
Research Notes for Chapter 17* 
 
Sources and Comments 
 As we mentioned in our research notes for Chapter 16, most of the useful work in 
PERT/CPM over the last 35 years—since the publication of Introduction to Sequencing 
and Scheduling (ISS)—has been in the area of deterministic sequencing (and thus really 
enhanced CPM rather than PERT). Whereas the early sources of Chapter 17 date back to 
ISS, some of them repeated in our Research Notes for Chapter 16, subsequent results, 
appear in Demeulemeester and Herroelen (2002). Readers who are interested in 
optimization methods for the resource constrained project scheduling problem are 
specifically referred there: they provide details for numerous branch and bound and integer 
programming models for this purpose. Among other things, they also describe and critique 
the Critical Chain methodology—which they call Critical Chain Buffer Management 
(CCBM)—and they include some stochastic models. Beyond those, the chapter itself cites 
the main new sources that we used. However, for a recent broad survey of related models, 
see Hartmann and Briskorn (to appear), and for a contemporary description of existing 
stochastic counterpart sequencing models see Ballestín (2007). (We mention some of his 
own results later, where they fit in our context, but we do not duplicate his summary of 
previous results. Nor do we repeat the vast majority of important citations that appear in 
the other two sources.)  
 Advanced heuristics are based on generic neighborhood search methods such as 
tabu search, simulated annealing and genetic algorithms (GA). Kolisch and Hartmann 
(2006) provide an extensive comparison among such algorithms. In general, the ranking of 
these algorithms changes over time—to wit, Hartmann and Kolisch (2000) give a slightly 
different ranking—but, as a rule, advanced neighborhood search techniques—including 
GA—provide excellent results. Surprisingly, the modified search approach (which can be 
combined with such generic methods) has not been studied until recently. The earliest 
source of that idea that we know of is Fleszar and Hindi (2004), who also recommend 
variable neighborhood search. They use a modified all insertion (AI) neighborhood and 
report excellent results relative to former benchmarks. Recall that in the chapter we showed 
how to modify the simpler adjacent pairwise interchange (API) neighborhood. However, 
as we showed in detail in our Research Notes for Chapter 4 (see Adapting Search Heuristics 
to the Solution of 1|prec|ΣwjTj), modified insertion can be achieved by a series of modified 
API steps. Likewise, any modified nonadjacent pairwise interchange can be achieved by 
two modified AI steps.  
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 In our Research Notes for Chapter 4 we also observed that genetic algorithms tend 
to generate feasible sequences; that is, offspring inherit feasibility from their parents, unless 
a mutation violates it, and therefore it makes sense to allow only mutations that belong to 
a suitably modified neighborhood. Here, we stress one point again: GA had been reported 
as a highly competitive algorithm for projects using research results that, as a rule, did not 
rely on modified neighborhood search. Thus, an important advantage of GA may be diluted 
when it is compared to other techniques using modified neighborhood search. In effect, it 
is now necessary to re-test all former approaches, but with modified neighborhoods. 
Among other things, this re-testing will show whether GA (with modified mutations) 
retains its previously reported advantage. 
 
Renewable, Nonrenewable and Doubly-Constrained Resources 
 Resources of the type we considered in the chapter are available throughout the 
project duration and thus they are not depleted during the project. When released from their 
current activities, such resources are—in a sense—renewed, so they are also known as 
renewable resources. By contrast, some resources—such as the project budget—are 
nonrenewable because once consumed they are no longer available. A doubly constrained 
resource is limited each period and also in terms of total consumption. In practice, budget 
constraints are usually doubly constrained, which means that funds flow rate and the total 
funds available are both limited.  
 Typical models address nonrenewable constraints (e.g., budgets) as if exceeding 
them is simply impossible. That makes sense under the deterministic assumption, which 
most of those models make. In reality, however, processing times are always stochastic 
and the penalty for exceeding such constraints may be different; e.g., in the budget case, 
additional funds are often found, but at a cost (sometimes having the effect of throwing 
good money after bad). Of course, project managers’ careers can be hurt by budget 
violations, and therefore they actively try to avoid them. Considering that time is also a 
nonrenewable resource, a similar comment applies to due dates and deadlines. Although 
some sources use the terms "deadline" and "due date" interchangeably, others interpret the 
former as a stricter limit: deadline violations are equivalent to project failure, whereas due 
date violations may be penalized, but it is accepted that they are not always avoidable. A 
recent example of a strict deadline is the stadium construction project for the Olympic 
Games in Athens. That particular project barely met the Games’ opening ceremony 
schedule, and incurred serious costs for the emergency mode of operations that was 
required as a result. On the one hand, we use due date models for scheduling—which is 
part of planning—whereas control actions are taken during execution. On the other hand, 
the likely control cost of meeting a deadline that is liable be violated without intervention 
typically increases with the expected looming tardiness. If so, the appropriate scheduling 
(planning) model is still the use of due dates with an increasing tardiness penalty. 
Specifically, our safe scheduling models can include the expected control cost as a key part 
of the penalty cost function. 
 
On Sequencing vs. Resource Leveling 
 Following the pioneers of project scheduling theory, such as Kelley (1963) and 
Wiest (1964, 1967), we address the resource-constrained project scheduling problem by an 
explicit sequencing approach. The same approach has been taken by subsequent sources, 



such as ISS, Morton and Pentico (1993), and Demeulemeester and Herroelen (2002). 
What’s common to all of them is that although they address a practical problem (for 
instance, Wiest 1967 describes a commercial software implementation), they approach the 
subject from a theoretical/normative point of view. In this approach, it is implicit that we 
must add disjunctive precedence constraints to the ones given by the original project 
network. In the chapter, we referred to them as soft precedence constraints. As a result, the 
critical path must now reflect not only the original (conjunctive) precedence constraints 
but also the disjunctive ones. Because the critical path depends on both conjunctive and 
disjunctive constraints, Wiest (1964) proposed changing its name to the critical sequence. 
This proposal has not been adopted, at least not widely, and indeed there is no need to 
rename the critical path.* Typical project management texts, however, address the issue by 
describing outdated practice instead. In this particular instance, early practice—possibly 
because early project scheduling software, including the original PERT software, did not 
include sequencing modules at all—adopted the inferior MRP sequencing approach of 
leveling resource usage instead of sequencing resources in a straightforward manner. (We 
discussed MRP briefly in our Research Notes for Chapter 12; see The Role of JIT as 
Compared to MRP.) Thus, typical project management texts, and other authoritative 
sources such as Project Management Body of Knowledge (PMBOK)—published by the 
Project Management Institute—address resource leveling instead of sequencing. The 
objective of resource leveling, as the term suggests, is to keep the resource utilization 
profile as flat as possible without violating the maximum resource constraint. Because 
resource leveling is pursued by making sequencing decisions, one might think that the 
difference is slight. Nonetheless, the resource leveling approach—when used manually or 
interactively—is less likely to lead to good results.†  
 A schedule with level resource usage is indicative of a good sequence (because 
there is little or no idling) but it is best pursued indirectly by effective sequencing. True, if 
we generalize the problem that we discussed by treating resource capacities as decision 
variables, then the resource leveling problem might lead to useful results. The idea is to 
compare the total economic implications of running the project with various resource 
capacity profiles and to choose the best one. However, even when the true objective is to 
decide how many resource units to allocate to the project, it is better to follow the approach 
of Example 17.2, where we studied the relationship between capacity and makespan. That 
is, we can select the optimal capacity by finding the best combination of capacity and 
makespan. But for any tentative capacity level, we can and should use explicit sequencing 
models to minimize the makespan. For a given resource capacity that is dedicated to the 
project from start to finish, minimizing the makespan automatically minimizes the total 
unused capacity, which is the desired implicit objective of resource leveling.‡  

                                                 
* The term critical chain has been proposed for the same purpose much more recently, with a wider reception. 
Except for commercial marketing purposes, however, that renaming is still a redundant exercise. 
† On the bright side, typical project scheduling software, at least since the package described by Wiest (1967), 
follows the correct explicit sequencing approach. It is still far from ideal, however. In that context, our 
comment in the chapter that the performance of the better software packages is comparable to using the LFT 
priority list is due to Herroelen (2005). To our knowledge, that observation is still valid.  
‡ When resources can be inducted during the progress of the project and released towards the end, as in the 
skyline profile, the objective of maximizing utilization becomes more complex. To our knowledge, that 
model has not been studied yet, but it would be straightforward to solve it by neighborhood search methods. 
Incidentally, this objective is similar to minimizing total holding costs, our next subject. A related new 



 
Minimizing Total Holding Costs 
 In Chapter 19 we introduce a stochastic scheduling model designed to minimize the 
sum total of expected holding costs and tardiness penalties. Such a model is necessary for 
setting optimal release dates within a safe scheduling context. For that purpose we assume 
that sequencing decisions have already been made and are reflected by soft precedence 
constraints; that is, we only address the pure scheduling model. Here, we address the 
deterministic counterpart sequencing model. 
 Suppose a project consists of n activities and has a due date (d). Each activity incurs 
an earliness cost per unit time denoted αj for activity j. This earliness cost reflects the 
economic value of postponing the activity and may also be viewed as a holding cost. The 
project incurs a tardiness cost per unit time denoted β. In practice, tardiness cost reflects 
the cost of delay in obtaining revenue and often includes explicit compensation to 
customers when a due date is missed. The fixed cost element that we introduced in Chapter 
16, cf, is part of this tardiness cost per unit, because it has to be borne until the project 
completes. To this element we add any explicit or implicit tardiness penalties. Ideally, we 
would like to balance activities’ earliness costs against the project’s tardiness costs. The 
objective is thus to minimize total E/T cost, or 
 

Z = β(C – d) + ∑j αj(C – rj) 
 
where C ≥ d represents the project completion time. We assume that d is given, as if it had 
been negotiated with a customer. The customer provides no incentive for early completion, 
so we proceed as if the project is delivered to the customer at the due date or as soon as 
possible thereafter. In other words, if the project completes prior to the due date, delivery 
to the customer is on the due date, fulfilling the negotiated agreement. If the project 
completes later than the due date, then the tardiness penalty applies. Earliness cost can be 
viewed as weighted flowtime, or the holding costs incurred while an activity is held in the 
system. In the project setting, the flowtime for activity j is given by (C − rj), because once 
started, the activity becomes part of the project and is released from the system only when 
the entire project is complete. In the objective function, this flowtime is multiplied 
(weighted) by αj. For a given sequence, and deterministic activity times, that objective is 
minimized by starting each activity at its latest start (as calculated after including the 
disjunctive constraints in the network). As summarized by Demeulemeester and Herroelen 
(2002), Vanhoucke, Demeulemeester and Herroelen (2001) address a more general case 
where each activity has its own due date and tardiness rate. (Individual activity due dates 
are appropriate when they reflect important milestones; e.g., the customer may make 
progress payments upon such milestones.) They show that setting release dates in this case 
                                                 
research area is to balance the project’s dedicated resource level with outsourcing or temporary hire of 
additional resources on an ad-hoc basis. As a rule, outsourcing or temporary hiring costs more per time unit 
than it would to dedicate the additional capacity to the project. However, if we dedicate that capacity, we 
must pay for it throughout the project duration. The balance is obtained when hired resources are only used 
for sufficiently short periods to justify their higher rates. This is akin to our models for minimizing the due 
date plus weighted expected tardiness. The cost of dedicating resources until the due date is analogous to the 
size of the dedicated capacity (for which, effectively, we pay in advance), whereas the expected cost due to 
tardiness is analogous to hiring or outsourcing costs (for which we pay only when necessary, but at a 
relatively high rate). 



can be solved in polynomial time. In the stochastic case, we show how to address the basic 
problem (without individual activity due dates) in Chapter 19. The stochastic counterpart 
of the more general problem—with individual activity due dates—can be addressed by an 
essentially equivalent approach. Those models are also polynomial and tractable, although 
they require a stored sample as part of the input (that is, they are polynomial in input size 
but that input size tends to be large). However, the sequencing model is NP-hard (because 
it generalizes known NP-hard problems).  
 Here, we propose a particular list as a seed for list scheduling heuristics. The list is 
logically feasible so it can be used with both the parallel and serial approaches. It can also 
be used as a seed for a biased random search. To obtain this list, we solve a single machine 
version of the problem where all activities require the same resource. Because the 
makespan is a constant, there is no need to consider tardiness; that is, the project is 
scheduled to complete at the due date or, if that’s impossible, the project starts at time zero 
and the constant tardiness penalty is ignored (or, equivalently, the due date is reset to the 
makespan). We can solve the problem optimally in polynomial time if the precedence 
constraints are series-parallel. One way to do so is to follow the template of Section 8.3.3, 
but reverse the timeline first and use SWPT instead of SPT to form strings and to sequence 
parallel activities. That is, reverse all precedence constraints, and sequence in the reverse 
direction by an analogous approach to that of Section 8.3.3, but with weights. Equivalently, 
we can solve in the forward direction if we use LWPT instead of SPT. To elaborate, we 
show how to modify Algorithm 8.3. That is, we temporarily assume a parallel chain 
precedence structure. For our purpose, string u has a value pu/wu associated with it, where 
pu is the total processing time of the activities in the string and wu is the sum of all earliness 
costs, αj, of those activities.  
 

 
ALGORITHM RN17.1 

Parallel Chain Algorithm for Project Weighted Flowtime 
 
Step 1. Initially, each activity is a string. 
  
Step 2. Find a pair of strings, u and v, such that u directly precedes v and pv/wv ≥ pu/wu. 

Replace the pair by the string (u, v). Then repeat this step. When no such pair 
can be found, proceed to Step 3. 

 
Step 3. Sort the strings in non-increasing order of p/w.  
 
 
The generalization to the series-parallel structure is then analogous to the one described in 
the text for the unweighted case. If the network is not series-parallel, the same approach 
can still be used as a heuristic. However, in that case, as we create strings, we may prevent 
other potential strings from being considered later. For instance, consider the interdictive 
graph (Figure 16.6 or RN16.6). We might wish to combine activities A and C into a string 
(if pC/wC ≥ pA/wA) but we might also wish to combine A and D (if pD/wD ≥ pA/wA), and we 
can’t choose both at the same time. To see the complexity that ensues, observe that if we 
sequence C before D, we obtain a series-parallel network with A and C in series, together 



in parallel to B, and that subnetwork is in series with a subnetwork comprising D and E in 
parallel to each other. If we sequence D before C, we obtain another series-parallel network 
with A, D and C in series, together in parallel to B as one subnetwork in series with E, the 
complementary subnetwork. We cannot tell in advance which of the two options leads to 
the optimal solution. Therefore, unlike the series-parallel case, the order in which we 
proceed is important and the solution is no longer guaranteed to be optimal. If we respond 
by considering all possible options, the complexity of generating the list becomes 
exponential (and depends on the number of imbedded interdictive graphs in the network). 
An obvious greedy heuristic rule is to select by LWPT; for instance, if pC/wC ≥ pD/wD, we 
sequence C before D. This step should be preceded by first forming all strings that can be 
formed by Step 2 of Algorithm RN17.1 within all chains imbedded in the network. Parallel 
subnetworks should also be resolved where possible. 
 Now consider the stochastic case, where we draw on the similarity between the 
parallel machine model and project scheduling. Recall that in the conclusion of Chapter 9 
we observed that the objectives of makespan and flowtime are in conflict. For instance, 
when processing times are exponential—which we assume henceforth to simplify the 
exposition—the former is minimized by LEPT and the latter by SEPT. But when we count 
flowtime only from the actual start of each job until completion of the last job, as we would 
do in our current model, then the two objectives are no longer in conflict. Now we achieve 
both of them by LEPT, and the use of LWEPT should be reasonably robust for the weighted 
case. Hence our list—which essentially is an adaptation of LWEPT for the case of 
precedence constraints—is likely to be robust for the more realistic stochastic case. One 
caveat that we must state is that part of the effectiveness of LEPT in the stochastic parallel 
machine case is predicated on the use of dispatching. But dispatching is not always possible 
in the project case, depending on practical considerations that are not always reflected by 
the project network. For instance, there may be a need to plan exactly which resources will 
be allocated to each activity and when. Then, it is often necessary to stage these resources 
in advance, while predecessor activities are still in progress. Thus, postponing an activity 
that was due to start soon can waste preparations already made for it, whereas starting 
another activity immediately may simply not be possible. One practical response is to 
define a frozen horizon period, during which changes to the current sequence are not 
allowed. 
 
Net Present Value 
 An alternative to measuring the economic value of holding costs is the net present 
value (NPV) approach. Minimizing NPV is especially appropriate for projects with very 
long durations. In such cases, the time value of money has to be taken into account: funds 
spent early are more expensive (Demeulemeester and Herroelen, 2002). This approach may 
also be viewed as a generalization of our holding cost model.  
 
On the Performance of Tie-Breakers and List Sequencing Procedures 
 Whereas the performance of our proposed list for minimizing holding costs has not 
been studied yet, some related results are known. Tigranyan (2008) compares the 
performance of two list heuristics—LST (without dynamic updating) and LFT—with or 
without tie-breakers for deterministic problems with 30, 60 and 90 activities. The problems 
are taken from the PSPLIB resource-constrained project problems library (Kolisch and 



Sprecher, 1996). Tigranyan pursues the makespan objective, but he also compares the 
flowtime of various lists and tie-breakers. He reports that the use of LPT as a tie-breaker 
in the forward direction tends to reduce total flowtime. Likewise, when list scheduling is 
applied in the reverse direction, SPT is the tie-breaker that tends to reduce total flowtime. 
Interestingly, he also shows that, for those problems in PSPLIB, there is a significant 
advantage in reverse-sequencing. The best combination for total flowtime minimization is 
LFT with SPT as the tie-breaker but in the reverse direction. The best makespan, however, 
is obtained by LFT with LPT as the tie-breaker, again in the reverse direction. In the 
forward direction this combination tends to reduce total flowtime relative to other tie-
breakers. But in the reverse direction, the use of LFT with SPT as the tie-breaker—that is, 
the best combination for the purpose of reducing total flowtime—was not the best in terms 
of makespan. This result should not be surprising if we recall from Chapter 9 that using 
SPT for parallel machines is optimal for flowtime but counterproductive for makespan 
reduction. One inference might be that the PSPLIB problems are not symmetric with 
respect to reversal of the timeline. Indeed, there is no need to assume that practical project 
networks are symmetric either, but there may be performance differences between lists that 
don’t occur in general but rather depend on the library. A practical conclusion is that it is 
worthwhile to try various combinations in both directions. As yet another viable 
alternative, Demeulemeester and Herroelen (2002) also recommend sequencing from both 
ends towards the middle.  
 Tigranyan (2008) also confirms an observation made earlier by Kolisch (1996)—for 
the same PSPLIB problems—that the parallel approach tends to outperform serial 
sequencing when the list is used just once. However, Hartmann and Kolisch (2000) report 
that when multiple sequences are generated by biased random search, the serial approach 
outperforms the parallel approach. That reversal may be explained by the fact that in some 
instances the optimal solution is active but not nondelay, so only the serial approach can 
ever yield the optimal solution. In the cases tested by Tigranyan (2008), about 15% of the 
best active sequences identified required delay. Apparently, when multiple sequences are 
tested, the ability to generate active sequences with delay more than compensates for the 
inferiority of the serial approach in the single run case. Tigranyan also found that when the 
list is run just once for those PSPLIB problems, using the parallel approach, LST (without 
dynamic calculation) outperforms LFT in the forward direction although LFT outperforms 
LST in the reverse direction. But when the serial approach is used, LST outperforms LFT 
in both directions. Whereas the differences are slight (and were not tested for statistical 
significance), this is still a surprising result. However, according to Hartmann and Kolisch 
(2000), when biased random search is performed, using the serial approach but with 
multiple runs, LFT is the distinct best seed. Again, the practical conclusion is that it is 
worthwhile to test more than one list in more than one direction. 
 When processing times are stochastic, the use of the parallel approach is 
straightforward—effectively, it guides real-time dispatching as the project progresses. As 
in the deterministic case, the schedule is then nondelay and thus active. However, the serial 
approach can no longer guarantee active schedules. To see that, consider that an activity 
that can fit earlier than its priority calls for in the deterministic case may not be allowed to 
start early in the stochastic case if there is any likelihood it will postpone a higher priority 
activity. That is, no low-priority activity should be fit ahead of a high-priority one if its 
maximum exceeds the gap available for it, but it might have fit in the deterministic case. 



(As a rule, we recommend using lognormal activity distributions. If so, the maximum is 
not bounded and we can never fit an activity earlier than its priority demands.)  
 An alternative implementation of the serial approach suited to real-time use (that is, 
dispatching mode) has been used for both deterministic and stochastic analysis. Recently, 
it was studied by Ballestín (2007), who refers to it as the stochastic serial schedule 
generation scheme. Under this stochastic serial approach, we use dispatching but we only 
consider activities in the list order. That is, if activity i precedes activity j in the priority 
list, j cannot be dispatched before i (although they can be dispatched at the same time when 
resources permit). If j becomes available before i, it must wait. Thus, this approach allows 
idling, as in the deterministic serial approach, but it does not allow using any gaps that may 
have been created earlier in the schedule (because, in practice, we would not be able to tell 
in advance whether they are sufficiently large). Based on experiments using stochastic 
versions of PSPLIB problems with 120 activities, Ballestín reports a small advantage for 
the stochastic serial approach over the parallel one (but provides no information as to 
whether that difference is statistically significant). Recall that in the deterministic case we 
noted an advantage to the serial approach if many neighboring lists are used (otherwise, 
the advantage goes to the parallel approach). Indeed, Ballestín’s tests use either biased 
sampling or GA, both of which involve multiple lists, and thus his observation for the 
stochastic case reinforces the one we made in the deterministic case. A more important 
recommendation provided by Ballestín, however, may be interpreted as a step towards the 
parallel approach in the sense that it promotes starting activities earlier than would be the 
case under the pure stochastic serial approach. He recommends first using the priority list 
to generate a deterministic counterpart schedule (with the serial or parallel approach) and 
then redefining the list to reflect the actual order in which activities are performed for that 
list. He reports that such redefined lists generate much better results. He also reports that 
using a good deterministic counterpart sequence is a robust heuristic. More precisely, he 
reports that it outperforms stochastic analysis when variation is low or moderate, and the 
results indicate that it performs quite well even when variation is high. That stochastic 
analysis is based on using simulation to judge the quality of each (redefined) list generated 
either by biased sampling or by GA. Nonetheless, it is important to take into account the 
Jensen gap, which, in his experiments, turned out to be much higher than previous studies 
suggested. This observation supports our own recommendations to use the deterministic 
counterpart sequence but account for variance and the Jensen gap explicitly (see Section 
11.5—specifically Figure 11.5—and Chapter 19). 
 
Combining Crashing and Sequencing Decisions 
 Because academic papers tend to focus on basic models, in general, not much work 
has been done on combination problems such as considering the effects of crashing and 
sequencing together. The little work that was done in this field assumes that crashing is 
discrete, rather than continuous as in the original CPM formulation. That is, each activity 
has one or more possible modes, each of which has a different cost and a different duration. 
The resulting multimode resource-constrained project scheduling problem (MRCPSP) can 
be formulated as an integer program so it can be addressed by generic solution approaches 
such as branch and bound, Benders decomposition, and neighborhood search heuristics. 
By contrast, if we were to specify continuous crashing instead, we would obtain a 
relaxation that could be solved by mixed integer programming but is less directly amenable 



to neighborhood search heuristics. Perhaps for this reason this version of combining 
continuous crashing with sequencing has not been studied yet. We note in passing that, in 
principle, a Benders decomposition approach can still be pursued for mixed integer 
programs, and could thus be tested for the continuous crashing version of the RCPSP. 
Although this approach is often slow, it can sometimes be accelerated by using problem 
specific features. For instance, Hazir et al. (2009) report solving a bi-modal crashing model 
without including sequencing decisions—where each activity has just two nodes and, 
except for a budget constraint, only conjunctive constraints apply—for up to 100 activities 
by using Benders decomposition with such streamlining. That bi-modal problem is one of 
several essentially equivalent formulations of the most basic discrete crashing model.  
 In general, in the multimodal case, the set of modes considered has progressively 
shorter durations and higher costs. (Any mode that does not fit that profile can be safely 
removed from consideration.) Considering that the state of the art solution of the discrete 
crashing problem, even without including sequencing decisions, can only address up to 100 
activities, clearly the full-fledged problem, with multiple modes and sequencing decisions, 
has not been solved yet for realistic instances, and only heuristics have been attempted. 
Even heuristics have not yet been effective for more than 30 activities, each with three 
modes. Hartmann (2001) addresses the problem by GA and compares the results to other 
approaches, including the use of branch and bound approach with a time limit. He reports 
much better results for the GA. We should also repeat the observation from our Research 
Notes for Chapter 4 that there are many details in the application of heuristics that make 
comparisons difficult and call for care in interpreting labels such as GA. In this instance, 
Hartmann demonstrates that his particular GA application, with particular streamlining 
features, performs better than other approaches, including at least one earlier GA 
application.  
 Whereas the ideal approach would solve for the optimal sequence and modes 
together, in practice we may safely expect that heuristics will remain the norm. We have 
already reached a similar conclusion even without considering multiple modalities. The 
most accessible heuristic, both for continuous crashing and the multimode model, is 
simple: solve the two problems separately. But there is an important observation that 
applies in this case: crashing (discrete or continuous) should not be considered before 
sequencing. If we do it the other way around, that is, if we ignore sequencing for a while, 
make crashing decisions first and only then make sequencing decisions, we are liable to 
crash activities that are not even critical, let alone the best crashing candidates. We are also 
liable to increase the resource usage by crashed activities without regard to resource 
availability; that is, we may choose crashing options that are not even feasible. For those 
reasons, it is strongly recommended to sequence first. However, it is possible to revisit 
sequencing decisions after a complete round of sequencing and crashing has taken place. 
That is, we can engage in a cyclical application of sequencing and crashing (Trietsch, 
2005). 
 
Approximate Branch and Bound 
 Branch and bound options include adapting the shifting bottleneck algorithm. This 
requires extending the single-machine head-body-tail model to parallel machines. 
However, the bounds created this way are not as effective as those that apply for the single 
machine case (see Demeulemeester and Herroelen, 2002). In addition, as in the job shop 



case, the shifting bottleneck logic can be used in a heuristic search. Morton and Pentico 
(1993) discuss shifting-bottleneck heuristics extensively. They use a branch and bound 
structure in the forward direction. To estimate the remaining time of a partial schedule, 
they use a queueing model approximation (although they assume deterministic times and 
apply the stochastic queueing formulas on an ad hoc basis). With such estimates in place, 
they then branch in the most promising direction. By virtue of using queueing models, the 
most loaded machine downstream from any given partial schedule contributes the highest 
estimated total queueing and processing times to these estimates. By branching in the most 
attractive direction, in the forward direction, it becomes possible to obtain a partial 
sequence that can be used immediately and updated later. Therefore, this approach is 
especially attractive in a highly stochastic environment where activities require 
preparation, because it allows creating stable sequences for the near future while 
maintaining flexibility beyond the frozen horizon. Key is the use of estimates to 
approximate the effects of current decisions into the future without actually trying to 
precisely anticipate the future too far in advance. This is a promising approach, especially 
for stochastic models, but it requires further research. Specifically, queueing models that 
involve complex resource sharing models are virtually nonexistent, but they would be 
helpful in this context. 
 
Robust Scheduling 
 In our Research Notes for Chapter 7 we discussed robust scheduling in generic terms. 
In the project scheduling context, robust scheduling models typically seek base schedules 
that anticipate subsequent reactive scheduling and aim to avoid disruptions as much as 
possible (Demeulemeester and Herroelen, 2002; Herroelen and Leus, 2005). At the time of 
this writing, there is no evidence that such models have been implemented in practice. To 
some extent, robust scheduling and safe scheduling aim to resolve the same practical 
problem. Under safe scheduling we achieve robustness by incorporating appropriate safety 
time cushions in the schedule. When safety time buffers are used, the need for reactive 
scheduling is reduced and the buffers also provide time to actually plan reactive actions 
when needed. As another option, we noted that approximate branch and bound algorithms 
of the type recommended by Morton and Pentico (1993), because they estimate the 
downstream performance of a partial schedule by queueing models, may be suitable for the 
production of good sequences to be used during a frozen horizon period. Under that 
approach—which lies in between static sequencing and dispatching—sequencing decisions 
are simply not made too far into the future, thus alleviating the need for explicit preparation 
for future sequence changes by reactive scheduling. Yet, firm decisions are being made for 
the near future (the frozen horizon) and tentative decisions are made for the medium future 
(the period beyond the frozen horizon for which we prepare a static schedule but we do not 
consider it final until required). 
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