
Research Notes for Chapter 5* 

 

Models with a Common Due Date 

 

As mentioned in the chapter, the restricted version of the basic E/T problem is NP-hard but 

pseudopolynomial. A specialized dynamic programming technique that is capable of 

solving the problem for hundreds of jobs is due to Hall, Kubiak and Sethi (1991). The 

heuristic described in the chapter, which builds a V-shaped schedule based on assigning 

jobs in LPT order either to L or to R, is due to Sundararaghavan and Ahmed (1984). Details 

and references for quadratic E/T costs can be found in Vani and Raghavachari (1987), who 

suggest a neighborhood search approach. However, if we must resort to neighborhood 

searches, we might as well specify more realistic objectives. For example, Schaller (2004) 

proposes a more plausible model where the earliness penalty is linear and only tardiness is 

quadratic: that idea is applicable to both common due date and distinct due dates. Turning 

our attention to the unrestricted case where earliness and tardiness costs are job-dependent 

but symmetric, the problem is NP-hard, but Hall and Posner (1991) offer an effective 

dynamic programming solution capable of solving problems containing hundreds of jobs.  

 

Scheduling with Distinct Due Dates 

 

As noted in the chapter, timing decisions for multiple due dates lead to a block structure. 

Whereas finding the optimal sequence is NP-hard, for a given sequence the block 

scheduling problem is polynomial; that is, the optimal start time for each job (and 

consequently for each block of jobs) can be found in polynomial time. When the penalties 

are equal and symmetric, Garey et al. (1988) present a procedure with complexity O(n log 

n)). In the general case, the complexity is less than O(n2). Szwarc and Mukhopadhyay 

(1995) present an O(nm) implementation, where m is the number of blocks (and m cannot 

exceed n). As for finding the optimal sequence, Fry, Armstrong and Blackstone (1987) 

describe a neighborhood search procedure with neighborhoods formed by adjacent 

pairwise interchanges. (On the one hand, it is enough to consider interchanges within 

blocks: an API across a gap between blocks would make a non-early job tardier or a non-

tardy job earlier. On the other hand, block membership can change during the process.) To 

find the optimal solution, Fry, Darby-Dowman and Armstrong (1986) have described a 

branch-and-bound procedure and given detailed computational results which indicate that 

the algorithm runs into difficulty when attempting problems larger than n = 20. Kim and 

Yano (1994) have dealt with symmetric and equal penalties. They solved problems of up 

to 28 jobs using a branch-and-bound scheme (although, again, solutions to problems larger 
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than 20 jobs were often difficult to obtain), and they reported that a pairwise interchange 

heuristic frequently finds an optimal solution. 

 

Due Dates as Decisions 

 

 In the common due date case, models that treat the due date as a decision are 

essentially identical to models with a given due date. For distinct due dates treated as 

decisions by making them part of the objective function, Seidmann, Panwalkar and Smith 

(1981) consider the objective function 

 

  f(S) = ∑
n

j=1  [αEj + βTj + γ(dj – d0)+]. 

 

The optimal schedule is SPT starting at time zero. Constructing this schedule establishes 

the completion time for each job. Then, if γ ≤ β, the optimal choice of due dates is dj = Cj; 

otherwise, the optimal choice is dj = min{d0, Cj}.  

 

Extensions 

 

 As mentioned in the chapter, Hassin and Shani (2005) suggest a new model 

formulation, where—for a price—jobs may be rejected and only accepted jobs are subject 

to early/tardy penalties. Their paper also summarizes the complexity status of several 

variants of the problem (as well as ones with common due date).  Hoogeveen (2005) cites 

earlier models with this type of rejection cost (but not specifically with E/T costs). Indeed, 

one can view the U-problem as one involving a constant rejection cost for each tardy job 

where the objective is to minimize the total rejection cost. Given an E/T context, the 

problem becomes the minimization of the total earliness, tardiness, and rejection penalties. 

Furthermore, whereas modeling earliness cost as linear makes practical sense, we may 

consider more general penalty functions for tardiness. If we limit ourselves to relatively 

simple tardiness penalty function forms for this purpose, we might consider including a 
fixed element, a linear element and a quadratic element (but not for earliness, per our 

argument in Section 5.5). Thus we obtain a quite general objective to minimize, 

f(S) = ∑
n

j 1 [I(j)(wjFj + ujδ(Tj) + αj Ej + βjTj + κjTj
2) + (1 − I(j))vj]   (RN5.1) 

 

where I(j) = 1 if job j is processed and 0 if it is rejected; wj ≥ 0 measures the weighted flow 

time penalty (so wjFj is a part of Fw); δ(Tj) = 1 if Tj > 0 and 0 otherwise, and uj ≥ 0 is the 

fixed part of the delay penalty (so ujδ(Tj) is a part of Uw); vj ≥ 0 is the economic benefit of 

processing job j; and κj ≥ 0 penalizes quadratic tardiness. As before, βj ≥ 0 is a linear 

tardiness penalty rate, and when αj > 0 it penalizes earliness. But αj ≤ 0 is allowed; e.g., αj 

= −βj implies that the lateness of job j is weighted by βj. If we set I(j)  = 1, (RN5.1) 

essentially generalizes most of our previous models. Furthermore, several new models can 

be generated by various combinations of elements. But when we treat I(j) as a decision, we 

can think about the economic profit by performing the jobs as ∑vj minus (RN5.1). Under 

this interpretation, if we reject job j, thus setting I(j) = 0, the contribution of job j to (RN5.1) 

is vj so the net economic contribution of the job is vj − vj = 0. But if we accept the job, I(j) 



= 1 and the job contributes vj −  (wjFj + ujδ(Tj) + αj Ej + βjTj + κjTj
2). If this contribution is 

negative, the schedule cannot be optimal. We can also say that vj is the rejection penalty, 

which becomes justified if the penalty function is reduced by more than vj as a result. In 

such models, due dates may be given or decisions.  

 The various models that can be generated by activating subsets of parameters in 

Equation (RN5.1) all have single objectives, although these objectives can be quite 

complex. Another approach to modeling with complex objectives is to use multiple criteria. 

We encountered one example of a bicriteria model in Section 2.4.1, where we presented 

Smith’s rule for minimizing F as a secondary measure among solutions that minimize the 

maximal tardiness (the primary measure). This approach is hierarchical: the primary 

measure takes precedence, and the secondary measure is optimized by selecting among 

solutions that are optimal for the first measure. In this chapter, Algorithms 5.1* and 5.1** 

exemplify hierarchical bicriteria models. But it is also possible to address bicriteria 

problems by minimizing some function of both measures, and this can be done by selecting 

appropriate parameters in Equation (RN5.1). Indeed, the basic E/T model can be 

interpreted as an example, where the two criteria are total earliness and total tardiness (with 

or without weights) and the bicriteria function is obtained by adding them. More generally, 

if all we know is that the function is monotone nondecreasing in both measures, then it can 

be shown that the optimal solution must be Pareto-optimal. A solution is Pareto-optimal if 

it is impossible to decrease one of the measures without increasing the other. Hoogeveen 

(1992, 2005) discusses such models. 

 In the hierarchical approach, we apply two (or more) objectives to the same set of 

jobs. A somewhat related approach partitions the jobs into two (or more) subsets, and 

applies a different measurement to each subset. In such a model, the first subset might 

represent jobs required by a customer concerned about on-time performance. The other 

subset might adopt the objective of minimizing total flowtime. In the literature, such 

models are referred to as multi-agent models, where each set of jobs is represented by an 

independent agent. As such, they are related to game theory, because at issue is how to 

support negotiation between the agents. The hierarchical approach can be slightly 

generalized by using constraints on the objective function of higher-level agents. Thus, 

each agent optimizes his or her schedule subject to the constraints imposed by higher-level 

agents’ schedules (Agnetis et al. 2004). As in the multicriteria case, the optimal solution 

for a multi-agent problem must be Pareto-optimal: an optimal sequence cannot be 

improved for one agent without harming at least one other agent. Indeed, any weighted 

combination of the measurements of the agents yields a special case of the single-agent 

multicriteria model. (See, for example, Yuan et al., 2005). Agnetis et al. (2004) and 

Hoogeveen (2005) discuss further similarities between the multi-agent and multicriteria 

models and provide earlier references. 
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