
Research Notes for Chapter6*

As discussed in the research notes for Chapter 1, the development of stochastic sequencing

models was slow until the late 1970s. Nonetheless, the basic stochastic counterpart models

covered in this chapter were discovered earlier. Theorems 6.1 and 6.2 are due to Rothkopf

(1966). Theorem 6.3 is due to Crabill and Maxwell (1969), who were also the first to note

that minimizing the maximal expected tardiness is not identical to minimizing the expected

maximal tardiness. Theorem 6.4 is due to Hodgson (1977). Corollary 4.1 was actually

published earlier than the theorem itself, by Banerjee (1965). We are not aware of earlier

sources of Theorems 6.5, 6.6, 6.7 and 6.8. Theorem 6.6 could be used in a branch and

bound application for finding the sequence that minimizes the expected maximal penalty,

but research to test whether it is indeed effective for that purpose is lacking. A basic linear-

association model was proposed by Trietsch (2005), and, because it addresses projects, we

discuss it in the research notes of Chapter 18. Essentially, the results on linear association

given in this chapter, Chapter 11 and Appendix A were developed to avoid the ubiquitous

stochastic independence assumption, and yet maintain tractability. Characterizing the cases

for which traditional results based on stochastic independence can be extended to linearly-

associated distributions is an open research problem. But Theorem 6.8 is one example

where Theorem 6.7 suffices for this purpose. In Chapter 7 we present another example,

Algorithm 7.1 (see also Theorem7.1), where Theorem 6.7 can be used to expand the

conditions of a result from stochastic independence to linear association. Extending the

analysis to more elaborate associations is another area that requires further research.

 Sample-based analyses are central to our computations for stochastic models. They

also help us avoid the stochastic independence assumption. Furthermore, in subsequent

chapters, samples are vital to our calculations of safety time. It is therefore important to

discuss the theoretical underpinnings of this approach. But first, we lay to rest a common

myth, according to which the use of a sample—often associated with simulation—is in

some sense less precise than the use of analytic models. From a practical point of view, the

opposite is true. It is the typical analytic model that is more divorced from reality. Key to

any analytic model is the use of given parameters. But where do these parameters actually

come from? At best, such parameters are estimated from practical samples (which, under

a sample-based approach, could have been used directly), and typically the models also

involve fitting theoretical distributions to the data collected. When fitting distributions,

goodness-of-fit tests apply, and if the tests are passed, we can say that the fit cannot be

rejected. We can never say that the fit is correct, however. So there are two sources of

potential error in this approach: estimating parameters and selecting a distribution. Again,

if a real-life sample is given, our approach would not require estimating anything from it:

we could often simply use it as is. As a result, we would avoid both the estimation errors

* The Research Notes series (copyright © 2009, 2010, 2019 by Kenneth R. Baker and Dan Trietsch)

accompanies our textbook Principles of Sequencing and Scheduling, Wiley (2009, 2019). The main purposes

of the Research Notes series are to provide historical details about the development of sequencing and

scheduling theory, expand the book’s coverage for advanced readers, provide links to other relevant research,

and identify important challenges and emerging research areas. Our coverage may be updated on an ongoing

basis. We invite comments and corrections.

Citation details: Baker, K.R. and D. Trietsch (2019) Research Notes for Chapter 6 in Principles of Sequencing

and Scheduling (Wiley, 2019). URL: http://faculty.tuck.dartmouth.edu/principles-sequencing-scheduling/.

http://faculty.tuck.dartmouth.edu/principles-sequencing-scheduling/

and the errors in fitting theoretical distributions. An additional advantage, even if we use

simulated samples (which, admittedly, are not necessarily better representations of reality),

is that we don’t need strong assumptions, such as stochastic independence. Thus, we

achieve more realistic representations, and we do not require restrictions designed mainly

to achieve tractability in analytic models.

 Analytic models have their value, especially in studying the behavior of stochastic

systems in a stylized framework that allows seeing fundamental issues more clearly.

Indeed, we utilize such models in this text, and we do so for that very purpose. But they

should not always be touted as a better approach for practical problems than using sample

data. There is a caveat, however. Using a larger sample implies longer computation times.

As a rule of thumb, we can estimate the relative computation time as roughly equal to r

times that of the deterministic counterpart, where r is the number of realizations in the

sample. So, if we can estimate distributions well and then use them efficiently without

relying on simulation, we may be able to solve larger problems than we could with a

sample. For instance, if computation time is proportional to 2n, we might expect to be able

to solve for 10 fewer jobs if we use a sample of 1000 realizations.

 We now turn to the historical development of sample-based analysis. For this

purpose we assume the sample is actually simulated: when the sample is given from real

data, the issues we now discuss become moot. Essentially, using a sample is a very intuitive

concept and has probably been reinvented repeatedly, making it difficult to identify the

first source of this idea. For instance, in Chapter 15 we discuss job shop simulations that

date back to the 1960s, and they essentially involve the use of sample-based data. Early

applications of computerized simulation, however, did not address optimization. Instead,

they involved comparison of few alternatives (e.g., sequences) presented by the user. For

this purpose, they relied on the statistical sampling approach combined with artificial

generation of samples. In the early days, fast access memory was a severe bottleneck, and

in many cases, the sample was regenerated for each new test. To make such comparisons

more precise, it is possible and recommended to regenerate the exact same sample for each

alternative solution by using the same seed for generating random numbers. Furthermore,

it is possible to calculate the mean and the variance of a sample during the process of

generating it without keeping the data in memory or storage. When memory is at a premium

and storage is expensive, this facility is very attractive. The same approach can also be

used in sample-based optimization; i.e., it is not necessary to actually store the sample. For

instance, Gurkan et al. (1994) recommend this approach. Today, it is much easier to keep

a sufficiently large sample in fast access memory, so the idea of reusing a sample repeatedly

is technically more attractive. This is especially true if each stored number is the result of

a simulation from a complex distribution. For example, in an early experiment, we used a

very large sample with data generated by an Excel distribution function. In that case, it

took 75 seconds to generate a sample and write it in a spreadsheet; but afterwards it took

only 0.2 seconds to optimize the precise schedule for it. There were no sequencing

decisions involved, or the optimization might have taken much longer, but this case

demonstrates that accessing a sample is a very quick operation relative to generating it—

that is, regenerating the same sample repeatedly would be highly wasteful.

 Regardless of whether we store the sample or regenerate it, sample-based

optimization starts with an assumption (implicit in the main body of our text) that

processing times are stationary. Processing times are stationary if they do not depend on

jobs’ start times; i.e., they are independent of the sequence or the schedule. The processing

times of two jobs may be statistically correlated and yet stationary. For optimization, we

utilize this stationarity to justify using the same sample under different schedules. By

contrast, if processing times were a function of their start time (the schedule), or the

sequence, this approach would require modification. For instance, in problems involving

highway travel time, the stationarity assumption does not hold because travel time tends to

be longer during rush hour. In such a case, sample-based analysis requires modification.

Such modification may involve transformations of the distribution as described by Trietsch

and Quiroga (2009) in a different context. We also use this approach for stochastic crashing

in Chapter 18.

 Two types of optimization are relevant. One is associated with optimizing nonlinear

functions; e.g., precise scheduling decisions, where the decision variable is continuous and

the function has a continuous derivative, but stochastic noise is also present, necessitating

the clever use of samples. Shapiro and Homem-de-Mello (1998) discuss such a case with

a multivariate normal distribution. For such cases, it makes sense to use small samples

when we are far from the optimum and larger samples as we approach the final solution.

Indeed, these authors recommend that approach. A related subject is to find the optimal

setting of a complex process; e.g., in chemical engineering. In this case, the underlying

function—say, yield—is not known theoretically but must be estimated empirically by trial

and error. If so, the problem calls for a statistical experimental design approach, also known

as response surface optimization (RS—see Box and Draper, 1987). RS can also be useful

when few discrete decisions are involved; e.g., whether to use ingredient X or ingredient

Y. It is not likely to be useful for sequencing decisions involving many jobs, however,

because each possible sequence would become a special case requiring estimation. Related

papers discuss the use of sample-based analysis in the context of integer programming—

which conceptually can be used for sequencing decisions; e.g., see Kleywegt et al. (2001)

and Verweij et al. (2003). Nonetheless, for the purpose of making sequencing decisions,

there is less evidence that it is safe to start the search with a small sample and increase the

sample size as we approach the final solution. It may be a useful heuristic to do so, but this

subject requires further research. The state of the art in our context is to use neighborhood

searches for the optimal sequence.

 A related approach is pursued by Healy and Schruben (1991). They generate and

store a sample and then optimize for each repetition separately and select the solution that

is correct most frequently. This measurement—the frequency at which a sequence is

optimal—is also known as the optimality index, a term coined by Dodin (1996) in a

sequencing context. The use of optimality indices may look attractive, but Portougal and

Trietsch (1998) cautioned that it is not a robust criterion. They demonstrated that

maximizing the optimality index may favor the selection of schedules whose distributions

have a low mode but high variance and high mean. Such distributions tend to be superior

very often—that is why they have high optimality indices—but when they fail, the failure

is worse than it could have been. The practical conclusion is that if we need to resort to

heuristics, we are likely to be better off using the deterministic counterpart sequence as a

basis for scheduling than using a sequence with a higher optimality index. This choice is

guaranteed to be easier computationally and likely to be at least as good once we take

stochastic variation into account.

 Portougal and Trietsch (1998) is also the source of the result cited in Section 6.6

that if Y ≥st X and Y and X are independent, then Pr{Y ≥ X} ≥ 0.5. (This result can be

extended to the linearly-associated case by invoking Theorem 6.7.) Therefore, when

comparing two stochastically-ordered distributions, the one that is stochastically smaller

will have a higher optimality index. This result is highly intuitive but the proof is not

immediate. On the subject of stochastic dominance, we should mention that several

stronger forms of stochastic dominance are often mentioned in the research literature.

Perhaps the most important one is the strongest possible dominance, where one variable

dominates the other with probability 1 (w.p.1), or almost surely. If Y is larger than X almost

surely we can write Y ≥as X. Because dominance w.p.1 implies stochastic dominance, every

result that can be proved for distributions with stochastic dominance also applies for

stochastic dominance w.p.1. Suppose that two random variables Y and X are independent.

If Y ≥as X then the cdf of Y must reach 1 before the cdf of X can exceed 0. For this reason,

independent random variables with this strong dominance between them are also described

as having non-overlapping distributions. But it is easy to show that this dominance does

not require non-overlapping distributions when the variables are correlated (Ross 1996).

For example, if Z is a nonnegative random variable and Y = X + Z, then Y ≥as X but the two

can have overlapping distributions nonetheless. In fact, the assumption of independence is

so ubiquitous that sometimes results that are stated for non-overlapping distributions could

actually be proven for regular dominance w.p.1.

Emerging Research Areas

 A useful research area, suggested by our discussion above, is cataloguing classical

results that assume independence and classifying them according to whether they can or

cannot be generalized to linearly-associated distributions. That includes, for example,

distinguishing between results that require dominance with probability one and those that

actually require non-overlapping distributions. In general, doing that is a task that requires

studying in detail a very large number of publications. Whereas some cases would be

almost immediate to analyze, others may require careful study. In Appendix A, among

other things, we discuss a case where Theorem 6.7 cannot be used because it involves due

dates that are not subject to the common bias. Hence, it is clear that not every result

obtained under the independence assumption can be extended. It would be especially useful

to devise general rules that can help in making such decisions.

 We now discuss an important open area of future research that combines stochastic

analysis with conventional mathematical programming techniques, such as branch and

bound (B&B) and dynamic programming (DP). We address specifically the stochastic T-

and Tw-problems, but part of the challenge is to identify additional models that might be

addressed that way. As a rule, we can apply B&B, DP or Integer Programming to

practically any stochastic problem by sample-based optimization. For instance, Gutjahr et

al. (1999) apply B&B within a sample-based optimization framework for the T-problem.

Similarly, some of the references discussed before involve sample-based optimization by

various mathematical programming approaches. We also remark that stochastic

programming with recourse typically utilizes a set of scenarios, which we might as well

call a sample. Our aim here, however, is to show the applicability of the analytical approach

for some distributions without a sample, and thus achieve more efficient computation. To

begin, we give a streamlined proof of a slight generalization of Theorem 6.8. The

generalization allows agreeable weights and we address any two jobs. That is, we actually

prove a generalized version of Theorem 2.8 (see Exercise 2.8g). Theorem 6.8 is essentially

a corollary of our new result. (In the second edition we replaced the original Theorem 6.8

by Theorem RN6.1 because it is more general and yet has a simpler proof. The previous

version of Theorem 6.8 did not include weights.)

Theorem RN6.1 In the Tw-problem, let the processing times, pj, of all jobs be linearly

associated, and let jobs 1 and 2 satisfy p1 ≤st p2, d1 ≤ d2 and w1 ≥ w2,

then job 1 precedes job 2 in an optimal sequence.

Proof.

»» Again, we prove for independent processing times and then invoke Theorem 6.7 to

cover linear association. In Figure RN6.1, the expected tardiness of a job is depicted as a

tail to the right of its due date, above the distribution that applies to it and below the upper

horizontal line of 1. The relevant distributions are either Fk if job k is scheduled first (k =

1, 2), or F1+2 if job k is scheduled second. These three distributions also reflect any

preceding jobs that have already been scheduled, or any jobs scheduled between jobs 1 and

2. As the figure shows, job 1 is stochastically smaller and has a lower due date, per the

condition of the theorem. Let TF,d denote the area of the tail above distribution F (where F

= 1, 2 or 1+2) to the right of due date d (where d = 1, 2). TF,d measures an expected tardiness;

for instance, T1+2,1 is the expected tardiness of job 1 if it is sequenced second and is thus

subject to the completion time distribution F1+2. We start with the sequence 1-2, assuming

the two jobs are adjacent. By an API, the tardiness cost of job 1 increases by w1(T1+2,1 −

T1,1) ≥ w1(T1+2,2 − T1,2), whereas the tardiness cost of job 2 decreases by w2(T1+2,2 − T2,2) ≤

w2(T1+2,2 − T1,2). But, because w2 ≤ w1, w2(T1+2,2 − T1,2) ≤ w1(T1+2,2 − T1,2), so the gain is

bounded from above by a lower bound of the loss and the change cannot decrease and may

increase the total weighted tardiness. Now allow additional jobs (which need not be

stochastically ordered) between jobs 1 and 2. If we interchange the two jobs, all these

intermediary jobs follow a stochastically larger job so their expected tardiness cannot

decrease. Hence, such jobs cannot provide incentive to perform the interchange either. ««

Figure RN6.1

 Parenthetically, in Chapter 7, we introduce predictive Gantt charts. A predictive

Gantt chart provides distributions for starting times and completion times and shows due

date performance graphically. Essentially, Figures 6.2 and RN6.1 incorporate all the

ingredients of a predictive Gantt chart. Our proof highlights the usefulness of predictive

Gantt charts for stochastic analysis.

 To continue, calculating expected tardiness by tail areas can sometimes be

performed without simulation. For instance, when processing times are normal it is easy to

obtain distributions such as F1+2 by convolution. In such cases, we can perform API tests

by comparing the expected weighted cost of the two possible sequences. If job 1 comes

first, the total weighted cost is given by: w1T1,1 + w2T1+2,2 whereas if job 2 comes first, the

total weighted cost is given by: w1T1+2,1 + w2T2,2. Therefore, job 1 can come first if:

w1T1,1 + w2T1+2,2 ≤ w1T1+2,1 + w2T2,2

or

w1(T1+2,1 − T1,1) ≥ w2(T1+2,2 − T2,2)

 This condition can take the place of the WMDD dispatching heuristic that we

introduced in Chapter 4. Job 1 comes first if it satisfies the condition for any selection of

another job as job 2. Stochastic dominance is not required. It can also be used within

branches in a B&B application.

 We invoked the normal distribution because it is easy to calculate convolutions for

it and to calculate tail areas thereafter: by (B.14), E(Tj) = σ[(w) − wΦ(−w)], where  is the

standard normal density function, Φ(w) is the standard normal cdf, w = (d − μ)/σ, μ is the

mean, and σ is the standard deviation of the processing time. The service level in this case

is given by Φ(w).Although Φ(w) is elliptic, it is as good as analytic in the practical sense

(because very precise calculations are available by appropriate series); e.g., the Excel

function NORMSDIST(w) can be used in calculations. Therefore, it is possible to use the

normal tail result for the purpose of solving tardiness problems by B&B or for DP.

F1

F1+2

d1 d2

F2

F1

F1+2

F2

 Furthermore, it is equally easy to calculate tail areas for the lognormal distribution.

Let μ and s be the mean of the lognormal distribution and the standard deviation of its core

normal (see Appendix A for the relationship between these parameters). Define z =

ln(d/μ)/s + s/2, which implies a service level of Φ(z). Then it can be shown that the expected

tardiness is μΦ(s − z) − dΦ(−z). The only problem with the lognormal, however, is that we

don’t have convenient convolutions for it. Nonetheless, there is one important special case

for which we can use the lognormal distribution without resorting to approximations, and

that is when processing times are linearly associated but with stochastic variation restricted

to the common element, Q. Another important case that can be approximated very well is

when each element is distributed lognormal with the same s, and Q is also lognormal. In

that case, we can invoke the lognormal central limit theorem (see Appendix A) to obtain

approximate convolutions. When all processing times are lognormal with the same s, then

they are stochastically ordered.† In such case, we can also apply Theorem RN6.1. In

Trietsch et al. (2010) we report that linearly-associated lognormal distributions provided a

good fit for processing times in two project environments in Armenia. We believe that it

should be useful in a much wider context as well. Thus, solving for this particular

distribution has a validated practical application. (In the second edition, Appendices A and

B include a much more extensive coverage of the lognormal. Appendix A and Chapter 18

also discuss extensive new evidence to the efficacy of this distribution, confirming the

statement above.)

 Returning to our tail-based analysis, one might think that such observations, at least

with respect to the better-known normal model, would have led to the application of B&B

or DP to the stochastic T-problem and the stochastic Tw-problem. Nonetheless, that does

not seem to be the case (except by the sample-based approach that we cited above). Thus,

we believe that the application of these tools to stochastic scheduling is a ripe area for

research. (In Chapters 7 and 8 of the second edition we report some results along these

lines.) Similarly, these stochastic problems can be addressed by various search heuristics

with little adaptation. For example, the current best search technique for the Tw-problem

seems to be dynasearch (Congram et al., 2002; Grosso et al., 2004). As discussed in our

Research Notes for Chapter 4, Dynasearch is a neighborhood search approach that is based

on searching various combinations of pair interchanges and has been shown to be much

more effective than regular pair-interchange search heuristics that consume the same search

time. On the one hand, in the deterministic Tw-problem case, the fastest application of

dynasearch utilizes shortcuts that go beyond just using the analogue of Theorem RN6.1.

On the other hand, it is conceptually easy to adapt basic dynasearch—without shortcuts—

to the stochastic version. Specifically, the effects of independent PIs are additive, which,

as we discussed in RN4, is the main requirement for dynasearch to be potentially effective.

(By this criterion, dynasearch could also be applied to a sample.) We may also be able to

identify useful shortcuts that apply in the stochastic case (including Theorem RN6.1). Thus,

the application of dynasearch and other search techniques to our problem is highly likely

to bear fruit. Nonetheless, it is also important to establish the size limit of problems that

can be solved to optimality (e.g., by B&B or DP), so we should not limit our attention to

search heuristics.

† In our Research Notes for Appendix A we show that lognormals with the same s are stochastically

ordered in the likelihood ratio sense, which is a slightly stronger result.

Complexity of the Minimax Problem

 New coverage in the second edition relates to the complexity status of the flowtime

problem under minimax cost or minimax regret, both with exhaustive scenarios. We show

that they are NP-hard. This result has already been claimed for minimax regret by Daniels

and Kouvelis (1995), who formulated instances with two reversed (and therefore, related)

scenarios as Generalized Assignment Problem (GAP) models. They then quoted secondary

sources that GAP is NP-complete, thus concluding their proof. We could not find the

original proof that GAP is NP-complete, and the reason we looked for it in the first place

was that we wanted to verify that NP-completeness still applies in spite of the relationship

they imposed between the two scenarios. Be that as it may, however, in addition to their

own—arguably incomplete—proof, Daniels and Kouvelis (1995) also referenced a

working paper by Yu for an alternative proof. This citation eventually led us to Yang and

Yu (2002), who provided a proof not only for minimax regret but also for minimax cost.

Hence, the complexity status of the models in question is resolved. Nonetheless, we now

discuss new analysis that we developed before finding Yang and Yu (2002): We restrict a

problem well-known to be NP-complete, namely Partition, to the special case presented by

Daniels and Kouvelis, thus completing their original proof (and, as a by-product, providing

a new proof that GAP is NP-complete). We do so because it might provide some additional

insight to minimax criteria and because it serves as an introduction to a case we cover in

our Research Notes for Chapter 7.

 The key to the proof is letting two scenarios be reversed versions of each other. For

an arbitrary first scenario, with given processing times pj, the processing time of the kth

job under the second scenario is pn–k+1; that is, the processing time of the (n – k + 1)th job

under the first scenario. (If this special case is NP-hard, then the general case is also NP-

hard.) Next, they formulate minimax regret as a GAP model where the flowtime of scenario

1 is to be minimized subject to the constraint that the difference between the two flowtimes

should not be negative. To see why that is a valid formulation, we first show that the

flowtime problem can be cast as an assignment problem. Next, we show why the constraint

is valid. Then we give an illustrative example whose optimal solution is obtained by solving

a Partition instance. Finally, we show one way to restrict the problem to any given Partition

instance. That restriction not only completes the published proof but also proves—again—

that GAP is NP-complete.

 To see that the flowtime problem is identical to the assignment problem, let xjk be

a {0, 1} variable such that xjk = 1 if and only if job j is in position k (that is, [k] = j), and xik

= 0 otherwise (for i, k = 1, 2, …, n). Now consider the contribution of job [k] to the objective

function: it is given by (n – k + 1)p[k], and therefore it also equals

∑(𝑛 − 𝑘 + 1)𝑥𝑗𝑘𝑝𝑗

𝑛

𝑗=1

where only the contribution of job [k] is counted (because xik = 0 for all other jobs).

Therefore, the flowtime model can be formulated as the following Assignment Problem

(AP):

min{∑∑(𝑛 − 𝑘 + 1)𝑥𝑗𝑘𝑝𝑗

𝑛

𝑗=1

𝑛

𝑘=1

}

subject to:

∑𝑥𝑗𝑘

𝑛

𝑗=1

= 1

∑𝑥𝑗𝑘 = 1

𝑛

𝑘=1

𝑥𝑗𝑘 ∈ {0, 1}

which is a classic AP. (It is the ability to assign a fixed cost for each cell that renders the

flowtime model an instance of AP.) To obtain the GAP introduced by Daniels and

Kouvelis, we add the following side constraint

∑∑(𝑛 − 𝑘 + 1)𝑥𝑗𝑘(𝑝𝑗 − 𝑝𝑛−𝑗+1

𝑛

𝑗=1

𝑛

𝑘=1

) ≥ 0

In words, the flowtime of scenario 2 (where the processing time of job j is pn–j+1) should

not exceed the flowtime of scenario 1.

 In essence, we assume regret will be maximized for scenario 1, and that is why we

choose to minimize its flowtime. By symmetry, we can make this assumption without loss

of generality. With that in mind, the constraint is justified because if we allow a negative

right-hand side, the makespan under scenario 2 can grow excessively and the maximal

regret will shift from scenario 1 to scenario 2 (and be excessive). In more detail, for any

sequence, S, consider the sum of the flowtimes of the two scenarios. In this sum, the

processing time of job [k] is counted (n – k + 1) + k = (n + 1) times, hence the sum is given

by (𝑛 + 1)∑𝑝𝑗, which is a constant. We refer to half of that constant as F0. Denote the

flowtime of scenario 1 under SPT as Fmin. Suppose the flowtime of scenario 1 is F0 + Δ,

where, by the side constraint, Δ ≥ 0, then the flowtime of scenario 2 is F0 – Δ. Under

scenario 1, the regret is F0 + Δ − Fmin whereas under scenario 2 it is F0 − Δ − Fmin, so the

maximal regret is associated with scenario 1 and is higher than the minimal regret by 2Δ;

by symmetry, exactly the same values apply under scenario 2. So the best we can do is to

reduce regret to F0 − Fmin, and that is achieved by minimizing the flowtime of scenario 1

under the listed constraint.

 Now consider minimax criteria: for the optimal minimax regret solution it is

precisely F0 + Δ, and it, too, cannot fall below F0. Hence, the same optimal solution applies

to minimax cost as well. The only difference between the minimax cost objective and the

minimax regret objective is that we don’t need to subtract Fmin, but Fmin is effectively a

constant.

 To illustrate the relationship between our problem and Partition, we now ask

whether we can achieve a flowtime of F0; that is, can we drive Δ down all the way to zero.

That’s a decision problem with a YES or a NO answer, and we show a Partition instance

with the same answer associated with it. In SPT order, let scenario 1 have processing times

of 1, 2, 3, 8, 10, 14 (and hence scenario 2 has 14, 10, 8, 3, 2, 1). Furthermore, assume the

scenarios are equi-probable; that is, each can manifest with probability 50%. This

assumption allows us to calculate the expected processing times, as follows: (1 + 14) / 2 =

7.5, (10 + 2) / 2 = 6, (8 + 3) / 2 = 5.5, (and by symmetry) 5.5, 6, and 7.5. For reversed and

equi-probable scenarios each value except perhaps one, associated with the median job,

appears at least twice, and in our particular example it appears exactly twice. Now consider

the SEPT sequence. There are 8 distinct SEPT sequences starting with 3 or 4, then 4 or 3

(respectively), 2 or 5 followed by 5 or 2 (similarly), and then 1 or 6 followed by 6 or 1. (In

general, for even n, assuming all n/2 expected values are distinct, there will be 2n/2 possible

SEPT sequences. For odd n there will be 2(n−1)/2 distinct SEPT sequences.) The expected

flowtime for each of these eight candidates is 125, which is also F0. Now, consider the

particular SEPT sequence for which all pairs with equal expected processing times are in

increasing order; that is, pick the sequence 3-4-2-5-1-6. Under scenario 1 this sequence has

a flow time of 112 and under scenario 2, 138. When compared to E(F), 125, we find that

the flowtime under scenario 1 falls below 125 by 13 whereas scenario 2 exceeds 125 by

the same amount, yielding 125 + 13 = 138. Accordingly, in this case minimax cost and

minimax regret are determined by scenario 2. Now reverse all the relevant pairs, yielding

the sequence 4-3-5-2-6-1. It has a flowtime of 138 for scenario 1 and 112 for scenario 2

(which we could anticipate by symmetry). Switching jobs 3 and 4 adds 8 – 3 = 5 to the

flowtime of scenario 1, switching 2 and 5 adds 10 – 2 = 8, and switching 1 and 6 adds 14

– 1 = 13. By switching all three, we increase the flowtime of scenario 1 by 5 + 8 + 13 = 26,

thus going from 112 to 138, and the effect on scenario 2 is the opposite. Now note that 5 +

8 = 13 and consider one of the two sequences 3-4-2-5-6-1 or 4-3-5-2-1-6: both have the

same flowtime under both scenarios, matching SEPT at 125. We now know that either one

of these two sequences is optimal. But to answer the decision problem whether such a

solution exists we had to partition the set {5, 8, 13} to two subsets with the same total

weight (13), which is an instance of the Partition problem. Hence, finding the solution is at

least as hard as solving Partition. That illustrates that the problem is NP-hard. Finally, for

a more formal proof, we now show one way to restrict our GAP problem with the special

constraint structure to any instance of Partition. Because GAP is clearly in NP, this

restriction will also prove that GAP is NP-complete.

 Given an instance of Partition, with n elements, start by indexing them in

nondecreasing order. Let uk denote the size of the kth element so un is the largest element

in the set. Arbitrarily, let A = un. Now create scenario 1, with 2n processing times,

constructed from both ends to the middle, as follows: p1 = (A+ 2 + u1)/2, p2n = (A + 2 –

u1)/2, p2 = (A + 4 + u2)/2, p2n−1 = (A + 4 – u2)/2, …, pk = (A + 2k + uk)/2, p2n−k+1 = (A + 2k

– uk)/2, …, pn = (A + 2n + un)/2, pn+1 = (A + 2n – un)/2. Claim: the original Partition instance

yields a YES if and only if the GAP achieves F0, and NO otherwise. To wit, if we construct

scenario 2 as the reverse of scenario 1 and assume the two sequences are equi-probable,

then one of the 2n SEPT sequences is given by n consecutive pairs of jobs, sequenced per

the order at which we populated the list, (1, n, 2, n – 1, …, k, n – k + 1, …, n, n + 1), such

that the sum of indices of each pair is n + 1, where the first two jobs have expected

processing times of A + 2; the kth pair, A + 2k; and the last pair, A + 2n. That is, it is a

SEPT sequence because the means are monotone nondecreasing. The sequence will remain

SEPT if we interchange the jobs of a pair (whose indices sum to n + 1), but not if we

interchange any other two jobs (whose indices do not sum to n + 1); that is, the expected

flowtime does not exceed F0 if and only if we avoid any interchange between jobs that are

not paired. In the contribution to the GAP objective function of each such pair, the first job

is counted once more than the second, and therefore the makespan of the sequence listed

above under scenario 1 is 𝐹0 + ∑𝑢𝑘. By reversing the sequence of pair k, we reverse the

sign of uk in the makespan expression, and if we can find a subset of pairs to reverse such

that it leads to F0, then the answer to the original Partition instance must be YES, whereas

otherwise it is NO. Hence the restriction to Partition is valid and GAP must be NP-complete

even with a single side constraint with the special structure considered.

 Incidentally, it is straightforward to extend the symmetric formulation of the GAP

model presented by Daniels and Kouvelis to any two sequences, although in such case we

will not know in advance whether the constraint should be ≥ 0 or ≤ 0. However, we can

solve both versions and select the better, and thus optimal, solution. Hence, on the one

hand, there is no real need to restrict the formulation to the symmetric case. On the other

hand, it is not enough to show that the problem can be formulated as a GAP instance. To

prove NP-hardness we must do the opposite, namely show that the problem can be reduced

to a known NP-complete problem, such as Partition or GAP. Above we showed both

directions (with respect to the symmetric case).

References

Box, G.E.P. and N.R. Draper (1987) Empirical Model-Building and Response Surfaces,

Wiley.

Banerjee, B.P. (1965) "Single Facility Sequencing with Random Execution Times,"

Operations Research 13, 358-364.

Congram, R.K., C.N. Potts and S.L. van de Velde (2002) "An Iterated Dynasearch

Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem,"

INFORMS Journal on Computing 14, 52-57.

Crabill, T.B. and W.L. Maxwell (1969) "Single Machine Sequencing with Random

Processing Times and Random Due-Dates," Naval Research Logistics Quarterly

16, 549-555.

Daniels, R.L., and P. Kouvelis (1995) "Robust Scheduling to Hedge Against Processing

Time Uncertainty in Single-Stage Production," Management Science 41, 363–376.

Dodin, B. (1996) "Determining the Optimal Sequences and the Distributional Properties of

their Completion Times in Stochastic Flow Shops," Computers and Operations

Research 23, 829-843.

Grosso, A., F. Della Croce, R. Tadei (2004) "An enhanced dynasearch neighborhood for

the single-machine total weighted tardiness scheduling problem," Operations

Research Letters 32, 68-72.

Gurkan, G., A.Y. Ozge and S. Robinson (1994), "Sample-path Optimization in

Simulation," Proceedings of the 1994 Winter Simulation Conference, 247-254.

Gutjahr, W.J, A. Hellmayr and G.Ch. Pflug (1999) "Optimal Stochastic Single-Machine-

Tardiness Scheduling by Stochastic Branch-and-Bound," European Journal of

Operational Research 117, 396-413.

Healy, K. and L.W. Schruben (1991) "Retrospective Simulation Response Optimization,"

Proceedings of the 1991 Winter Simulation Conference 901-906.

Hodgson, T.J. (1977) "A Note on Single Machine Sequencing with Random Processing

Times," Management Science 23, 1144-1146.

Kleywegt, A.J., A. Shapiro and T. Homem-De-Mello (2001) "The Sample Average

Approximation Method for Stochastic Discrete Optimization," SIAM Journal of

Optimization 12, 479-502.

Ross, S.M. (1996) Stochastic Processes, 2nd Ed., Wiley.

Rothkopf, M.H. (1966) "Scheduling with Random Service Times," Management Science

12, 707-713.

Portougal, V. and Trietsch, D. (1998) "Makespan-Related Criteria for Comparing

Schedules in Stochastic Environments," Journal of the Operational Research

Society 49, 1188−95.

Shapiro, A. and T. Homem-de-Mello (1998) "A Simulation-Based Approach to Two-Stage

Stochastic Programming with Recourse," Mathematical Programming 81, 301-

325.

Trietsch, D. and F. Quiroga (2009) "Balancing Stochastic Resource Criticalities

Hierarchically for Optimal Economic Performance and Growth," Quality

Technology and Quantitative Management 6.

Trietsch, D., L. Mazmanyan, L. Gevorgyan and K.R. Baker (2010), A New Stochastic

Engine for PERT (working paper). URL:

<http://faculty.tuck.dartmouth.edu/images/uploads/faculty/principles-sequencing-

scheduling/Engine.pdf>

Verweij, B., S. Ahmed, A.J. Kleywegt, G. Nemhauser and A. Shapiro (2003) "The Sample

Average Approximation Method Applied to Stochastic Routing Problems: A

Computational Study," Computational Optimization and Applications 24, 289-333.

http://faculty.tuck.dartmouth.edu/images/uploads/faculty/principles-sequencing-scheduling/Engine.pdf
http://faculty.tuck.dartmouth.edu/images/uploads/faculty/principles-sequencing-scheduling/Engine.pdf

Yang, J. and G. Yu (2002) “On the Robust Single Machine Scheduling Problem,” Journal

of Combinatorial Optimization 6, 17-33.

