
Research Notes for Chapter 17*

Sources and Comments
 As we mentioned in our research notes for Chapter 16, most of the useful work in
PERT/CPM over the last 35 years—since the publication of Introduction to Sequencing
and Scheduling (ISS)—has been in the area of deterministic sequencing (and thus really
enhanced CPM rather than PERT). Whereas the early sources of Chapter 17 date back to
ISS, some of them repeated in our Research Notes for Chapter 16, subsequent results,
appear in Demeulemeester and Herroelen (2002). Readers who are interested in
optimization methods for the resource constrained project scheduling problem are
specifically referred there: they provide details for numerous branch and bound and integer
programming models for this purpose. Among other things, they also describe and critique
the Critical Chain methodology—which they call Critical Chain Buffer Management
(CCBM)—and they include some stochastic models. Beyond those, the chapter itself cites
the main new sources that we used. However, for a recent broad survey of related models,
see Hartmann and Briskorn (to appear), and for a contemporary description of existing
stochastic counterpart sequencing models see Ballestín (2007). (We mention some of his
own results later, where they fit in our context, but we do not duplicate his summary of
previous results. Nor do we repeat the vast majority of important citations that appear in
the other two sources.)
 Advanced heuristics are based on generic neighborhood search methods such as
tabu search, simulated annealing and genetic algorithms (GA). Kolisch and Hartmann
(2006) provide an extensive comparison among such algorithms. In general, the ranking of
these algorithms changes over time—to wit, Hartmann and Kolisch (2000) give a slightly
different ranking—but, as a rule, advanced neighborhood search techniques—including
GA—provide excellent results. Surprisingly, the modified search approach (which can be
combined with such generic methods) has not been studied until recently. The earliest
source of that idea that we know of is Fleszar and Hindi (2004), who also recommend
variable neighborhood search. They use a modified all insertion (AI) neighborhood and
report excellent results relative to former benchmarks. Recall that in the chapter we showed
how to modify the simpler adjacent pairwise interchange (API) neighborhood. However,
as we showed in detail in our Research Notes for Chapter 4 (see Adapting Search Heuristics
to the Solution of 1|prec|ΣwjTj), modified insertion can be achieved by a series of modified
API steps. Likewise, any modified nonadjacent pairwise interchange can be achieved by
two modified AI steps.

* The Research Notes series (copyright © 2009, 2019 by Kenneth R. Baker and Dan Trietsch) accompanies
our textbook Principles of Sequencing and Scheduling, Wiley (2009, 2019). The main purposes of the
Research Notes series are to provide historical details about the development of sequencing and scheduling
theory, expand the book’s coverage for advanced readers, provide links to other relevant research, and
identify important challenges and emerging research areas. Our coverage may be updated on an ongoing
basis. We invite comments and corrections.

Citation details: Baker, K.R. and D. Trietsch (2019) Research Notes for Chapter 17 in Principles of
Sequencing and Scheduling (Wiley, 2019). URL: http://faculty.tuck.dartmouth.edu/principles-sequencing-
scheduling/.

 In our Research Notes for Chapter 4 we also observed that genetic algorithms tend
to generate feasible sequences; that is, offspring inherit feasibility from their parents, unless
a mutation violates it, and therefore it makes sense to allow only mutations that belong to
a suitably modified neighborhood. Here, we stress one point again: GA had been reported
as a highly competitive algorithm for projects using research results that, as a rule, did not
rely on modified neighborhood search. Thus, an important advantage of GA may be diluted
when it is compared to other techniques using modified neighborhood search. In effect, it
is now necessary to re-test all former approaches, but with modified neighborhoods.
Among other things, this re-testing will show whether GA (with modified mutations)
retains its previously reported advantage.

Renewable, Nonrenewable and Doubly-Constrained Resources
 Resources of the type we considered in the chapter are available throughout the
project duration and thus they are not depleted during the project. When released from their
current activities, such resources are—in a sense—renewed, so they are also known as
renewable resources. By contrast, some resources—such as the project budget—are
nonrenewable because once consumed they are no longer available. A doubly constrained
resource is limited each period and also in terms of total consumption. In practice, budget
constraints are usually doubly constrained, which means that funds flow rate and the total
funds available are both limited.
 Typical models address nonrenewable constraints (e.g., budgets) as if exceeding
them is simply impossible. That makes sense under the deterministic assumption, which
most of those models make. In reality, however, processing times are always stochastic
and the penalty for exceeding such constraints may be different; e.g., in the budget case,
additional funds are often found, but at a cost (sometimes having the effect of throwing
good money after bad). Of course, project managers’ careers can be hurt by budget
violations, and therefore they actively try to avoid them. Considering that time is also a
nonrenewable resource, a similar comment applies to due dates and deadlines. Although
some sources use the terms "deadline" and "due date" interchangeably, others interpret the
former as a stricter limit: deadline violations are equivalent to project failure, whereas due
date violations may be penalized, but it is accepted that they are not always avoidable. A
recent example of a strict deadline is the stadium construction project for the Olympic
Games in Athens. That particular project barely met the Games’ opening ceremony
schedule, and incurred serious costs for the emergency mode of operations that was
required as a result. On the one hand, we use due date models for scheduling—which is
part of planning—whereas control actions are taken during execution. On the other hand,
the likely control cost of meeting a deadline that is liable be violated without intervention
typically increases with the expected looming tardiness. If so, the appropriate scheduling
(planning) model is still the use of due dates with an increasing tardiness penalty.
Specifically, our safe scheduling models can include the expected control cost as a key part
of the penalty cost function.

On Sequencing vs. Resource Leveling
 Following the pioneers of project scheduling theory, such as Kelley (1963) and
Wiest (1964, 1967), we address the resource-constrained project scheduling problem by an
explicit sequencing approach. The same approach has been taken by subsequent sources,

such as ISS, Morton and Pentico (1993), and Demeulemeester and Herroelen (2002).
What’s common to all of them is that although they address a practical problem (for
instance, Wiest 1967 describes a commercial software implementation), they approach the
subject from a theoretical/normative point of view. In this approach, it is implicit that we
must add disjunctive precedence constraints to the ones given by the original project
network. In the chapter, we referred to them as soft precedence constraints. As a result, the
critical path must now reflect not only the original (conjunctive) precedence constraints
but also the disjunctive ones. Because the critical path depends on both conjunctive and
disjunctive constraints, Wiest (1964) proposed changing its name to the critical sequence.
This proposal has not been adopted, at least not widely, and indeed there is no need to
rename the critical path.* Typical project management texts, however, address the issue by
describing outdated practice instead. In this particular instance, early practice—possibly
because early project scheduling software, including the original PERT software, did not
include sequencing modules at all—adopted the inferior MRP sequencing approach of
leveling resource usage instead of sequencing resources in a straightforward manner. (We
discussed MRP briefly in our Research Notes for Chapter 12; see The Role of JIT as
Compared to MRP.) Thus, typical project management texts, and other authoritative
sources such as Project Management Body of Knowledge (PMBOK)—published by the
Project Management Institute—address resource leveling instead of sequencing. The
objective of resource leveling, as the term suggests, is to keep the resource utilization
profile as flat as possible without violating the maximum resource constraint. Because
resource leveling is pursued by making sequencing decisions, one might think that the
difference is slight. Nonetheless, the resource leveling approach—when used manually or
interactively—is less likely to lead to good results.†
 A schedule with level resource usage is indicative of a good sequence (because
there is little or no idling) but it is best pursued indirectly by effective sequencing. True, if
we generalize the problem that we discussed by treating resource capacities as decision
variables, then the resource leveling problem might lead to useful results. The idea is to
compare the total economic implications of running the project with various resource
capacity profiles and to choose the best one. However, even when the true objective is to
decide how many resource units to allocate to the project, it is better to follow the approach
of Example 17.2, where we studied the relationship between capacity and makespan. That
is, we can select the optimal capacity by finding the best combination of capacity and
makespan. But for any tentative capacity level, we can and should use explicit sequencing
models to minimize the makespan. For a given resource capacity that is dedicated to the
project from start to finish, minimizing the makespan automatically minimizes the total
unused capacity, which is the desired implicit objective of resource leveling.‡

* The term critical chain has been proposed for the same purpose much more recently, with a wider reception.
Except for commercial marketing purposes, however, that renaming is still a redundant exercise.
† On the bright side, typical project scheduling software, at least since the package described by Wiest (1967),
follows the correct explicit sequencing approach. It is still far from ideal, however. In that context, our
comment in the chapter that the performance of the better software packages is comparable to using the LFT
priority list is due to Herroelen (2005). To our knowledge, that observation is still valid.
‡ When resources can be inducted during the progress of the project and released towards the end, as in the
skyline profile, the objective of maximizing utilization becomes more complex. To our knowledge, that
model has not been studied yet, but it would be straightforward to solve it by neighborhood search methods.
Incidentally, this objective is similar to minimizing total holding costs, our next subject. A related new

Minimizing Total Holding Costs
 In Chapter 19 we introduce a stochastic scheduling model designed to minimize the
sum total of expected holding costs and tardiness penalties. Such a model is necessary for
setting optimal release dates within a safe scheduling context. For that purpose we assume
that sequencing decisions have already been made and are reflected by soft precedence
constraints; that is, we only address the pure scheduling model. Here, we address the
deterministic counterpart sequencing model.
 Suppose a project consists of n activities and has a due date (d). Each activity incurs
an earliness cost per unit time denoted αj for activity j. This earliness cost reflects the
economic value of postponing the activity and may also be viewed as a holding cost. The
project incurs a tardiness cost per unit time denoted β. In practice, tardiness cost reflects
the cost of delay in obtaining revenue and often includes explicit compensation to
customers when a due date is missed. The fixed cost element that we introduced in Chapter
16, cf, is part of this tardiness cost per unit, because it has to be borne until the project
completes. To this element we add any explicit or implicit tardiness penalties. Ideally, we
would like to balance activities’ earliness costs against the project’s tardiness costs. The
objective is thus to minimize total E/T cost, or

Z = β(C – d) + ∑j αj(C – rj)

where C ≥ d represents the project completion time. We assume that d is given, as if it had
been negotiated with a customer. The customer provides no incentive for early completion,
so we proceed as if the project is delivered to the customer at the due date or as soon as
possible thereafter. In other words, if the project completes prior to the due date, delivery
to the customer is on the due date, fulfilling the negotiated agreement. If the project
completes later than the due date, then the tardiness penalty applies. Earliness cost can be
viewed as weighted flowtime, or the holding costs incurred while an activity is held in the
system. In the project setting, the flowtime for activity j is given by (C − rj), because once
started, the activity becomes part of the project and is released from the system only when
the entire project is complete. In the objective function, this flowtime is multiplied
(weighted) by αj. For a given sequence, and deterministic activity times, that objective is
minimized by starting each activity at its latest start (as calculated after including the
disjunctive constraints in the network). As summarized by Demeulemeester and Herroelen
(2002), Vanhoucke, Demeulemeester and Herroelen (2001) address a more general case
where each activity has its own due date and tardiness rate. (Individual activity due dates
are appropriate when they reflect important milestones; e.g., the customer may make
progress payments upon such milestones.) They show that setting release dates in this case

research area is to balance the project’s dedicated resource level with outsourcing or temporary hire of
additional resources on an ad-hoc basis. As a rule, outsourcing or temporary hiring costs more per time unit
than it would to dedicate the additional capacity to the project. However, if we dedicate that capacity, we
must pay for it throughout the project duration. The balance is obtained when hired resources are only used
for sufficiently short periods to justify their higher rates. This is akin to our models for minimizing the due
date plus weighted expected tardiness. The cost of dedicating resources until the due date is analogous to the
size of the dedicated capacity (for which, effectively, we pay in advance), whereas the expected cost due to
tardiness is analogous to hiring or outsourcing costs (for which we pay only when necessary, but at a
relatively high rate).

can be solved in polynomial time. In the stochastic case, we show how to address the basic
problem (without individual activity due dates) in Chapter 19. The stochastic counterpart
of the more general problem—with individual activity due dates—can be addressed by an
essentially equivalent approach. Those models are also polynomial and tractable, although
they require a stored sample as part of the input (that is, they are polynomial in input size
but that input size tends to be large). However, the sequencing model is NP-hard (because
it generalizes known NP-hard problems).
 Here, we propose a particular list as a seed for list scheduling heuristics. The list is
logically feasible so it can be used with both the parallel and serial approaches. It can also
be used as a seed for a biased random search. To obtain this list, we solve a single machine
version of the problem where all activities require the same resource. Because the
makespan is a constant, there is no need to consider tardiness; that is, the project is
scheduled to complete at the due date or, if that’s impossible, the project starts at time zero
and the constant tardiness penalty is ignored (or, equivalently, the due date is reset to the
makespan). We can solve the problem optimally in polynomial time if the precedence
constraints are series-parallel. One way to do so is to follow the template of Section 8.3.3,
but reverse the timeline first and use SWPT instead of SPT to form strings and to sequence
parallel activities. That is, reverse all precedence constraints, and sequence in the reverse
direction by an analogous approach to that of Section 8.3.3, but with weights. Equivalently,
we can solve in the forward direction if we use LWPT instead of SPT. To elaborate, we
show how to modify Algorithm 8.3. That is, we temporarily assume a parallel chain
precedence structure. For our purpose, string u has a value pu/wu associated with it, where
pu is the total processing time of the activities in the string and wu is the sum of all earliness
costs, αj, of those activities.

ALGORITHM RN17.1

Parallel Chain Algorithm for Project Weighted Flowtime

Step 1. Initially, each activity is a string.

Step 2. Find a pair of strings, u and v, such that u directly precedes v and pv/wv ≥ pu/wu.

Replace the pair by the string (u, v). Then repeat this step. When no such pair
can be found, proceed to Step 3.

Step 3. Sort the strings in non-increasing order of p/w.

The generalization to the series-parallel structure is then analogous to the one described in
the text for the unweighted case. If the network is not series-parallel, the same approach
can still be used as a heuristic. However, in that case, as we create strings, we may prevent
other potential strings from being considered later. For instance, consider the interdictive
graph (Figure 16.6 or RN16.6). We might wish to combine activities A and C into a string
(if pC/wC ≥ pA/wA) but we might also wish to combine A and D (if pD/wD ≥ pA/wA), and we
can’t choose both at the same time. To see the complexity that ensues, observe that if we
sequence C before D, we obtain a series-parallel network with A and C in series, together

in parallel to B, and that subnetwork is in series with a subnetwork comprising D and E in
parallel to each other. If we sequence D before C, we obtain another series-parallel network
with A, D and C in series, together in parallel to B as one subnetwork in series with E, the
complementary subnetwork. We cannot tell in advance which of the two options leads to
the optimal solution. Therefore, unlike the series-parallel case, the order in which we
proceed is important and the solution is no longer guaranteed to be optimal. If we respond
by considering all possible options, the complexity of generating the list becomes
exponential (and depends on the number of imbedded interdictive graphs in the network).
An obvious greedy heuristic rule is to select by LWPT; for instance, if pC/wC ≥ pD/wD, we
sequence C before D. This step should be preceded by first forming all strings that can be
formed by Step 2 of Algorithm RN17.1 within all chains imbedded in the network. Parallel
subnetworks should also be resolved where possible.
 Now consider the stochastic case, where we draw on the similarity between the
parallel machine model and project scheduling. Recall that in the conclusion of Chapter 9
we observed that the objectives of makespan and flowtime are in conflict. For instance,
when processing times are exponential—which we assume henceforth to simplify the
exposition—the former is minimized by LEPT and the latter by SEPT. But when we count
flowtime only from the actual start of each job until completion of the last job, as we would
do in our current model, then the two objectives are no longer in conflict. Now we achieve
both of them by LEPT, and the use of LWEPT should be reasonably robust for the weighted
case. Hence our list—which essentially is an adaptation of LWEPT for the case of
precedence constraints—is likely to be robust for the more realistic stochastic case. One
caveat that we must state is that part of the effectiveness of LEPT in the stochastic parallel
machine case is predicated on the use of dispatching. But dispatching is not always possible
in the project case, depending on practical considerations that are not always reflected by
the project network. For instance, there may be a need to plan exactly which resources will
be allocated to each activity and when. Then, it is often necessary to stage these resources
in advance, while predecessor activities are still in progress. Thus, postponing an activity
that was due to start soon can waste preparations already made for it, whereas starting
another activity immediately may simply not be possible. One practical response is to
define a frozen horizon period, during which changes to the current sequence are not
allowed.

Net Present Value
 An alternative to measuring the economic value of holding costs is the net present
value (NPV) approach. Minimizing NPV is especially appropriate for projects with very
long durations. In such cases, the time value of money has to be taken into account: funds
spent early are more expensive (Demeulemeester and Herroelen, 2002). This approach may
also be viewed as a generalization of our holding cost model.

On the Performance of Tie-Breakers and List Sequencing Procedures
 Whereas the performance of our proposed list for minimizing holding costs has not
been studied yet, some related results are known. Tigranyan (2008) compares the
performance of two list heuristics—LST (without dynamic updating) and LFT—with or
without tie-breakers for deterministic problems with 30, 60 and 90 activities. The problems
are taken from the PSPLIB resource-constrained project problems library (Kolisch and

Sprecher, 1996). Tigranyan pursues the makespan objective, but he also compares the
flowtime of various lists and tie-breakers. He reports that the use of LPT as a tie-breaker
in the forward direction tends to reduce total flowtime. Likewise, when list scheduling is
applied in the reverse direction, SPT is the tie-breaker that tends to reduce total flowtime.
Interestingly, he also shows that, for those problems in PSPLIB, there is a significant
advantage in reverse-sequencing. The best combination for total flowtime minimization is
LFT with SPT as the tie-breaker but in the reverse direction. The best makespan, however,
is obtained by LFT with LPT as the tie-breaker, again in the reverse direction. In the
forward direction this combination tends to reduce total flowtime relative to other tie-
breakers. But in the reverse direction, the use of LFT with SPT as the tie-breaker—that is,
the best combination for the purpose of reducing total flowtime—was not the best in terms
of makespan. This result should not be surprising if we recall from Chapter 9 that using
SPT for parallel machines is optimal for flowtime but counterproductive for makespan
reduction. One inference might be that the PSPLIB problems are not symmetric with
respect to reversal of the timeline. Indeed, there is no need to assume that practical project
networks are symmetric either, but there may be performance differences between lists that
don’t occur in general but rather depend on the library. A practical conclusion is that it is
worthwhile to try various combinations in both directions. As yet another viable
alternative, Demeulemeester and Herroelen (2002) also recommend sequencing from both
ends towards the middle.
 Tigranyan (2008) also confirms an observation made earlier by Kolisch (1996)—for
the same PSPLIB problems—that the parallel approach tends to outperform serial
sequencing when the list is used just once. However, Hartmann and Kolisch (2000) report
that when multiple sequences are generated by biased random search, the serial approach
outperforms the parallel approach. That reversal may be explained by the fact that in some
instances the optimal solution is active but not nondelay, so only the serial approach can
ever yield the optimal solution. In the cases tested by Tigranyan (2008), about 15% of the
best active sequences identified required delay. Apparently, when multiple sequences are
tested, the ability to generate active sequences with delay more than compensates for the
inferiority of the serial approach in the single run case. Tigranyan also found that when the
list is run just once for those PSPLIB problems, using the parallel approach, LST (without
dynamic calculation) outperforms LFT in the forward direction although LFT outperforms
LST in the reverse direction. But when the serial approach is used, LST outperforms LFT
in both directions. Whereas the differences are slight (and were not tested for statistical
significance), this is still a surprising result. However, according to Hartmann and Kolisch
(2000), when biased random search is performed, using the serial approach but with
multiple runs, LFT is the distinct best seed. Again, the practical conclusion is that it is
worthwhile to test more than one list in more than one direction.
 When processing times are stochastic, the use of the parallel approach is
straightforward—effectively, it guides real-time dispatching as the project progresses. As
in the deterministic case, the schedule is then nondelay and thus active. However, the serial
approach can no longer guarantee active schedules. To see that, consider that an activity
that can fit earlier than its priority calls for in the deterministic case may not be allowed to
start early in the stochastic case if there is any likelihood it will postpone a higher priority
activity. That is, no low-priority activity should be fit ahead of a high-priority one if its
maximum exceeds the gap available for it, but it might have fit in the deterministic case.

(As a rule, we recommend using lognormal activity distributions. If so, the maximum is
not bounded and we can never fit an activity earlier than its priority demands.)
 An alternative implementation of the serial approach suited to real-time use (that is,
dispatching mode) has been used for both deterministic and stochastic analysis. Recently,
it was studied by Ballestín (2007), who refers to it as the stochastic serial schedule
generation scheme. Under this stochastic serial approach, we use dispatching but we only
consider activities in the list order. That is, if activity i precedes activity j in the priority
list, j cannot be dispatched before i (although they can be dispatched at the same time when
resources permit). If j becomes available before i, it must wait. Thus, this approach allows
idling, as in the deterministic serial approach, but it does not allow using any gaps that may
have been created earlier in the schedule (because, in practice, we would not be able to tell
in advance whether they are sufficiently large). Based on experiments using stochastic
versions of PSPLIB problems with 120 activities, Ballestín reports a small advantage for
the stochastic serial approach over the parallel one (but provides no information as to
whether that difference is statistically significant). Recall that in the deterministic case we
noted an advantage to the serial approach if many neighboring lists are used (otherwise,
the advantage goes to the parallel approach). Indeed, Ballestín’s tests use either biased
sampling or GA, both of which involve multiple lists, and thus his observation for the
stochastic case reinforces the one we made in the deterministic case. A more important
recommendation provided by Ballestín, however, may be interpreted as a step towards the
parallel approach in the sense that it promotes starting activities earlier than would be the
case under the pure stochastic serial approach. He recommends first using the priority list
to generate a deterministic counterpart schedule (with the serial or parallel approach) and
then redefining the list to reflect the actual order in which activities are performed for that
list. He reports that such redefined lists generate much better results. He also reports that
using a good deterministic counterpart sequence is a robust heuristic. More precisely, he
reports that it outperforms stochastic analysis when variation is low or moderate, and the
results indicate that it performs quite well even when variation is high. That stochastic
analysis is based on using simulation to judge the quality of each (redefined) list generated
either by biased sampling or by GA. Nonetheless, it is important to take into account the
Jensen gap, which, in his experiments, turned out to be much higher than previous studies
suggested. This observation supports our own recommendations to use the deterministic
counterpart sequence but account for variance and the Jensen gap explicitly (see Section
11.5—specifically Figure 11.5—and Chapter 19).

Combining Crashing and Sequencing Decisions
 Because academic papers tend to focus on basic models, in general, not much work
has been done on combination problems such as considering the effects of crashing and
sequencing together. The little work that was done in this field assumes that crashing is
discrete, rather than continuous as in the original CPM formulation. That is, each activity
has one or more possible modes, each of which has a different cost and a different duration.
The resulting multimode resource-constrained project scheduling problem (MRCPSP) can
be formulated as an integer program so it can be addressed by generic solution approaches
such as branch and bound, Benders decomposition, and neighborhood search heuristics.
By contrast, if we were to specify continuous crashing instead, we would obtain a
relaxation that could be solved by mixed integer programming but is less directly amenable

to neighborhood search heuristics. Perhaps for this reason this version of combining
continuous crashing with sequencing has not been studied yet. We note in passing that, in
principle, a Benders decomposition approach can still be pursued for mixed integer
programs, and could thus be tested for the continuous crashing version of the RCPSP.
Although this approach is often slow, it can sometimes be accelerated by using problem
specific features. For instance, Hazir et al. (2009) report solving a bi-modal crashing model
without including sequencing decisions—where each activity has just two nodes and,
except for a budget constraint, only conjunctive constraints apply—for up to 100 activities
by using Benders decomposition with such streamlining. That bi-modal problem is one of
several essentially equivalent formulations of the most basic discrete crashing model.
 In general, in the multimodal case, the set of modes considered has progressively
shorter durations and higher costs. (Any mode that does not fit that profile can be safely
removed from consideration.) Considering that the state of the art solution of the discrete
crashing problem, even without including sequencing decisions, can only address up to 100
activities, clearly the full-fledged problem, with multiple modes and sequencing decisions,
has not been solved yet for realistic instances, and only heuristics have been attempted.
Even heuristics have not yet been effective for more than 30 activities, each with three
modes. Hartmann (2001) addresses the problem by GA and compares the results to other
approaches, including the use of branch and bound approach with a time limit. He reports
much better results for the GA. We should also repeat the observation from our Research
Notes for Chapter 4 that there are many details in the application of heuristics that make
comparisons difficult and call for care in interpreting labels such as GA. In this instance,
Hartmann demonstrates that his particular GA application, with particular streamlining
features, performs better than other approaches, including at least one earlier GA
application.
 Whereas the ideal approach would solve for the optimal sequence and modes
together, in practice we may safely expect that heuristics will remain the norm. We have
already reached a similar conclusion even without considering multiple modalities. The
most accessible heuristic, both for continuous crashing and the multimode model, is
simple: solve the two problems separately. But there is an important observation that
applies in this case: crashing (discrete or continuous) should not be considered before
sequencing. If we do it the other way around, that is, if we ignore sequencing for a while,
make crashing decisions first and only then make sequencing decisions, we are liable to
crash activities that are not even critical, let alone the best crashing candidates. We are also
liable to increase the resource usage by crashed activities without regard to resource
availability; that is, we may choose crashing options that are not even feasible. For those
reasons, it is strongly recommended to sequence first. However, it is possible to revisit
sequencing decisions after a complete round of sequencing and crashing has taken place.
That is, we can engage in a cyclical application of sequencing and crashing (Trietsch,
2005).

Approximate Branch and Bound
 Branch and bound options include adapting the shifting bottleneck algorithm. This
requires extending the single-machine head-body-tail model to parallel machines.
However, the bounds created this way are not as effective as those that apply for the single
machine case (see Demeulemeester and Herroelen, 2002). In addition, as in the job shop

case, the shifting bottleneck logic can be used in a heuristic search. Morton and Pentico
(1993) discuss shifting-bottleneck heuristics extensively. They use a branch and bound
structure in the forward direction. To estimate the remaining time of a partial schedule,
they use a queueing model approximation (although they assume deterministic times and
apply the stochastic queueing formulas on an ad hoc basis). With such estimates in place,
they then branch in the most promising direction. By virtue of using queueing models, the
most loaded machine downstream from any given partial schedule contributes the highest
estimated total queueing and processing times to these estimates. By branching in the most
attractive direction, in the forward direction, it becomes possible to obtain a partial
sequence that can be used immediately and updated later. Therefore, this approach is
especially attractive in a highly stochastic environment where activities require
preparation, because it allows creating stable sequences for the near future while
maintaining flexibility beyond the frozen horizon. Key is the use of estimates to
approximate the effects of current decisions into the future without actually trying to
precisely anticipate the future too far in advance. This is a promising approach, especially
for stochastic models, but it requires further research. Specifically, queueing models that
involve complex resource sharing models are virtually nonexistent, but they would be
helpful in this context.

Robust Scheduling
 In our Research Notes for Chapter 7 we discussed robust scheduling in generic terms.
In the project scheduling context, robust scheduling models typically seek base schedules
that anticipate subsequent reactive scheduling and aim to avoid disruptions as much as
possible (Demeulemeester and Herroelen, 2002; Herroelen and Leus, 2005). At the time of
this writing, there is no evidence that such models have been implemented in practice. To
some extent, robust scheduling and safe scheduling aim to resolve the same practical
problem. Under safe scheduling we achieve robustness by incorporating appropriate safety
time cushions in the schedule. When safety time buffers are used, the need for reactive
scheduling is reduced and the buffers also provide time to actually plan reactive actions
when needed. As another option, we noted that approximate branch and bound algorithms
of the type recommended by Morton and Pentico (1993), because they estimate the
downstream performance of a partial schedule by queueing models, may be suitable for the
production of good sequences to be used during a frozen horizon period. Under that
approach—which lies in between static sequencing and dispatching—sequencing decisions
are simply not made too far into the future, thus alleviating the need for explicit preparation
for future sequence changes by reactive scheduling. Yet, firm decisions are being made for
the near future (the frozen horizon) and tentative decisions are made for the medium future
(the period beyond the frozen horizon for which we prepare a static schedule but we do not
consider it final until required).

References

Baker, K.R. (1974) Introduction to Sequencing and Scheduling, Wiley, Hoboken, NJ.

Ballestín, F. (2007) "When it is Worthwhile to Work with the Stochastic RCPSP?" Journal
of Scheduling 10, 153–166.

Demeulemeester, E.L. and W.S. Herroelen (2002) Project Scheduling: A Research

Handbook, Kluwer Academic Publishers.

Hartmann, S. (2001) "Project Scheduling with Multiple Modes: A Genetic Algorithm,"

Annals of Operations Research 102, 111-135.

Hartmann, S. and D. Briskorn (to appear) "A Survey of Variants and Extensions of the

Resource-Constrained Project Scheduling Problem," European Journal of
Operational Research. URL (accessed 9 November 2009):

 www.hsba.de/de/pdf/professoren/hartmann/models.pdf

Hartmann, S. and R. Kolisch, (2000) "Experimental Investigation of State-of-the-Art

Heuristics for the Resource-Constrained Project Scheduling Problem," European
Journal of Operational Research 127, 399-407.

Hazir, Ö, M. Haouaric and E. Erel (2009) "Discrete Time/Cost Trade-off Problem: A

Decomposition-based Solution Algorithm for the Budget Version," Computers and
Operations Research, doi:10.1016/j.cor.2009.06.009.

Herroelen, W. and R. Leus (2005) "Project Scheduling under Uncertainty: Survey and

Research Potentials," European Journal of Operational Research 165, 289–306.

Kelley, J.E. (1963) "The Critical Path Method: Resources Planning and Scheduling,"

Chapter 21 in J. Muth and G.L. Thompson Industrial Scheduling, Prentice-Hall,
347-365.

Kolisch, R. (1996) "Serial and Parallel Resource-Constrained Project Scheduling Methods

Revisited: Theory and Computation," European Journal of Operational Research
90, 320-333.

Kolisch, R. and S. Hartmann (2006) "Experimental Investigation of Heuristics for

Resource-constrained Project Scheduling: An Update," European Journal of
Operational Research 174, 23-37.

Kolisch, R. and A. Sprecher (1996) "PSPLIB – A Project Scheduling Problem Library,"

European Journal of Operational Research 96, 205-216.

Tigranyan, G. (2008) "Resource Constrained Project Scheduling Problems," Master

Thesis, Industrial Engineering & Systems Management, College of Engineering,
American University of Armenia, Yerevan, Armenia.

http://www.hsba.de/de/pdf/professoren/hartmann/models.pdf

Trietsch, D. (2005) "Why a Critical Path by any Other Name would Smell Less Sweet:
Towards a Holistic Approach to PERT/CPM," Project Management Journal 36(1),
27-36.

Vanhoucke, M., Demeulemeester, E. and Herroelen, W. (2001) "An Exact Procedure for

the Resource-Constrained Weighted Earliness-Tardiness Project Scheduling
Problem," Annals of Operations Research 102, 179-196.

Wiest, J.D. (1964) "Some Properties of Schedules for Large Projects with Limited

Resources," Operations Research 12, 395-418.

Wiest, J.D. (1967) "A Heuristic Model for Scheduling Large Projects with Limited

Resources," Management Science 13, B359-377.

