1/mγ is sufficiently small to justify
ignoring the possibility that two machines will exceed the due date at the same time (and
only one is critical). Under this solution each machine has a mean μ0 = Σμj/m, and variance
σ0

2 = Σ σj
2/m. Given these values, the assumption, and γ, the optimal due date is associated

with SL = 1 − 1/mγ, and thus we should set the due date to d0 = µ0 + k*σ0, where k* = Φ−1(1
− 1/mγ) > 0 (for m ≥ 2 and γ > 1). If we also assume that we can load the machines with
variance that is not far from σ0

2, the marginal contribution of σj
2 to the standard deviation

of the machine to which job j is allocated is σj
2/2σ0. Using this value and Equation (B.17),

we can measure the "length" of job j as μj + mγφ(k*)σj
2/2σ0. That is, we use an

approximation of the correct tradeoff price for each unit of variance. Then, for each
machine, we can identify the true mean load and variance allocated for it. Furthermore, for
each machine, we can identify the due date associated with SL = 1 − 1/mγ (although this is
not precisely optimal for an unequal load). It is also possible to compare the results to those
obtained by LEPT. At this stage we are ready to embark on a Multifit procedure designed
specifically to minimize the maximal due date obtained on any machine by allocating jobs
in decreasing "length" order. (It can be shown that the final optimal due date is bounded
from above by this maximum.) In this application, let dUB denote the current upper bound
on the due date, obtained by the maximal due date in the best feasible solution; let dtrial
denote a trial value for d, and let dLB denote a lower bound (initially, set dLB = d0). To set a
new trial value, at each stage we set dtrial = (dLB + dUB)/2. Upon success, we set dUB = dtrial,
and upon failure we set dLB = dtrial. We stop the procedure when we consider the bounds
close enough, and the last upper bound is the final allocation. All that remains is to describe
the first-fit-decreasing application in this context. To this end, we measure the load on a
machine by the due date associated with the jobs already allocated to it (i.e., an unloaded
machine has a due date of 0 and the most loaded machine has the highest due date). We
test the fit of the "longest" unscheduled job by asking whether, after adding it to a machine,
the updated due date of that machine exceeds dtrial, in which case the job has to be allocated
to the next (less loaded) machine. Testing the performance of this approach is an open
research challenge.
 We conclude our analysis of the stochastic makespan problem with a very simple
result that is, however, unpublished. The variance of the makespan cannot exceed the total
variance of all jobs. (For a proof, see our Research Notes for Appendix A.)

Theorem RN9.4. Given any static job allocation to m parallel machines, the variance of

the makespan is bounded from above by the sum of marginal variances
of all machines.

Here, the marginal variance of a machine is the variance of the completion time of the last
job allocated to that machine. We do not require statistical independence. However, when
jobs are independent, the marginal variance of each machine equals the sum of variances
of the jobs allocated to it and the sum of all m marginal variances is thus equal to the sum
of the variances of all jobs.
 An important corollary of this theorem is that the variance of the Parkinson
distribution cannot exceed the variance of the internal random variable (because the
variance of the constant is zero). From the proof, it is also clear that if the probability of
hidden earliness is positive, the relationship is strict. As we note in Appendix A, however,
this reduction of the variance comes at a cost of an increase in the mean.

Minimizing Total Flowtime

As we saw, LEPT and LVR are conducive to balancing the load on machines and thus
reducing the makespan. However, as in the deterministic counterpart, if we wish to
minimize total flowtime without preemption, LEPT is the opposite of what we should do.
Instead, we should use SEPT (Bruno, Downey and Frederickson, 1981). Furthermore, with
ICR distributions, SEPT is optimal even for the preemptive case (without actually resorting
to preemption) and the exponential distribution satisfies this condition. The optimality of
SEPT holds because, for an ICR processing time, a job selected for its small expected
processing time becomes even more attractive after receiving some processing because the
expected time to complete it decreases. Weber, Varaiya and Warland (1986) showed that
a similar result holds when processing times are stochastically ordered (even if they are not
ICR), and again the exponential distribution satisfies the condition. Similar results have
also been shown to hold with intree precedence relationships, provided that processing
times are stochastically ordered. As a rule, SEPT is at the very least an excellent heuristic
wherever SPT is good in the deterministic case. With decreasing completion rates,
however, preempting jobs after some processing, when their remaining expected
processing time has increased, may be conducive to flowtime reduction.

Modeling with Linear Association

Theorem A.4 can be shown to apply to parallel machines because the expected makespan
can be calculated by a series of convolutions and maximum operators. This applies,
however, only in the context of static allocations. Furthermore, if we adjust the load in such
a way that criticalities are balanced as per Theorem RN9.2, they will remain balanced after
applying the common factor. However, Theorem RN9.3 involves a due date that is not
subject to the common factor, and thus the criticalities obtained initially are not likely to
remain intact after taking the association into account. Another way to look at this issue is
to observe that the due date may be critical too—indeed the due date should be critical with
a probability of SL = 1 − 1/mγ. But if we were to subject the original due date to the common
adjustment, it would become a random variable. So it would have to be replaced by another,
fixed, value. But there is no guarantee that the criticalities of the machines would remain
intact relative to the revised due date. Further research is needed to test whether optimizing
for the unadjusted values and then revising the due date is a good heuristic.

 Finally, by Theorem 6.7, the special dispatching case with exponential processing
times would yield a stochastically minimal makespan even though the adjusted values are
not exponential. A similar result applies in any case where stochastic dominance is
obtained.

References

van den Akker, M., J.A. Hoogeveen, and S.L. Van De Velde (1999) "Parallel Machine

Scheduling by Column Generation," Operations Research 47, 862-872.

Baker, K.R. and Merten, A.G. (1973) "Scheduling with Parallel Processors and Linear

Delay Costs," Naval Research Logistics Quarterly 20, 793-804.

Bruno, J., P. Downey, and G. Frederickson (1981) "Sequencing Tasks with Exponential

Service Times to Minimize the Expected Flow Time or Makespan," Journal of
the Association for Computing Machinery 28, 100-113.

Chang, S.Y. and H.-C. Hwang (1999) "The Worst-Case Analysis of the MULTIFIT

Algorithm for Scheduling Nonsimultaneous Parallel Machines," Discrete Applied
Mathematics 92, 135-147.

Chen, Z.-L. and W.B. Powell (1999) "Solving Parallel Machine Scheduling Problems by

Column Generation," INFORMS Journal of Computing 11, 78-94.

Coffman, E.G., M.R. Garey, and D.S. Johnson (1978) "An Application of Bin Packing to

Multiprocessor Scheduling," SIAM Journal of Computing 7, 1-17.

Coffman, E.G. and R.L. Graham (1972) "Optimal Scheduling for Two Processor Systems,"

Acta Informatica 1, 200-213.

Conway, R.W., W.L. Maxwell and L.W. Miller (1967) Theory of Scheduling, Addison-

Wesley, Reading, Mass.

Davis, E. and J.M. Jaffe (1981) "Algorithms for Scheduling Tasks on Unrelated

Processors," Journal of the Association for Computing Machinery 28, 721-736.

Dobson, G. (1984) "Scheduling Independent Tasks on Uniform Processors," SIAM Journal

of Computing 13, 705-716.

Eastman, W.L., S. Even, and I.M. Isaacs (1964) "Bounds for the Optimal Scheduling of n

Jobs on m Processors," Management Science 11, 268-279.

Friesen, D.K. and M.A. Langston (1986) "Evaluation of a Multifit-based Scheduling

Algorithm," Journal of Algorithms 7, 35-59.

Ghirardi, M. and C.N. Potts (2005) "Makespan minimization for scheduling unrelated
parallel machines: A recovering beam search approach," European Journal of
Operational Research 165, 457-467.

Graham, R.L. (1969) "Bounds on Multiprocessor Timing Anomalies," SIAM Journal of

Applied Mathematics 17, 416-425.

He, Y. (1999), "A Multifit Algorithm for Set Partitioning Containing Kernels," Applied

Mathematics Journal of Chinese Universities 14B, 227-232.

Horn, W.A. (1973) "Minimizing Average Flow-Time with Parallel Machines," Operations

Research 21, 846-847.

Horowitz, E. and S. Sahni (1976) "Exact and approximate algorithms for scheduling

nonidentical processors," Journal of the Association for Computing Machinery
23, 317–327.

Hu, T.C. (1961) "Parallel Sequencing and Assembly Line Problems," Operations Research

9, 841-848.

Ibarra, O.H and C.E. Kim (1977) "Heuristic Algorithms for Scheduling Independent Tasks

on Nonidentical Processors," Journal of the Association for Computing
Machinery 24, 280-289.

Kao, T.Y. and E.A. Elsayed (1990) "Performance of the LPT Algorithm in Multiprocessor

Scheduling," Computers and Operations Research 17, 365-373.

Lam, S. and R. Sethi (1977) "Worst Case Analysis of Two Scheduling Algorithms," SIAM

Journal of Computing 6, 518-536.

Lee, C.-Y. (1991) "Parallel Machines Scheduling with Nonsimultaneous Machine

Available Time," Discrete Applied Mathematics 30, 53-61.

Lee, C.-Y, Y. He and G. Tang (2000) "A Note on 'Parallel Machines Scheduling with

Nonsimultaneous Machine Available Time'," Discrete Applied Mathematics 100,
133-135.

Lee, C.-Y. and J.D. Massey (1988) "Multiprocessor Scheduling: Combining LPT and

Multifit," Discrete Applied Mathematics 20, 233-242.

Martello, S., F. Soumis and P. Toth (1997) "Exact and Approximation Algorithms for

Makespan Minimization on Unrelated Parallel Machines," Discrete Applied
Mathematics 75, 169–188.

McNaughton, R. (1959) "Scheduling with Deadlines and Loss Functions," Management

Science 6, 1-12.

Mokotoff, E. and P. Chrétienne (2002) "A Cutting Plane Algorithm for the Unrelated

Parallel Machine Scheduling Problem," European Journal of Operational
Research 141, 515-525.

Pinedo, M. (2002) Scheduling: Theory, Algorithms, and Systems, 2nd edition, Prentice-

Hall.

Portougal, V. (1993), “Asymptotic Behavior of some Scheduling Algorithms,” Asia-

Pacific Journal of Operational Research 10, 71-91.

Potts, C.N. (1985), "Analysis of a Linear Programming Heuristic for Scheduling Unrelated

Parallel Machines," Discrete Applied Mathematics 10 (1985) 155–164.

Van de Velde, S.L. (1993) "Duality Based Algorithm for Scheduling Unrelated Parallel

Machines," ORSA Journal on Computing 5, 192–205.

Weber, R.R. (1982) "Scheduling Jobs with Stochastic Processing Requirements on Parallel

Machines to Minimize Makespan or Flowtime," Journal of Applied Probability
19, 167-182.

Weber, R.R., P. Varaiya, and J. Walrand (1986) "Scheduling Jobs with Stochastically

Ordered Processing Times on Parallel Machines to Minimize Expected
Flowtime," Journal of Applied Probability 23, 841-847.

Weiss, G. (1992) "Turnpike Optimality of Smith’s Rule in Parallel Machines Stochastic

Scheduling," Mathematics of Operations Research 17, 255-270.

