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Research Notes for Chapter 3* 

 

In this chapter we meet for the first time an NP-hard problem that we can essentially 

solve to optimality by state of the art algorithms: the T-problem, for which we can now 

solve instances with up to 500 jobs. These solutions are based on a branch and bound 

approach utilizing clever tight bounds and dominance properties. The most influential 

source of such dominance properties is Emmons (1969), starting with Theorem 3.3 

which is due to him. Another early source is Elmaghraby (1968), to whom Theorem 3.2 

is due. We did not cover the whole gamut of Emmons’ results, however. For instance, 

he develops a corollary that if EDD yields a sequence under which every job starts 

before its due date (which implies that Tj ≤ pj for all j) then it minimizes tardiness. 

Compare the well-known property that when EDD yields only one tardy job, it is 

optimal. Emmons' corollary places no restriction on the number of tardy jobs, whereas 

the property places no restriction on the start time of the tardy job. We may also observe 

a similarity to the subsequent Wilkerson and Irwin result that we presented in RN2, in 

that the tardiness intervals cannot overlap and yet satisfy Emmons’ corollary. 

Otherwise, the due date of the second tardy job within an interval would have to reside 

within the tardiness interval of the previous job, and then that second job would 

necessarily start after its due date. Thus, the Wilkerson-Irwin result is more general at 

least in the sense that it allows Tj > pj. (Interested readers may wish to prove or disprove 

that the Wilkerson-Irwin result includes Emmons’ result as a special case.)  

 Emmons' dominance conditions were subsequently generalized by Rinnooy 

Kan et al. (1975). Although it still took a lot of effort by many researchers to solve the 

problem, the T-problem is relatively easy in the computational sense because it is only 

NP-hard in the weak sense: Lawler (1977) presented a pseudopolynomial solution. 

Lawler (1982) demonstrated a polynomial approximate solution based on his earlier 

result. Recall from our Research Notes for Chapter 1 that this is often useful when a 

pseudopolynomial solution exists. All we need to do is round the processing times to 

relatively small numbers by using large enough time units such that we obtain a small 

size unary input. But we know that a pseudopolynomial solution is polynomial in the 

unary size of the input. So it can achieve an optimal solution for the rounded processing 

times. Given a rounded solution (i.e., a sequence that is optimal for the rounded value) 

we can calculate the value associated with it for the precise processing times and the 

result is an upper bound on the true optimal solution. If the original rounding is replaced 

by truncation, the optimal solution is a lower bound (and we can still obtain an upper 

bound as before). A good approximate solution is achieved if the difference between 

the lower bound and the upper bound is sufficiently small. Technically, if we can 

guarantee that the gap between the bounds is smaller than ε (> 0) times the lower bound, 

and if we can do this for any ε, then we can also say that the solution is an ε-

approximation of the optimal solution. Lawler (1982) exploited the existence of the 

pseudopolynomial solution he had developed for the T-problem in Lawler (1977) to 

                                                 
* The Research Notes series (copyright © 2009, 2019 by Kenneth R. Baker and Dan Trietsch) 

accompanies our textbook Principles of Sequencing and Scheduling, Wiley (2009, 2019). The main 

purposes of the Research Notes series are to provide historical details about the development of 

sequencing and scheduling theory, expand the book’s coverage for advanced readers, provide links to 

other relevant research, and identify important challenges and emerging research areas. Our coverage 

may be updated on an ongoing basis. We invite comments and corrections. 

 

Citation details: Baker, K.R. and D. Trietsch (2019) Research Notes for Chapter 3 in Principles of 

Sequencing and Scheduling (Wiley, 2019). URL: http://faculty.tuck.dartmouth.edu/principles-

sequencing-scheduling/. 



2 

generate tight bounds for the problem in polynomial time, although the polynomial in 

question was quite time consuming.  

 In contrast to the T-problem, however, the Tw-problem is NP-hard in the strict 

sense. Recall that some of the dominance conditions can be extended to the weighted 

case, especially when parameters are agreeable (that is, jobs with lower processing 

times and lower due dates have higher weights). Potts and Van Wassenhove (1985) 

gave a B&B solution that also makes use of DP within branches (to prevent local 

violations of precedence relationships). They reported reliable solutions with up to 40 

jobs, but 50-job problems sometimes caused severe computational difficulty. Although 

their work is over twenty years old, we should not expect today's computers to handle 

much larger problems with that algorithm, either. (A likely order of magnitude of 

increase is about 10 jobs.) The dynamic programming approach that we discussed with 

respect to the T-problem can also handle weighted tardiness, but only smaller problems 

can be addressed because in the weighted case it is more difficult to generate 

precedence relationships. The limiting factor in dynamic programming, in spite of the 

exponential time requirement, is storage. As discussed in Section 3.4, however, 

dominance conditions can reduce the storage requirement, and that effect can be 

dramatic. In one reported case, Schrage and Baker (1978) demonstrated a storage 

reduction from almost 1.7 million to less than 20,000; i.e., an 85-fold reduction. 

Rachamadugu (1987) gave a generalized version of MDD for two consecutive jobs. He 

further developed his result to demonstrate that if the SWPT sequence results in all jobs 

tardy then it is optimal. Kanet (2007) provides several additional results along similar 

lines, specifically encompassing constraints that apply to non-adjacent jobs. These 

results generalize and enhance earlier ones by Emmons and by Rinnooy Kan et al. 

Kanet and Li (2004) reported simulation results that use a slightly simpler 

generalization of MDD. We discuss some of these contributions in Chapter 4, in the 

context of search heuristics. For a fairly extensive list of papers on both versions of the 

tardiness problem published before 1998, we refer to Sen et al. (2003). Earlier surveys 

include Koulamas (1994) and Abdul-Razaq et al. (1990), who focused on the 

unweighted and weighted versions, respectively. However, a breakthrough in solving 

the Tw-problem is represented by the recent work of Pan and Shi (2007) and Bigras et 

al. (2008). The core idea in these two papers is to represent the problem by a time-

indexed integer programming model (see Appendix C), and then to compute bounds by 

linear programming models, which are inherently easier to solve. Both papers mention 

the usefulness of incorporating precedence conditions during the branching stage. With 

tight bounds to guide the branching, good results can be obtained. In fact, Pan and Shi 

report solving all 100-job open research problems, most within 4 hours and one within 

9 hours on a 2.8 GHz PC.  

 Now that the test problems that resisted solution for over 20 years have all been 

solved, future research on the same problems will have to demonstrate shorter 

computation time, and it may be required to generate a set of larger benchmark 

problems as well. One question that such future research might test is whether the 

precedence conditions given by Kanet, which seem to be stronger than previous ones, 

can improve the state-of-the-art results. As is always the case in such tests, the answer 

depends not only on the strength of the conditions but also the price they may entail in 

computation time. 

 The T-problem is not the only problem that is NP-hard in the ordinary sense and 

yields to effective solution. The Uw-problem is another example, and it too can be 

solved efficiently in practice. The proof of its complexity status stems from Lawler and 

Moore (1969), even though their paper precedes the definition of the NP-complete 
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class. They showed a restriction to the knapsack problem by setting a common due date 

(so the problem reduces to selecting a set of jobs with different volumes and different 

weights to maximize the total weight in a given total volume; i.e., the knapsack 

problem). The knapsack problem, however, was identified as a member of the NP-

complete class right from the start. Thus, indirectly, Lawler and Moore "proved" 

membership in the NP-complete class. They also gave a pseudopolynomial solution, 

demonstrating—again "in advance"—that it can’t be NP-complete in the unary sense. 

Potts and Van Wassenhove (1988) provided an effective solution procedure that can 

handle most instances with up to 1000 jobs. 

 In practice, it is not always possible to wait until an optimization algorithm 

converges to the optimal solution, but if we maintain both upper and lower bounds 

during the process, we may choose to stop when they are close enough to each other. 

We then have the upper bound as our explicit solution and by comparing it to the lower 

bound we can provide a certificate of how close we are to optimality. This makes it 

possible to use the exact branch and bound solution but to stop when processing time 

exceeds a limit or when the gap between the bounds is small enough or when the gap 

is not closing fast enough—that is, when there is indication that insisting on full 

optimality may require excessive time relative to the potential benefit associated with 

it. In fact, most branch and bound applications include such stopping criteria. For this 

reason, branch and bound is still potentially useful as a heuristic even when running it 

to completion in every case may be prohibitive. NP-hardness only shows that the worst 

case computation time is excessive, so it may be possible to obtain optimal solutions 

often and good certificates otherwise. But if we require that a certificate with a pre-

specified ε, then there is no guarantee that we can achieve that in polynomial time. Good 

heuristic solutions that provide tight upper bounds from the start improve the 

certificates. Tight lower bounds are equally effective. (Szwarc et al. 2001, whose 

algorithm is the state-of-the art solution of the T-problem, discuss an exception. But 

their algorithm involved memorizing formerly solved subproblems, and when bounds 

were too tight the quality of the stored problems deteriorated. So this is an exception 

that proves the rule.) Perhaps the most important single benefit of a tight gap between 

bounds is that branching is reduced: when the gap is small, many discrete variables can 

be fixed when we observe that reversing them leads to a lower bound above the current 

upper bound.  

 The high value of a good lower bound motivates an important approach 

exemplified by Fisher (1976), Potts and Van Wassenhove (1985) and Potts and Van 

Wassenhove (1988)—that is, Lagrangian relaxation. In Lagrangian relaxation of a 

minimization problem subject to constraints, we construct a related problem, often 

called the dual, or the Lagrangian, whose maximum solution provides a lower bound 

for the optimum of the original problem, called the primal. We may then use that bound 

in B&B to improve the search. In more detail, the idea is a direct generalization of the 

classic Lagrange multiplier method to combinatorial problems. In the classic Lagrange 

multiplier approach all constraints are given by equalities and we express each of them 

by an equivalent one that is constrained to zero by subtracting the right-hand-side from 

both sides. We then multiply the constraint by an appropriately selected multiplier and 

incorporate the product in the objective function. In effect, we add a weighted 

proportion of the constraint’s violation to the main objective function. The weighing is 

associated with the magnitude of the multiplier. When the multiplier is selected 

optimally, the constraint has zero violation so the objective function reaches its 

optimum level without violating constraints. The multiplier then reflects the marginal 

value of each unit of constraint. For our purpose, we need to generalize Lagrange 
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multipliers to apply to inequality constraints and we need to show how to use them in 

a combinatorial optimization setting. If some constraints are given as inequalities, a 

nonzero multiplier is only necessary for those constraints that would be violated 

otherwise. If we express all inequalities as ≤ 0, then for the purpose of maximizing the 

dual objective, multipliers become positive for binding constraints. As a result, in a 

feasible solution the product of the multiplier and the associated violation will always 

be zero, either because the constraint is not binding and therefore the multiplier is zero 

or because the violation is zero. Shadow prices in linear programming (LP) are special 

cases of the multipliers. In general, a shadow price in LP is either zero or it is associated 

with a binding constraint. Typical scheduling problems, however, are more complex 

than LP because they involve discrete decision variables. To address such problems, 

we first formulate the problem as a mathematical model with appropriate objective 

function and constraints (see Appendix C for some examples). Next, we incorporate a 

subset of constraint violations into the objective function, with appropriate Lagrange 

multipliers. Variables that are constrained to be discrete (e.g., with integrality 

constraints) are typically just relaxed so the relevant variable is allowed to be 

continuous. For instance, a constraint of the type x  {0, 1} is replaced by 0 ≤ x ≤ 1. 

Now the problem is solved with Lagrange multipliers taking care of the constraints 

incorporated into the objective function. However, due to the relaxed discrete 

constraints, the result is likely to be infeasible and thus provide only a bound. To find 

the tightest possible lower bound, we can adjust the multipliers; that is, we solve for the 

best multipliers. Those best multiplier values can typically be used to guide the 

branching that is next necessary to resolve violated discrete constraints. In effect, this 

approach combines continuous optimization (when solving for bounds) with discrete 

optimization (branching to resolve discrete constraint violations).  

 The breakthrough approaches we mentioned before are similar in the sense that 

they start with a mathematical model and use bounds obtained by solving linear 

programs to guide a B&B procedure. Such methods have been developed for generic 

problems, and those papers stress that they are applicable in scheduling too. A related 

approach is the branch and cut method. Cutting plane methods were historically 

developed to solve integer programs by the simplex method for linear programming. 

Essentially, we examine the current relaxed optimal solution and then add linear 

constraints designed to exclude (cut) the current non-discrete solution without 

excluding any discrete solutions. Experience revealed, however, that such cutting 

constraints are very useful up to a point, but they exhibit decreasing benefit. In such 

cases, it becomes expeditious to move to a different starting point by branching on 

persistent discrete variables (with a branch for each discrete value). This combination 

is called branch and cut. For example, the current benchmark solution of the TSP 

problem, Concorde—which we discuss in more detail in RN8—is a branch and cut 

application (see Applegate et al., URL). In our own experience, Concorde typically 

solves 1000-city randomly-generated instances within reasonable time. As any other 

branch and cut or branch and bound algorithm, however, Concorde tends to take longer 

when many nearly-optimal solutions exist, and thus it becomes difficult to fathom 

branches. Typical 100-city examples that we constructed took less than 20 seconds in 

the majority of cases, but in a particular set of experiments we generated a large number 

of nearly identical solutions one of which was optimal. In one such case, Concorde took 

14 hours to solve a 100-city case. However, in a practical sense, when many near-

optimal solutions exist, the problem is actually easy. Typically, in such a case, we 

quickly obtain upper bound solutions that are very close to the lower bound, and we 

thus easily obtain excellent certificates. In our own experiments we did not study larger 
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instances, but solutions of instances with dozens of thousands of cities have been 

reported, although such very large instances invariably utilize parallel processors and 

the computations can span many weeks. Finally, modern branch and bound methods, 

and their relevant variations, are important to a wide variety of combinatorial problems, 

not only for sequencing and scheduling. Current research tends to focus either on 

specific problems or on parallel processing. We can safely say that parallel processing 

is an important part of large scale discrete optimization (Ralphs et al., 2003), as we have 

already mentioned with respect to Concorde.  

 Our coverage of dynamic programming cannot be considered thorough, but 

readers can find much more on this subject in any academic library, starting with 

Bellman (1957). To appreciate Bellman’s historical role in developing dynamic 

programming, see Dreyfus (2002). Dreyfus—who had worked extensively with 

Bellman—has also written two texts on the subject, and we cite the more recent one 

below. In this connection, when discussing the optimality principle of dynamic 

programming, we stated that it is satisfied by additive functions. Equivalently, it is also 

satisfied by functions that can be represented as additive functions (e.g., we can 

represent products of positive numbers by using logarithms to make them additive). But 

we do not wish to imply that dynamic programming cannot be implemented in wider 

contexts. For example, it can also be applied to solve max or min problems; e.g., when 

we append a job to a subset, the new maximum is max{former maximum, job value}. 

We chose not to mention within the chapter that dynamic programming can be used to 

solve max or min problems because it does not extend directly to corresponding 

stochastic cases, and it is not necessary for the objective functions that we study in the 

deterministic case. However, it is important to note that one of the objectives of 

Bellman when developing dynamic programming was precisely the ability to address 

stochastic problems. Bellman—a brilliant mathematician by all accounts—became 

interested in Operations Research during a period when most mathematicians did not 

think highly of applied mathematics. Our quote at the top of the research notes of 

Chapter 2 is excerpted from Dreyfus (2002), which in turn excerpted it from Bellman’s 

autobiography. We conclude with another quote from the same source, speaking about 

the difficulty of solving realistic problems with analytic models: 

 
In order to make any progress, it is necessary to think of approximate techniques, 
and above all, of numerical algorithms. 

 

Taking heed of this advice, our next chapter focuses on heuristics designed to address 

problems that are too difficult otherwise. Later, in Chapter 6, we introduce a numerical 

approximate approach to stochastic problems by simulation.  
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