
Research Notes for Chapter 8* 
 
We start by discussing some sources and minor comments for the models presented in the 
chapter. We also mention some modeling issues related to the option of preempting a job 
at the cost of a repeated setup. Next, we focus on the traveling salesperson problem (TSP). 
We discuss the state of the art for deterministic instances and then explore some stochastic 
models. We also show by example how to solve a safe version of the shortest route 
problem. 
 
Sources and comments 
 
The earliest source that introduced release dates to a sequencing problem is Jackson (1955), 
who considered it in the context of the single-machine Tmax-problem. In the dynamic case, 
as in the static case, any sequence that minimizes Lmax also minimizes Tmax (although the 
converse is not true, again as in the static case). In the chapter we mentioned that the 
dynamic Lmax-problem is equivalent to the HBT problem. We also mentioned that the HBT 
problem can be solved effectively by branch and bound. Results along these lines were 
published by McMahon and Florian (1975), Lageweg, Lenstra and Rinnooy Kan (1976), 
and Carlier (1982). The latter involves a clever branching scheme and can solve instances 
with hundreds of jobs rapidly. That algorithm serves as the basis of sophisticated job shop 
algorithms that we discuss further in Chapter 14. Potts (1980) addressed the dynamic Lmax-
problem, and studied the effectiveness of exploiting symmetry, as mentioned in the chapter 
with respect to minimizing the makespan, by solving the reversed problem (where the tail 
comes first and the head follows the body). He also considered other enhancements of the 
algorithm. In general, whenever the preempt-resume version of a problem can be solved 
readily, the branch and bound approach should be considered seriously for the preempt-
repeat version. Indeed, the branch and bound algorithms mentioned above utilize this 
insight. The advantage is that the preempt-resume optimal solution serves as a lower bound. 
If this bound is tight, branch and bound is effective. In the same spirit, the F-problem can 
be solved by exploiting the preempt-resume solution (Ahmadi and Bagchi, 1990). The 
dynamic U-problem and the dynamic T-problem represent another level of difficulty, 
however, because the corresponding preempt-resume solution is not obvious. 
 One research question about preemption that did not receive much attention in the 
literature is a hybrid version of the preempt-repeat and preempt-resume models. In practice 
it is often possible to preempt a job and then resume it after repeating a setup. That is, we 
obtain a preempt-repeat setup-resume processing model. Related to this issue is the JIT 
technique of setup reduction known as SMED (single minute exchange of die), developed 
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by Shigeo Shingo (Shingo, 1985). Shingo focused on repetitive manufacturing 
applications. In job shops, however, it is sometimes possible to set work on modular jigs 
that facilitate mounting them or dismounting them (Trietsch, 1992). Similarly, some 
modern machine tools have multiple tables that allow switching jobs almost 
instantaneously without actually dismounting the current job during its preemption. If so, 
the setup time is reduced considerably and it becomes possible to use preemption in 
practice. Engineering solutions aside, if the only cost is time, inserted idle time should 
never exceed the setup time. Then, the question is whether the benefit of preempting 
exceeds the time-cost of that setup. In that connection, inserted idle time is especially 
unattractive in stochastic environments because it implies waiting for a stochastic arrival 
while work is available with certainty. If the realistic cost of preemption is just lost setup 
time, starting work on a waiting job is a cost-free option. At most we lose setup time with 
some probability, but the alternative is to waste that time or more with certainty. The 
usefulness of quick setups is even greater in such environments. 
 As mentioned in the chapter, we might expect that the nondelay adaptation of SPT 
performs quite well for the dynamic F-problem even when the hypothesis of Theorem 8.4 
does not hold. For example, in a limited computational study, Chandra (1979) reported that 
the nondelay version of SPT generates solutions that are about 3% worse than optimal for 
10-job problems and less than 1% worse than optimal for 30-job problems. The observation 
that larger problems seem to yield better results suggests that the heuristic may be 
asymptotically optimal, but we don’t know of any published results proving or disproving 
this hypothesis. For the dynamic T-problem, we might expect the nondelay adaptation of 
MDD to perform quite well, even when the hypothesis of Theorem 8.5 does not hold. If 
we are interested in obtaining optimal solutions, a branch and bound approach is 
appropriate, although the computational effort might be greater than for the static version. 
Results along these lines are presented by Chu and Portmann (1992). Chu (1992) also uses 
branch and bound for the dynamic T-problem and harnesses an MDD-type property in the 
solution algorithm. Kanet and Li (2004) reported good results for the WMDD nondelay 
heuristic (using the exponential distribution to simulate rj and pj, the TWK method to 
generate dj, and several approaches to assign wj). 
 To conclude our comments about dynamic models, we also mentioned in the chapter 
that the dynamic U-problem is NP-hard but Algorithm 8.2 can solve it efficiently in the 
case of agreeable release dates and due dates. The algorithm is due to Kise, Ibaraki and 
Mine (1978). One special case occurs when all jobs have the same due date. In that case, 
Algorithm 2.1 (the Moore-Hodgson algorithm) can be used to solve the problem if we just 
reverse the time line. That is, we treat the common due date as time zero, the gaps between 
job release dates and the due date become job due dates, and the sequence suggested by 
the Moore-Hodgson algorithm is reversed before implementation.*  
 In the chapter we discussed in detail how to solve the F-problem with series-parallel 
structures. The same approach can be used directly for the Fw-problem. Essentially, the 
series-parallel structure in combination with the decomposition tree imposes a clear partial 
order on individual jobs. That order can prevent scheduling the next job in the SWPT 
sequence, but all other sequencing decisions follow SWPT. That is, we only need to violate 
SWPT when forced to do so by a serial relationship. Therefore, given a series-parallel 
structure, non-SWPT selections are always postponed as much as possible. When we 
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consider more general network structures, it is no longer guaranteed that such decisions 
should be postponed as much as possible. The simplest network that is not series parallel 
is the interdictive graph, depicted in Figure 16.16. In that figure, which is presented in a 
project scheduling context, we depict jobs (known as activities in the project case) on the 
arrows, but it is straightforward to transform it into the structure used in the current chapter, 
where jobs are presented by nodes. Given such a non-series-parallel network, there are 
potential choices early on that cannot be fully assessed until later. For that reason, the 
series-parallel structure is the most general case of precedence structure known to yield an 
efficient algorithm of the type described above. For general precedence structures, we 
would apparently need to employ a general-purpose solution procedure. For example, we 
could use dynamic programming, but with precedence constraints in the role of dominance 
conditions. Monma (1981) describes the limitations of sequencing with general precedence 
restrictions, whereas Morton and Dharan (1978) explore some heuristic algorithms for this 
type of problem.  
 The study of networks with series-parallel structure versus the more general case is 
also important in stochastic analysis of project networks. In that context, the most prevalent 
objective is to minimize the makespan. Therefore, we are often interested in the cdf of the 
makespan. As it turns out, if activity distribution times are stochastically independent and 
all activities start as soon as possible, then series-parallel networks can be reduced in the 
sense that it is possible to obtain the distribution of the project duration (or of any other 
milestone) by performing a series of basic convolutions or maximum operations. The 
decomposition tree then dictates the sequence of those basic operations. By contrast, 
stochastic analysis of networks that are not series-parallel is quite forbidding; for that 
reason, the interdictive graph is also known as the forbidden graph. Demeulemeester and 
Herroelen (2002) discuss the issue thoroughly. The practical resolution, however, is by 
simulation. Simulation also allows removal of the impractical independence assumption. 
If correlation is modeled by linear association (see Appendix A), then we can still solve for 
series-parallel networks because it is enough to consider the common element after finding 
the distribution for independent elements. That result follows the same arguments that 
prove Theorem A.4.  
 
More on the traveling salesperson problem 
 
The traveling salesperson problem (TSP) is NP-hard in the strict sense, but instances with 
thousands of cities have been solved since the mid-1980s (Laporte, 1992). Furthermore, 
some special cases can be solved in polynomial time. One such algorithm has been 
developed by Gilmore and Gomory (1964). For details of the use of the TSP in scheduling, 
including a summary of the Gilmore and Gomory algorithm and a way to run it in O(n log 
n), see Bagchi et al. (2006). One flow shop model that utilizes the Gilmore and Gomory 
algorithm is the two-machine blocking case, which we discuss in Chapter 10. Returning to 
the general TSP, in our own ongoing research (Mazmanyan et al., 2009, available on our 
web site), some instances of 100-city TSP were solved in ten to twenty seconds (on a 
relatively slow PC with a 1.7MHz single processor) but one instance took 14 hours! That’s 
a differential of about 360,000%, and it is due to the fact that the difficult instance involved 
a search tree with numerous near-optimal tours. Whereas for the purpose of worst case 
analysis the quicker instances prove nothing, it is still important to note that excessive 



branching due to preponderance of near-optimal solutions indicates that typical problems 
can be solved very well in practice if we are willing to settle for a good certificate rather 
than demand perfection. We return to this point later (as part of our stochastic analysis), 
but here we should mention that we used the state-of-the-art branch-and-cut, symmetric 
TSP software, Concorde (Applegate et. al, URL). Concorde has been associated with 
several breakthrough milestones; e.g., a 24,978-city instance was solved in 2004. On the 
one hand, such large instances may require years or even decades of CPU time (using 
massive parallel processing to compress the actual duration). On the other hand, most 
practical applications—especially those associated with actual travel applications—are 
smaller by many orders of magnitude, so in a practical sense, and especially if we are 
willing to accept nearly-optimal tours with good certificates, we can say that the 
deterministic TSP is tractable. 
 Technically, Concorde assumes that the TSP is symmetric. In the chapter, however, 
we do not assume symmetry because important transportation and production applications 
are asymmetric; e.g., due to one-way streets. Nonetheless, any n-city asymmetric TSP 
instance can be readily transformed to an equivalent 2n-city TSP (Jonker and Volgenant, 
1983), so the distinction is not crucial. The transformation starts by splitting every city into 
two—one for inbound flows and the other for outbound flows—and then introducing 
asymmetric costs. Because the model must be symmetric, the "inbound city" and the 
"outbound city" have two connections between them, both with the same cost (zero). 
Therefore, it is important to force the algorithm to use precisely n of these 2n new connections, 
all in the same direction; e.g., from "inbound" to "outbound." Jonkers and Volgenant use large 
penalty costs to ensure compliance. These penalties apply to direct connections between 
any two "inbound" cities or between any two "outbound" cities, thus only allowing travel 
from an "outbound" city to an "inbound" one or vice versa. The use of such penalty costs 
is somewhat detrimental in terms of the precision that can be achieved (as a rule, mixing 
small and large numbers in computerized applications should be avoided if possible). In 
the specific case of a branch-and-cut application, however, it is conceptually easy to 
introduce linear constraints that enforce the correct direction. The new constraints then 
become part of the mathematical model. It is necessary, however, to do so within the 
program, whereas the generic formulation is within the purview of the user.*  
 In general, the literature on stochastic versions of the TSP is sparse, perhaps because 
the stochastic counterpart is equivalent to the deterministic TSP. One challenging 
stochastic adaptation of the TSP involves optimizing a predetermined sequence to visit a 
random subset of cities (Jaillet, 1988). The model exploits shortcuts to bypass cities that 
do not require service but without re-optimizing the sequence. As such, it concerns a 
dynamic problem but restricts the solution to a static sequence. Jaillet restricts the 
probability distribution by which customers are selected for each tour as follows: given 
that K customers have to be visited, any subset of K customers is equally likely. For 
instance, when every customer is selected with the same probability, this restriction is 
satisfied. He then obtains some bounds on the ratio by which the regular optimal TSP can 
be suboptimal, and shows by example that the regular TSP can be a very poor choice. The 
model is challenging, especially if we remove the restriction. See also Laporte et al. (1994), 
who solved the problem for up to 50 potential customers. On the one hand, given the current 
state of the art in solving the TSP, unless it is important to publish the sequence in advance, 
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the best practical solution of the problem may well be to obtain the list of visited customers 
first, and then solve (optimally or heuristically). On the other hand, there are instances 
where pre-publication of the sequence is desirable and yet the option to use shortcuts is 
viable. It may also happen that the information about whether the next customer on the pre-
established tour requires a visit is provided in real time, and thus the problem is still 
interesting.  
 Whereas the pure TSP counterpart model is essentially identical to the deterministic 
TSP, the same is not true for safe scheduling. Furthermore, stochastic models of the related 
vehicle routing problem (VRP) are more akin to the safe scheduling approach, although 
they consider other sources of variation. The VRP problem contains n customers serviced 
by m (< n) vehicles. Each customer must be assigned to a unique vehicle, and we must find 
the optimal tour for each vehicle. The objective may be to minimize the maximal tour 
length or to minimize total travel distance subject to a load ceiling for each vehicle. 
Whereas it is easier to solve several smaller tours as the second stage requires, the need to 
find the optimal allocation of customers to vehicles (partitioning) renders this problem 
more difficult to solve than the TSP. Conceptually, if we treat each vehicle as a machine, 
the relationship of the VRP to TSP is like that of the parallel machine model to the single 
machine model (see Chapter 9). The analogy holds also in the sense that the parallel 
machine model is much more complex than the single-machine model.  
 The stochastic vehicle routing problem (SVRP) has received some attention in the 
literature, and indeed some of the early applications of safe scheduling principles are 
associated with it. An example is Dror and Trudeau (1986). For a survey, see Gendreau et 
al. (1996) or Bertsimas & Simchi-Levi (1996). Most of these models assume stochastic 
demands on vehicle capacities that are revealed only when the vehicle arrives at each 
customer. This feature gives rise to an overload risk, associated with expensive corrective 
actions. The objective is to minimize the expected total cost, including the cost of 
scheduled operations and the cost of corrective actions. With few exceptions, travel-time 
randomness is excluded from these models, perhaps due to the conventional focus on the 
mean. One such exception concerns a dynamic model that relies on real-time information 
for minimizing mean travel time (Gao and Chabini, 2006). However, they address only the 
shortest route problem (whose deterministic counterpart is not really a scheduling 
problem). Gao and Chabini aim to minimize the mean travel time, so theirs is a real-time 
counterpart model. In the text and in these Research Notes, our own models are not based 
on real-time data; instead, they are solved a priori. But a priori models can be used to 
support dispatching decisions, which is a useful real-time heuristic in general (Bertsimas 
et al., 1990). Here we start with the safe scheduling version of the shortest route problem. 
This model is conceptually similar to the safe scheduling TSP that we introduced in the 
chapter. However, unlike the TSP, the static shortest route problem is very easy to solve in 
polynomial time.*  
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 In what follows, our statements about routes can also be recast in terms of tours. The 
essential difference between TSP tours and routes is that a tour must visit a predetermined 
set of cities and a route does not. We may also use path to refer either to a TSP tour or to 
a route. For our purpose, only one important difference between tours and routes exists: to 
solve for a TSP tour, it may be necessary to first populate the distance matrix by appropriate 
shortest routes. Setting that distinction aside for a while, our task is to select a path and set 
a due date for it. This implies two options, associated with the two main safe scheduling 
objectives that we presented in Chapter 7. Model 1 requires minimizing d1 subject to SL ≥ 
b, and model 2 requires minimizing d2 + γE(T), both by selecting the best path and then 
optimizing dj accordingly. Given a path we can compute its length distribution, and then it 
is straightforward to set d1: if the cumulative distribution function (cdf) of the path length 
is F(t), then SL(d) = F(d), so the optimal d1 is F−1(b)—the argument for which F(d1) = b. 
In our current models, the length distribution is normal with mean μ and standard deviation 
σ.* Let zj = (dj − μ)/σ, let φ(z) denote the standard normal density function, and let Φ(z) 
denote the standard normal cdf. Using an asterisk to denote optimality, z1* = Φ−1(b) and 
d1* = min{μ + z1*σ} among all paths. For model 2, If γ ≤ 1 then d2* = 0 and the deterministic 
counterpart path is optimal; so henceforth, we assume γ > 1. For any given makespan 
distribution, the problem can be solved by applying the critical fractile model, which 
implies a service level target of b = (γ − 1)/γ; i.e., z2* = Φ−1[(γ − 1)/γ]. For a normal 
distribution with mean μ and standard deviation σ, the objective function value for d2 = μ 
+ z2*σ in this generalized E/T model equals μ + γφ(z2*)σ. So both models can be written as 
minimizing a linear function of μ and σ, μ + πσ, where either π = z1* or π = γφ(z2*). 
Although π < 0 is possible in model 1, here we restrict our attention to nonnegative π. We 
address π as the price of each standard deviation unit relative to μ. Our two models are 
similar, but not equivalent: when the same service level is required, the prices are different 
so the optimal paths may not coincide and d1* ≤ d2*. When the prices are equal, the same 
path is optimal but d1* > d2*. 
 Let the travel time between cities i and j—our distance metric—have mean μij and 
standard deviation σij. We use no index or a single index for paths; we also take the liberty 
of allowing real numbers as path indices and using different indices for the same paths as 
convenient. If we start at time 0, the path completion time is a random variable denoted by 
C. Given a path, we can compute the distribution of C, and in our case it is normal with 
mean μ and standard deviation σ. Define a virtual path as any point in the positive quadrant 
of the μ-σ2 plane—that is, the Euclidean plane where the horizontal axis corresponds to μ 
and the vertical axis to σ2. A path is called efficient in the μ-σ2 plane if it minimizes the 
linear function aμ + bσ2 for some parameters a and b such that a, b ≥ 0 and a + b > 0. 
Alternatively, we could use the μ-σ plane for our depiction of tours, and an efficient tour 
in that depiction minimizes aμ + bσ for similar parameters a and b. It can be shown that 
paths that are efficient in the μ-σ plane are also efficient in the μ-σ2 plane but the converse 
is not necessarily true. Henceforth, as a default, we call a path efficient if it is efficient in 
the μ-σ2 plane. Efficient paths are also Pareto optimal, but other Pareto optimal paths may 
exist. (They do not have to be efficient.) We refer to the path that minimizes expected travel 
time as path μ (with mean μµ and variance σµ

2). By the independence assumption, σ2 = Σσij
2, 
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where the summation is along a path; so we can also find path σ—the path that minimizes 
σ2 (with mean μσ and variance σσ

2)—by solving a deterministic shortest path problem with 
distances given by σij

2. If the two solutions are identical, that path is optimal. From now 
on, however, we assume that paths μ and σ are distinct, so μµ < μσ and σµ > σσ. Define path 
λ as the path that minimizes (1 − λ)μ + λσ2 for 0 ≤ λ ≤ 1. Paths μ and σ are special cases that 
correspond to λ = 0 and λ = 1; i.e., path μ is also named path 0.0 and path σ is also path 1.0. 
(We include decimal points to emphasize that these indices are real numbers.) For any 
given λ, we can find path λ by solving a deterministic shortest path problem with distances 
of (1 − λ)μij + λσij

2 for all pairs i, j = 1, 2, …, n. When viewed as step functions of λ, μλ is 
monotone nondecreasing by construction and σλ

2 is monotone nonincreasing. Suppose that 
the set has m members, each associated with a range of possible λ arguments. To identify 
all the members of this set, assume we have already identified k ≥ 2 members (starting with 
k = 2 as given by path μ and path σ). Using any two adjacent members as endpoints, we 
obtain a search segment that connects them. Let λ be the argument for which (1 − λ)μ + λσ2 
is constant along the search segment. Searching for the shortest path with distances of (1 − 
λ)μij + λσij

2 we find path λ. Path λ is either a new member of the efficient set or it merges 
with an endpoint of the search segment, signaling that there is no efficient path between 
the endpoints. When all search segments yield no new paths, the efficient set is complete. 
We can depict the efficient set with the final search segments connecting its adjacent 
members as a chain in the μ-σ2 plane, which we call the efficient chain. All possible paths 
must reside on or above and to the left of the efficient chain. The efficient paths themselves 
are extreme points along the chain. Pairs of adjacent segments form angles of less than 180o 
at these extreme points. To construct the complete efficient chain requires solving the 
shortest path problem max{2, (2m − 1)} times. We illustrate the computations by 
calculating the efficient routes for the network in Figure RN1. 

 
Figure RN1: An example network 
 
Travel times are stochastically independent with the following means and variances: 
 
Edge S-1 S-2 1-2 1-3 1-4 2-3 2-4 3-4 3-T 4-T 
Mean 8 16 11 20 24 4 8 6 6 4 
Variance 4 12 4 4 5 4 4 6 10 8 

 
For λ = 0 we use only mean data (i.e., S-1 = 8, S-2 = 16, etc.). Starting at S, by Dijkstra’s 
shortest route algorithm, node 1 has a distance of 8 and no other node is closer to S, so 
node 1 is added to the solved set (i.e., the set of nodes for which we know the shortest route 
from S). Next, node 2 is added, with a distance of 16. Node 3 is solved next, via node 2, 
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with a distance of 20. Node 4 follows, with a distance of 24. Node T comes next, via node 
3, with a total distance of 26. Tracing back, the minimal route is S-2-3-T, and we should 
also calculate the variance: 12 + 4 + 10 = 26. The result, (26, 26), is depicted at the top of 
the chain of linear segments in Figure RN2. Next, for λ = 1 (i.e., when we ignore the mean), 
we find that route S-1-4-T is shortest in terms of variance, yielding μ = 36, σ2 = 17. To 
calculate the λ value for which these two routes are equivalent, we can start by calculating 
an interim parameter, w = (26 – 17)/(36 – 26) = 0.9 (that is, the absolute difference in 
variance divided by the absolute difference in mean between the two points). We can now 
find λ = 1/(1 + w) = 1/1.9 = 0.5263. For this λ, the value we need to consider for each edge 
is calculated by the formula (1 − λ)μij + λσij

2; e.g., for edge S-1 we have 0.4737×8 + 
0.5263×4 = 5.895. Given these calculated distances, we find the new shortest route as S-1-
2-4-T. The numerical value associated with the tour is 25.210, which is indeed lower than 
26 (the value associated with the two endpoints). Next we calculate that the new tour has 
μ = 31 and σ2 = 20. We now need to check whether there is another efficient route between 
this new route and each of the two previous ones. These are associated with w = (26 – 
20)/(31 – 26) = 1.2, yielding λ = 1/2.2 = 0.4545 and w = (20 – 17)/(36 – 31) = 0.6, yielding 
λ = 1/1.6 = 0.625. The former yields the route S-1-2-3-T, with μ = 29, σ2 = 22. The latter 
yields the route S-1-3-T, with μ = 34, σ2 = 18. The insertion process stops when no new 
point can be identified between the current pair—so each new insertion requires two 
subsequent trial insertions. In the example, no additional routes emerge, so the full list is 
given by:  

 
λ 0.0 0.4545 0.5263 0.625 1.0 

route S-2-3-T S-1-2-3-T S-1-2-4-T S-1-3-T S-1-4-T 
mean 26 29 31 34 36 

Variance 26 22 20 18 17 
 
 

 
 
Figure RN2: The efficient set in the μ-σ2 plane and the μ-σ plane 
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 Figure RN2 depicts all the possible routes in this example, with the efficient set at 
the lower left side connected by piecewise linear segments. The left side of the figure 
depicts the routes in the μ-σ2 plane and the right side depicts the μ-σ plane. In this particular 
example, the same tours are efficient in both depictions. It now becomes straightforward 
to select the best route for any given parameters. Furthermore, instead of calculating the 
complete set of efficient routes, it is possible to devise a search that skips most of them, 
but we omit the details here.  
 As noted above, a similar procedure applies for the TSP. However, to even pose 
the TSP well for some given λ, we must first solve the minimal route problem for all pairs 
of cities. Strictly speaking, it is not necessary to use Dijkstra’s algorithm for each pair of 
cities for this purpose. The Floyd-Warshall algorithm can be used to solve all distances at 
the same time (Floyd, 1962). The complexity of Floyd’s algorithm is O(n3), which is better 
than running Dijkstra’s algorithm n(n − 1) times. Nonetheless, if we ignore this issue and 
use Dijkstra’s algorithm, we can pre-solve for any λ in advance. In the example above, for 
any λ between 0 and 3/7, route 0.0 is optimal, and route 0.4545 is optimal for any λ between 
3/7 and 1/2. The limiting values are simply those associated with the last search segments 
that were tested during the construction; e.g., the value 3/7 is associated with the search 
segment between tour 0.0 and tour 0.4545. Special attention should be accorded in case of 
ties: formally, we may need to consider both options because they imply different routes. 
Although dealing with ties makes the algorithm more tedious, it does not make a difference 
in terms of computational complexity. 
 In model 1 and model 2 we treat the due date as a decision, but alternate models 
assume a given due date. We discuss those in a TSP context. The model 1 alternate, 
alternate 1, calls for maximizing the service level. This problem has received some 
attention in the literature: Kao (1978) introduced the model but Sniedovich (1981) exposed 
a flaw in Kao’s solution. Carraway et al. (1989) presented a generalized dynamic 
programming approach whose average complexity exceeds O(n22n) and offered no 
evidence that the worst-case performance is better than complete enumeration. Kenyon and 
Morton (2003) show that for SL ≥ 0.5 the model is convex. For this case they propose a 
continuous search to identify the highest possible service level by solving a series of 
deterministic nonlinear integer programs whose continuous relaxation is a convex 
program. Thus, one can approach the optimal value as closely as desired (but without 
actually reaching it). We can show that alternate 1 is equivalent to model 1 for any service 
level: they are both solved by selecting from the same finite set of efficient tours. That is, 
we can identify the optimal tour precisely if we can generate the set of efficient tours. 
Generating this set is indeed easier for SL ≥ 0.5. Generating this part of the set is also 
sufficient for the solution of model 2. The model 2 alternate minimizes the penalty of late 
arrivals when it is proportional to the length of the delay (Laporte et al., 1992). That is, it 
requires minimizing E(T), where T = (C – d)+. In our context, the model 2 alternate requires 
considering a larger set of Pareto optimal solutions. For instance, in Figure RN2 we observe 
a Pareto optimal route right below route 0.0, with mean 28 and variance 24. That route is 
not efficient but we cannot guarantee in advance that it is not optimal for some instance of 
alternate 2 (when considering the shortest route case). Therefore, model 2 and its alternate 
are not equivalent, and we do not consider that alternate further here. 



 It is possible to solve model 2 or model 1 with service level targets of at least 0.5 
by iterative application of the deterministic TSP solution. The same applies to alternate 1 
when the due date is not shorter than path 0.0. Furthermore, the same approach provides 
effective heuristic solutions for all the cases we excluded, such as model 1 with SL < 0.5, 
alternate 1 with due date smaller than tour 0.0, or alternate 2. We conjecture that the number 
of iterations of the TSP that might be required to identify the efficient set (and the tours 
required for the heuristic of the excluded cases) is bounded by a low order polynomial of 
n.* If true, the conjecture implies that the practical complexity of our problem is close to 
that of the deterministic TSP. Using a direct search approach (which avoids identifying the 
full efficient set), our numerical experience suggests that the practical complexity when 
expressed as a number of TSP applications does not exceed O(n), with a very small 
coefficient. Furthermore, for a particular experimental design, we found that the 
suboptimality gap associated with limiting the search to precisely two TSP applications 
achieves about 99.98% of the potential benefit of finding the optimal tour as compared to 
the deterministic counterpart tour. With this approach, we were able to solve for up to n = 
1000, using Concorde. For π = 1.5, we found empirically that as n grows large, the 
probability that tour μ is optimal becomes negligible, but the improvement offered by the 
optimal tour tends to become very small, too. Figure RN3 demonstrates that point.  
 

 
Figure RN3: The average improvement of the second TSP as a function of n 
 
Practical applications often involve small n. When n is large, we usually must solve a 
vehicle routing problem instead, and each vehicle has a small number of cities to visit. 
Thus, it is useful to perform the second search, but further searches may be considered 
redundant. Nonetheless, we encountered no problems that were intractable in the range we 
tested, up to n = 1000. However, we did identify maximization problems with multiple 
near-optimal solutions that took much longer. Figure RN4 provides a clue. On the right 
side—marked as the Euclidean case—it shows that the right-side boundary of the convex 
hull of problems with n = 30 and n = 50 is almost vertical. We generated these samples by 

                                                 
* Bagchi (1989) addresses bi-criteria problems with a similar structure. There, the number of efficient 
solutions cannot exceed n. The proof does not extend to our case, however. 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

0 50 100 150 200 250 300 350 400



placing cities randomly on a unit square and then generating random coefficients of 
variation for each Euclidean distance thus obtained. (We also generated the convex hull for 
one n = 70 case, not depicted, which took more than 100 hours and yielded a similar right-
side boundary.) The problem is that for the tours on the “vertical” boundary, the solver 
requires substantial branching, with branches that yield very little useful information on 
average. The left-hand side of the figure depicts cases where mean distances and variances 
were generated independently. That structure is less likely in practice but was easier to 
analyze in our experiments. 
  



  
Random case (n=30) Euclidean case (n=30) 

  
Random case (n=50) Euclidean case (n=50) 

 
Figure RN4: The convex hulls of simulated TSP examples 
 
 Even if the tours on the right boundary in Figure RN4 were relevant, we could 
identify excellent solutions very early in these cases: the excessive time was devoted to 
proving optimality. For example, Figure RN5 depicts a case for n = 100 which took over 
3000 seconds to converge to the optimal tour. If we ignore the vertical scale, it seems that 
for about half that time there was a sizable difference between the upper and lower bound 
and about half the time was devoted to the tiny improvements and verifying optimality. 
However, by paying attention to the scale we can see that right from the start we could stop 
with a certificate guaranteeing that the upper bound (our initial solution) is within 0.08%, 
and getting there took no more than 5 seconds. Thus, over 3000 seconds were needed to 
achieve 0.07% improvement and prove optimality. In a practical sense, that time was 
wasted. Thus the models are tractable and robust in practice. 
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Figure RN5: The optimality gap of a 100-city example as a function of CPU time 
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