
1

Research Notes for Chapter 2*

Scientific developments can always be made logical and rational with sufficient
hindsight. It is amazing, however, how clouded the crystal ball looks beforehand.
We all wear such intellectual blinders and make such inexplicable blunders that
it is amazing that any progress is made at all. (Richard Bellman)

Many of the basic models we covered in this chapter appeared for the first time in a

seminal paper by Smith (1956). His core result was a characterization of cases where

simple transitive sorting rules yield optimal sequences. He then proceeded to cover

some examples, including SPT, SWPT and EDD, not to mention Smith’s rule, which

we cited in the main text. Smith’s paper is deceptively simple. In hindsight it may be

difficult to comprehend how these simple and important sorting rules were not

recognized before. But hindsight is sometimes very hazy when it comes to

distinguishing between the trivial and the elegant. In fact, no single scheduling paper

before or after Smith (1956) solved so many important instances and provided so much

insight into the essence of the difficulty of other instances. We should note that the

EDD result is often attributed to Jackson (1955), which is an unpublished working

paper. According to Smith, however, Jackson had generalized EDD to the dynamic

arrival case, which suggests that the basic EDD is still due to Smith. One should note,

in general, that the publication process is often measured in years, so a 1956 publication

can easily be about a result that had been developed before 1955. Thus, just because

the Jackson paper was released in 1955 does not imply that it is earlier than Smith’s

work. Finally, the terms SPT, SWPT and EDD are more recent. For example, to our

knowledge, the term EDD was coined by Emmons (1969). Furthermore, most sources,

including Baker (1974), refer to SWPT as WSPT. The reason for the switch to SWPT—

introduced in early versions of Baker (2005)—is because it describes the solution

process better: first, by dividing each pj by wj, we obtain weighted processing times

(WPT); only then is the list sorted from smallest to largest (SWPT). In contrast, WSPT

connotes applying weights to the jobs after they are already in SPT sequence.

 An important motivation for careful study of basic theorems is improving our

intuition. When viewed in this light, Theorem 2.7 stands out, because the slack rule is

one of the most prevalent intuitive rules used by practitioners, and it can be quite a

challenge to demonstrate that it can yield undesired results. Furthermore, the slack rule

had been promoted by many published papers, mostly in the context of project

scheduling. In that context, at least for a single project, the main concern is with

maximal tardiness so the slack rule is less damaging than in machine scheduling, where

it essentially increases total tardiness unnecessarily. Practically without exception,

these published results ignored Theorem 2.7. Nonetheless, the earliest source of this

theorem is Conway, Maxwell and Miller (1967), and as such it predates those papers.

We discuss such rules in the context of projects in Chapter 17.

* The Research Notes series (copyright © 2009, 2019 by Kenneth R. Baker and Dan Trietsch)

accompanies our textbook Principles of Sequencing and Scheduling, Wiley (2009, 2019). The main

purposes of the Research Notes series are to provide historical details about the development of

sequencing and scheduling theory, expand the book’s coverage for advanced readers, provide links to

other relevant research, and identify important challenges and emerging research areas. Our coverage

may be updated on an ongoing basis. We invite comments and corrections.

Citation details: Baker, K.R. and D. Trietsch (2019) Research Notes for Chapter 2 in Principles of

Sequencing and Scheduling (Wiley, 2019). URL: http://faculty.tuck.dartmouth.edu/principles-

sequencing-scheduling/.

2

 Algorithm 2.1 was published by Moore (1968). Moore introduced a slightly

complex procedure and then presented a streamlined version—our Algorithm 2.1—

which he attributed to Thom Hodgson. For this reason the literature often refers to

Algorithm 2.1 as the “Moore-Hodgson Algorithm” or the “Hodgson Algorithm.” In

Chapter 7 we discuss a stochastic generalization of this approach—Algorithm 7.1—

that relates more closely to the original version of Moore, but in the deterministic

context Algorithm 2.1 is more efficient. In more detail, the original Moore algorithm

sorts jobs by SPT order and tentatively appends them to B, one at a time. The jobs in B

are then tested for feasibility by putting them in EDD sequence and checking if any of

them is tardy. If the tentative job causes infeasibility, it is moved from B to A. To put

the jobs in B into EDD order, it is sufficient to insert the last, tentative, job into its

correct position in the previous subsequence, which takes O(log n) comparisons per job

(by bisection search). However, checking whether this insertion causes tardiness

downstream takes O(n) per job, which dominates the complexity of the insertion step.

Although jobs are considered in a different order, the net result is identical to that of

the Moore-Hodgson version, and the complexity is O(n2). The Moore-Hodgson version

is more efficient because the feasibility test for job j only requires adding pj to the

previous completion time of earlier jobs in B and comparing the result to dj, which is

O(1) per job, and thus O(n) throughout. If there are few or no tardy jobs then the savings

can be considerable. According to numerous sources in the literature, the computational

complexity of the streamlined version is O(n log n). Moore himself states that his

algorithm requires sorting—which takes O(n log n)—plus n(n + 1)/2 additions and

comparisons. When discussing the streamlined version he comments that it saves up to

n(n + 1)/2 additions and comparisons. This, however, does not imply that it always

saves all the n(n + 1)/2 additions and comparisons. Indeed, a straightforward

application of Algorithm 2.1 is also O(n2). To see this consider that upon tardiness,

which may occur O(n) times, we must find the largest job to remove from B to A.

Finding that job requires a search that consumes O(n) operations. However, whereas a

straightforward application takes O(n2), it is indeed possible to code the algorithm to

take O(n log n) time. To this end we store the B set in a binary max heap. A binary max

heap is a binary tree data structure where elements are not fully sorted and yet the

maximum is maintained at the root of the tree, the second largest item is at the next

level and so on. It takes O(log n) to add an element to a binary max tree while

maintaining this property, or to delete the root and rearrange the heap. Therefore, every

time we add an element to B, we also store it in the binary max heap, at O(log n) time.

We have to do that n times, so the total is O(n log n). When we have to delete a job, we

delete the root and rearrange the heap such that the new maximum is at the root again.

As each such step takes O(log n), the total complexity of deletions cannot exceed O(n

log n).†

 Another result published in Moore (1968) and attributed by him to Eugene

Lawler was later eclipsed by a well known short note due to Lawler himself in 1973.

This note provides a very simple-looking algorithm for a slightly more general problem,

which can also accommodate precedence constraints. We present the basic Lawler

(1973) result in the next chapter as Theorem 3.1 (and we extend it to accommodate

precedence constraints in Chapter 8). The moral of this story, again, is that simple-

looking results may be far from trivial. At a deeper but speculative level, the existence

of the inelegant result was evidence that the model is polynomial, which may have

† More information on binary max heaps can be found in any standard text on data structures, and in

Wikipedia. We are grateful to Han Hoogeveen for pointing out the role of the binary max heap structure.

3

motivated Lawler to find a better polynomial solution. On a related note, according to

Agnetis et al. (2004), the algorithm proposed by Lawler in 1973 was independently

published in the Soviet Union by Livshits in 1969, for the basic case without precedence

constraints.

 The simplicity and usefulness of the MDD result was first established by Baker

and Bertrand (1982). An earlier heuristic by Wilkerson and Irwin (1971) yields a

sequence that satisfies MDD for all adjacent pairs. Essentially, it involved the same

adjacent pair interchange analysis. They also proved a sufficient optimality condition.

For each job define the tardiness interval as follows:

Ij is empty if Cj ≤ dj

Ij = [dj, Cj], otherwise

Then in a schedule that is stable under MDD, if the tardiness intervals are

nonoverlapping, the solution is optimal. That is, optimality is achieved if there does not

exist a time t at which two or more uncompleted jobs are already tardy. More

fundamental results on tardiness were published in 1969 by Emmons, as we discuss in

Chapter 3. However, the roots of tardiness analysis go back to Smith (1956), although

he did not provide sufficient details. Perhaps for this reason, his contribution to this

problem was neglected.

 Smith’s tardiness result demonstrated that no simple sorting rule similar to SPT

or EDD can solve the T-problem (as we have also demonstrated in the chapter). This is

a “negative” result, whereas the optimality of SPT and EDD for the respective cases is

“positive.” In practice, negative results are very important (to prevent mistakes). But

for publication purposes, positive results usually receive more attention and

appreciation. That may be associated with the fact that to prove a negative result all we

need in many cases is a counterexample. Because we believe that negative results can

be important, we often present them explicitly. Sometimes we do so in the form of

propositions. Most of these propositions are well known by professionals but, for the

reasons discussed before, not necessarily previously published.

The Standard Notation Scheme

In the scheduling literature, a standard notation introduced by Graham et al. (1979) is

often used as a shorthand description of models. Although we do not use this notation

in our coverage, it is important for readers who want to be able to read the literature

directly.

 The notation has three fields, with the general format α | β | γ, where α indicates

the machine environment, β lists job characteristics and γ summarizes the objective

function. In the first few chapters we deal with single-machine environments, so we

have α = 1. The paper by Johnson that we mentioned in the research notes of Chapter 1

concerned a two-machine flow shop. For that model we would use the standard notation

F2 for the machine environment; Fm would denote a similar flow shop with m

machines. A job shop with m machines is denoted by Jm. Similarly, models with m

parallel identical machines are denoted by Pm. The β field is often left blank, but it

might include notations such as prec to denote precedence constraints between jobs or

rj to denote non-zero release dates. Multiple entries may also be necessary in this field.

The γ field is typically straightforward, e.g., ∑wjFj for weighted flow time or ∑Tj for

total tardiness. In this case, multiple entries are rare but could be associated with models

4

that have multiple criteria. We illustrate by giving the notations for some examples that

we discussed:

(i) Moore (1968) solved the 1 | | ∑Uj problem;

(ii) as reported by Moore (1968), Lawler transformed 1 | | gmax, where gmax is the

maximal penalty of any job in a sequence (see Chapter 3), to a 1 | | ∑Uj problem

(and thus showed that the gmax problem is polynomial);

(iii) several years later, Lawler (1973) presented a much more elegant solution for 1

| prec | gmax. For comparison, 1 | | gmax is a special case where the set of

precedence relationships, prec, is empty);

(iv) as related by Agnetis et al (2004), the same elegant algorithm for 1 | | gmax was

presented independently by Livshits (1969).

(v) Smith (1956) presented several models, including 1 | | ∑wjFj (total weighted

flowtime), solved by SWPT, and 1 | | Tmax, solved by EDD;

(vi) Jackson (1955) addressed the (NP-hard) maximal tardiness problem with

release dates, 1 | rj | Tmax. (In Chapter 8 we show that this problem is equivalent

to 1 | rj | Cmax.)

(vii) Johnson (1954) solved the two-machine flow shop with a makespan objective

so the notation would be F2 | | Cmax. He also discussed some three machine

instances, namely, special cases of F3 | | Cmax.

To illustrate a double entry in the β field, take the model 1 | prec, rj | gmax (which is the

case addressed by Lawler, but with release dates). We can show by restriction that this

model is NP-hard: 1 | rj | Tmax, which is NP-hard (see [vi]), is a special case.

References

Agnetis, A., P.B. Mirchandani, D. Pacciarelli and A. Pacifici (2004), "Scheduling

Problems with Two Competing Agents," Operations Research 52(2), 229-

242.

Baker, K.R. (1974) Introduction to Sequencing and Scheduling, Wiley, New York.

Baker, K.R. (2005) Elements of Sequencing and Scheduling, Tuck School of Business,

Hanover, NH.

Baker, K.R. and J.W.M. Bertrand, (1981) "An Investigation of Due Date Assignment

Rules with Constrained Tightness," Journal of Operations Management 1, 109-

120.

Baker, K.R. and J.W.M. Bertrand (1981) "A Comparison of Due Date Selection Rules,"

AIIE Transactions 13, 123-131.

5

Baker, K.R. and J.W.M. Bertrand (1982) "A Dynamic Priority Rule for Scheduling

Against Due-Dates," Journal of Operations Management 3, 37-42.

Baker, K.R. and J.J. Kanet (1983) "Job Shop Scheduling with Modified Due Dates,"

Journal of Operations Management 4, 11-22.

Conway, R.W., W.L. Maxwell and L.W. Miller (1967) Theory of Scheduling, Addison-

Wesley, Reading, MA.

Emmons, H. (1969) "One-Machine Sequencing to Minimize Certain Functions of Job

Tardiness," Operations Research 17, 701-715.

Graham, R.L., E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan (1979)

"Optimization and Approximation in Deterministic Sequencing and

Scheduling: A Survey," Annals of Discrete Mathematics 5, 287-326.

Jackson, J.R. (1955) "Scheduling a Production Line to Minimize Maximum Tardiness,"

Research Report 43, Management Science Research Project, University of

California, Los Angeles.

Lawler, E.L. (1973) "Optimal Sequencing of a Single Machine Subject to Precedence

Constraints," Management Science 19, 544-546.

Livshits, E. M. (1969) "Minimizing the maximal penalty in a single machine problem,"

Transactions 1st Winter School Mathematical Programming. Drogobych,

Ukraine, 454–475 (in Russian).

Moore, J.M. (1968) "An n Job, One Machine Sequencing Algorithm for Minimizing

the Number of Late Jobs," Management Science 15, 102-109.

Smith, W.E. (1956) "Various Optimizers for Single Stage Production," Naval Research

Logistics Quarterly 3, 59-66.

Wilkerson, L.J. and J.D. Irwin (1971) “An improved algorithm for scheduling

independent tasks,” AIIE Transactions, 3(3), 239-245.

