
Research Notes for Chapter 16* 
 
Chapters 9 and 10 of Introduction to Sequencing and Scheduling (Baker 1974) address 
project scheduling. The former covers fundamental concepts and is the basis of our Chapter 
16; the latter covers sequencing activities that compete for resources and is the basis of our 
Chapter 17. However, that coverage was not included in Elements of Sequencing and 
Scheduling (Baker 2005) because of the book's focus on deterministic machine scheduling 
models. We reintroduce the project scheduling chapters not only because the current text 
includes stochastic models but also because project models have become more important 
and because safe scheduling has been developed primarily in the context of project 
scheduling. Notably, 35 years after the publication of ISS, we found precious little to update 
in this chapter. We might expect that the fundamentals should not change with age, but it 
is surprising that the same criticisms noted then remain valid today. Moreover, most of 
those criticisms have not been properly addressed until very recently, if at all. The bulk of 
useful new work has focused on deterministic (CPM) sequencing models, so our Chapter 
17 is quite different from Chapter 10 of ISS. We address the most recent safe scheduling 
developments in Chapter 19 and its Research Notes. Together, those three chapters may be 
viewed as a module.  
 Below we provide the main sources on which Chapter 9 of ISS and the current chapter 
rely. We also introduce additional material. Specifically, we discuss some technical issues 
including network structure, the distribution of project length, crashing, hierarchical 
project management, and—last, but not least—a very recent, radically revised PERT/CPM 
framework which we call PERT 21 (or 21st Century PERT). PERT 21 is designed to 
combine the useful parts of both PERT and CPM and provides a fertile new direction for 
research in project scheduling.  
 
Sources and Comments 
 According to Kelley (1961), the earliest paper on CPM is Kelley (1957) but the 
complete structure is attributed to Kelley and Walker (1959) and to a 1958 working paper 
by the same authors. Kelley (1961) is self-sufficient and more accessible than any of those 
earlier sources. Furthermore, it also includes a solution of the crashing linear program by 
a network flow model.† In a nutshell, that network flow model is the dual of the model we 
presented in Section 16.4. A similar solution was independently developed by Fulkerson 
(1961) and submitted for publication in the same month (June 1960). Kelley and Fulkerson 
influenced each other’s work. Kelley uses a network flow model developed by Ford and 
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Fulkerson in the late 1950s (see Ford and Fulkerson, 1962), whereas Fulkerson solves a 
problem first posed by Kelley and Walker (1959). Kelley (1963) and Wiest (1964, 1967) 
address the issue of sequencing when resource limitations prohibit as much processing in 
parallel as the basic network diagram would permit. We discuss such sequencing models 
in Chapter 17. More complex network structures have also been developed. One, GERT 
(where G stands for generalized), recognizes that when a project is executed, some 
activities may be skipped, based on the outcome of other activities, so the network structure 
itself is random (Elmaghraby 1972). For example, in R&D projects it may make sense to 
develop several new designs in parallel until one of them proves adequate. Each design 
may require a potentially different set of downstream activities, so we cannot tell in 
advance which subsequent activities will be undertaken. Similarly, earlier developments 
may have to be reworked based on downstream events, so the project may include a 
corrective loop. Because activity networks cannot include loops, this structure has to be 
depicted as a project that may duplicate activities downstream. More generally, the number 
of times we go through such a loop is random and each possible realization implies a 
different network. The assumption is, however, that we can assign probabilities to each 
realization, so nodes may branch to different activities with given probabilities. Nodes may 
also be activated in more elaborate ways than in PERT. For instance, a node may be 
activated upon completion of the first activity that leads to it (rather than upon completion 
of all activities that lead to it). Another generalization addresses the precedence 
relationships between activities. In our text we discuss the simplest type, where a 
predecessor activity must finish before the successor can start, which we can address as 
finish-start. Other options include start-start (an activity cannot start before another 
activity starts), finish-finish (an activity cannot finish until another activity does), or start-
finish (an activity cannot finish before another activity starts). For a detailed discussion of 
such network structures, see Demeulemeester and Herroelen (2002). Among these 
enhancements, GERT addresses an important practical concern—random networks abound 
in practice—whereas the other structures are mainly of academic interest. At present, 
combining GERT with considerations of safe scheduling would represent a promising area 
of research.  
 The development of PERT for the US Navy started sometime after the publication 
of Kelley (1957) and yielded technical reports in 1958 and a refereed publication a year 
later, written by the leading members of the PERT team (Malcolm et al. 1959). Our 
statement in the chapter that CPM and PERT were developed independently is based on 
Kelley (1961), who states that the models were developed "in parallel." Important follow-
up papers include Van Slyke (1963) and MacCrimmon and Ryavec (1964). Van Slyke 
introduced the use of simulation for stochastic project scheduling, including criticality 
calculations. The term criticality, however, is attributed by Van Slyke to MacCrimmon and 
Ryavec (even though their paper appeared later), and our Example 16.5 is drawn from their 
work. 
 Whereas the citations above are early sources of PERT/CPM theory or early 
enhancements thereof, an important body of work focuses on identifying PERT 
deficiencies or on correcting them, as discussed in the chapter. To a large extent, this 
criticism applies to PERT as implemented rather than to PERT as it was intended. Malcolm 
et al. (1959) is presented as a case study, describing the development of the model and its 
implementation. During that process, time was of the essence and some shortcuts and 



approximations were deemed necessary. However, the authors do not suggest that the same 
shortcuts and approximations should necessarily become standard (although, in fact, they 
did). Given that background, it may not be surprising that the first critique of the PERT 
method appears in the original paper. Specifically, the authors note that equating the critical 
path with the maximal mean path is just a convenient approximation. Essentially, they 
recognize that this calculation ignores the Jensen gap. They state that a better method 
already existed, and indeed an improved calculation that approximately accounts for the 
Jensen gap was subsequently published by Clark (1961). Clark’s paper should have become 
a well-known classic, but for a long time it attracted very little attention.* Clark still 
assumes activity times are independent, but his approximation does not really require that 
assumption.  
 Malcolm et al. also cite common practitioner concerns that the PERT activity 
estimation method could lead to bias; that is, these practitioners did not believe that experts 
could reliably provide accurate estimates.† To respond to the bias issue, they recommend 
a program of calibration. That recommendation has never, to our knowledge, been 
followed.‡ Much more attention was devoted to the Jensen gap issue, where two types of 
response emerged. One approach—of which Clark (1961) is the earliest exemplar—
employs approximations or bounds to estimate the true mean. Another early contribution 
along these lines is Fulkerson (1962), who assumes discrete activity distributions and 
calculates a bound on the mean. Fulkerson actually allows dependence between the 
activities that precede any single node but requires independence among activities that 
precede different nodes. Thus, in practice, his approach can only model very special cases 
of dependence and requires replacing continuous random variables by approximate discrete 
ones. Another important paper that uses bounds, but without requiring discrete 
distributions, is Dodin (1985). Subsequent papers propose ever more complex but tighter 
bounds. The other approach, and the one we recommend in our text, is simulation (Van 
Slyke, 1963). Again, as in all the well-known papers about the subject, Van Slyke assumes 
independence, although simulation models do not really require the independence 
assumption. For some reason, the issue of correlation between activities was simply 
glossed over, until recently. Furthermore, the Jensen gap is implicitly assumed to be the 
main cause of problems associated with PERT. That view is represented in several papers, 
including Klingel (1966) and Schonberger (1981).  
 As noted in the chapter, PERT did not require the beta assumption to begin with. 
Indeed, Clark (1962) states explicitly that it was selected quite arbitrarily and that "[t]he 
author has no information concerning distributions of activity times, in particular, it is not 
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without correcting for bias it could be consistently off-target. 
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suggested that the beta or any other distribution is appropriate." To repeat: the selection of 
the beta distribution was not based on any claim that it is inherently likely to be the best 
fit. Nor are Equations (16.3) and (16.4) based on empirical evidence that they are 
appropriate. Instead, they had been selected quite arbitrarily: (16.4) was subjectively 
judged to be appropriate and (16.3) was then specified as a sufficiently good approximation 
(Clark, 1962). The main practical problem caused by this assumption may be that the 
variance estimate (and thus also the coefficient of variation) is likely to be exceeded in 
practice (Trietsch et al., 2010). In other words, (16.4) is not only arbitrary but also tends to 
be highly optimistic. On a technical front, the assumption motivated a lot of effort devoted 
to improved estimation of the beta parameters. The technical problem is that Equations 
(16.3) and (16.4) do not precisely fit any beta distribution except for the symmetric case 
where m = (a + b)/2 and two other special cases pointed out by Grubbs (1962). With the 
exception of those three special cases, if (16.3) is correct, (16.4) is not, and vice versa. 
Grubbs goes on to demolish the PERT estimation method on both technical and practical 
grounds. Unfortunately, Grubbs’ criticism was not heeded, perhaps due to a reason he 
anticipated when he stated that "it is not with any great satisfaction that the reviewer can 
accept statements to the effect that 'irrespective of your theoretical comments, you are 
picking on small points since PERT works so well'." In other words, Grubbs warned against 
interpreting the success of managing the Polaris project by PERT as conclusive evidence 
that PERT is completely meritorious in general and that the use of the beta distribution is 
necessarily correct in particular.* Whereas Grubbs questioned the inherent validity of the 
PERT estimation method, thus calling for a new model altogether, most of the subsequent 
literature on the subject offers technical corrections and clarifications without questioning 
the basic structure again. Sasieni (1986) shows that by holding the sum of the two beta 
parameters to a particular constant (namely 4), Equation (16.3) is satisfied. However, he 
ignores the fact that Equation (16.4) is no longer valid in that case (with the exception of 
the three special cases listed by Grubbs). Several authors tried to present better 
approximations for the beta parameters. One approach is to keep (16.4) intact but to replace 
(16.3) by another calculation for μ that will match some beta distribution precisely. In 
general, even that limited objective cannot be achieved precisely for the whole range of 
possible mode locations (between the min and the max), but it can be done for a wide range. 
For a relatively sophisticated approximation of that type, plus a review of earlier 
approximations, see Premachandra (2001). Our own perspective is that the lognormal 
distribution is simply better suited to the model than the beta. This claim is based not only 
on the theoretical arguments provided in our text but also on field data, as we discuss later.  
 
The Relationship between AOA and AON Networks 
 The AOA network depiction is often criticized because it requires dummy activities, 
whereas AON networks appear to avoid that need. However, as observed by both Kelley 
(1961) and Fulkerson (1961), both can be generalized to a single AOA depiction where 
every single arc from the original AON network becomes a dummy in the generalized 
version (Figure RN16.1). Start with an AON network where node j represents the jth 

                                                 
* Misinterpreting commercial or practical success as theoretical validation has been the root cause of quite a 
few historical aberrations. Serious practitioners and scholars are well advised to beware that trap. Instead, 
practical success of any method should motivate objective scientific study. The operative word, however, is 
objective. 



activity. Replace the original node j by two nodes, j' and j", and connect j' to j" by an arc. 
Redirect all the original incoming arcs into j' and start all outgoing arcs from j". The new 
arc represents the activity, and j' and j" are its start and finish events, so we obtain an 
equivalent AOA network. Furthermore, because all original arcs take zero time and 
resources, they are all dummies. Accordingly, we may replace them by dashed arcs. At this 
stage it is possible to collapse some of these dummy activities by merging their end nodes. 
This can be done for any dummy activity that is not necessary to satisfy rule 5 (that no two 
activities should share more than one end node). We now see that the AOA network shows 
events more explicitly, whereas the AON network shows logical constraints more 
explicitly. The network obtained by the construction we described, before collapsing any 
dummy activities, is the most explicit depiction. Accordingly, we refer to it as the explicit 
network.  
 The process we described is also a legitimate way to transform AON networks to 
AOA networks. Its advantage is that alternative dummy placements become visible, so we 
can keep the ones we prefer and collapse the others. Moreover, logical construction errors 
are less likely. To illustrate, return to Example 16.1. Figure RN16.1 shows the 
transformation of the AON network of Figure 16.6, on the left, to the explicit network. This 
explicit network contains four dummy activities. We can collapse any three dummy 
activities and obtain a legitimate AOA network for the example. Figure 16.5—repeated 
below as Figure RN16.2—reflects one of these four choices, where we kept the dashed arc 
from B to D and collapsed all other dummies. 
 

 
 

Figure RN16.1. Transforming an AON Network to an Explicit Network. 
 
 Incidentally, in an AOA network it may happen that all successors of an activity are 
dummies. Notably, this may happen even if no dummy is redundant; e.g., see the successors 
of activity A in Figure 18.2. In such case, the free-float calculations should be slightly 
revised by adding the minimal free float assigned to such a dummy successor to the activity 
itself (Zhao and Tseng 2003). 
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Figure RN16.2. An AOA Network for Figure RN16.1. 
 

Series-Parallel Project Networks 
 In Chapter 8 we described series-parallel networks. Such networks may also 
describe projects. For instance, take Example 8.4, which we presented by an AON network 
in Figure 8.3, repeated here as Figure RN16.3. The same network could also describe a 
project. Figure RN16.4 is an AOA depiction of that project, and we focus on its 
makespan—that is, the completion time of the last node. Because the project is series-
parallel, it is possible to compute the cumulative distribution function (cdf) of its 
completion time without resorting to simulation, rough approximations or bounds, 
provided all activities start at their ES time. This process is called reduction. Generally, it 
is assumed that all processing times are independent, but we now show that reductions can 
also be carried out for series-parallel networks when activity times are linearly associated.  
 

 
 

Figure RN16.3. An AON, 8-Activity Project (after Figure 8.3). 
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Figure RN16.4. An AOA Depiction of Figure RN16.3. 
 
 Temporarily, assume that a network is series-parallel with a given decomposition 
tree. We first describe the procedure for independent activities. Initially, the leaves of the 
decomposition tree (nodes without successors) all represent activities, and we associate the 
cdf of the relevant processing time with each of them. As we progress, we collapse subsets 
of leaves into their parent nodes, which become new leaves with cdfs that represent the 
composite effect of all leaves collapsed into them. Consider any set of leaves in the 
decomposition tree that have a common parent node. If the parent node is S (series), replace 
the cdfs of the leaves by the cdf of their convolution, and associate that cdf with the parent 
node (which becomes a leaf). Convolutions are often impossible to obtain analytically but 
can always be computed by numerical methods. If the parent node is P (parallel), replace 
the cdfs of the leaves by the cdf of their maximum, obtained by their product (which, again, 
can always be obtained by numerical methods). When the tree is reduced to just one leaf, 
the cdf of that leaf is the cdf of the whole project. For instance, if we consider Example 
8.5, the decomposition tree is given in Figure 8.4, repeated as Figure RN16.5. To find the 
cdf of the makespan, working from right to left and top to bottom, we start by representing 
the cdfs of leaves 6 and 7 by their product at the P node. Similarly, we represent the cdfs 
of leaves 4 and 5 by their product. The two new cdfs are now connected to an S node, so 
they are represented by the cdf of their convolution. Leaves 2 and 3 are also replaced by a 
convolution at its S parent node. The next node is P, so the two new cdfs are multiplied to 
get the maximum. That maximum is convoluted with 1 and subsequently with 8, to obtain 
the final cdf of the makespan. It is also possible, however, to perform reductions without 
an explicit tree. In fact, one way to identify series-parallel networks is to try to reduce the 
project by iteratively convoluting all serial structures and replacing all parallel activities 
cdfs by the cdf of their maximum. 
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Figure RN16.5. A decomposition tree for the example in Figures RN16.3 and RN16.4. 
 
 This process can be carried out in any order. Using the AOA depiction, the condition 
for convolutions is that two activities can be convoluted only if the finish-node of one 
coincides with the start-node of the other and no other activity starts or ends at the same 
node. The convolution effectively removes that node, and for that purpose we allow two 
arcs in the reduced network to start and end at the same nodes (thus violating rule 5). For 
instance, in Figure RN16.4, activities 2 and 3 can be convoluted because no other activities 
start or end at the node between them. We can also see this result in the decomposition tree, 
where 2 and 3 are connected to an S node. Similarly, the only condition for performing the 
maximum operation on two parallel activities is that if we ignore dummies, they share the 
start node and the end node (again, we relax rule 5). For instance, in Figure RN16.4, 
activities 4 and 5 (and, likewise, activities 6 and 7) can be replaced by the cdf of their 
maximum, because if we collapse the dummy into activity 5 the two remaining activities 
(4 and the new 5) start and end at the same node. As the network evolves due to such 
operations, we continue to pursue emerging possible operations with the objective of 
reducing the network to a single cdf. Upon success, we can say that the network is series-
parallel. This process is equivalent to the one we described with the decomposition tree, 
but the decomposition tree is implicit. However, if we encounter the interdictive graph 
during the process, we cannot continue, the network is not series-parallel, and no 
decomposition tree exists. To wit, in the interdictive graph (see Figure 16.16 which is also 
repeated below as Figure RN16.6) there are no two activities in series where the common 
node is not used by any other activity and there are no parallel activities, either. 
 For linearly associated activities, we start by solving for the initial independent 
distributions (see Appendix A). Next, to get the adjusted distribution we account for the 
common factor, Q. Technically, that operation is similar to a convolution and requires 
integration. Let F and f represent the cdf and density function of the unadjusted completion 
time, let G and g represent the common bias, and let H and h represent the product. Because 
both components are strictly positive, we have 
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In a convolution, instead of G(z/x) or F(z/x), we have G(z − x) or F(z − x), respectively. 
The validity of this approach follows by the next theorem, which is essentially a rewording 
of Theorem A.4 in terms of project scheduling.  
 
 
Theorem RN16.1:  Consider a project where all activities are available at their early-start 

time (i.e., without active release dates). Assume linearly-associated 
processing times with a common factor element B. Let Cj be the 
completion time of activity j, and let Cj' be the completion time that 
would apply without the common factor. Then Cj = BCj'.  

 
 
Parametric Crashing and the Network Flow Model 
 In the chapter we presented a linear programming crashing model that minimizes the 
total crashing cost for a given fixed periodic cost cf. A parametric version of the same 
problem allows cf to vary, as a parameter. Alternatively, we can set the makespan to any 
desired constant, λ, and find the cheapest way to achieve it. This alternative approach was 
adopted by Kelley (1961) and by Fulkerson (1961). To solve both parametric problems we 
must find a set of efficient crashing plans such that one of them is optimal for any given cf. 
Just identifying that set of basic solutions is sufficient for the first version because one of 
the basic solutions is optimal for any cf. To solve the version presented by Kelley and 
Fulkerson, however, we need an additional step because the required duration, λ, may not 
be achieved precisely by any basic solution: If λ is smaller than the fully crashed makespan, 
there is no feasible solution. If it is larger than the makespan without crashing, the optimal 
solution requires no crashing but we may start the project at its latest start time (with λ 
acting as a due date). If λ is within the range of durations of the basic solutions, we use an 
appropriate weighted combination of the two adjacent basic solutions above and below λ.  
 As it happens, the steps we went through in our heuristic solution of Example 16.3 
provide the required set of basic solutions. For a sufficiently small cf, up to 200, no crashing 
is the best option. For cf > 200, it becomes cost-effective to crash activity D by two days 
(we can also say that for cf ≥ 200, because if cf = 200 we lose nothing by that crashing 
plan). The plan remains optimal for 200 ≤ cf ≤ 300, but for cf > 300 we should crash D by 
an additional day and crash B by one day in parallel. That plan remains optimal for 300 ≤ 
cf ≤ 400. For 400 ≤ cf ≤ 500, it is optimal to also crash A by 2 days (which is the solution 
of Example 16.3 because we had cf = $450), and for cf > 500 we should also crash B by an 
additional two days in parallel to activity C. In this case, the solution procedure of the 
example essentially solves the parametric problem as well. We note that the procedure 
involves identifying the best crashing plan given the previous plan in such a manner that 
no decision is ever reversed. Thus, as we progress to higher cf values, we look for additional 
crashing opportunities without ever reversing a previous one. It can be shown that this is 
the case because the network of Example 16.3 is series-parallel. When the network is not 



series-parallel, as we increase cf, it may become necessary to reverse previous crashing 
decisions.  
  
 
Example RN16.1. Consider a project with the network of Figure RN16.6 (which is the 
simplest non-series-parallel network possible). Crashing information is given below: 
 
  Activity ID Predecessors  aj bj  cj 
  A  —  3     5 days  $11 
  B  —  7 9  10 
  C  A  3 5  10 
  D  A  7 9  10 
  E  B, C  3 5  11 
 
 
The initial critical path is {A, C, E}, with a duration of 15. Because C has the lowest 
crashing cost within the critical path, we crash it by one day to 4 days. At this stage, the 
critical path is reduced to 14 days, and the total crashing cost is 10. Every activity is now 
critical. Following the logic of Example 16.3, one might be tempted to crash activities A 
and B, or symmetrically, activities D and E, at a cost of 21 per day in both cases. However, 
if we crash A and E, the marginal cost per day is not 22 but 12. The reason is that we can 
reverse the previous crashing decision of activity C and save 10. That is feasible for just 
one day (because we crashed C by only one day) and leads us to a project duration of 13 
with a total crashing cost of 10 + 12 = 22. Next we can crash activities A and B, or 
symmetrically, activities D and E, as mentioned before. Because A and D are already partly 
crashed, each of the two options offers a marginal duration reduction of one day. Together 
they lead to a duration of 11 days at a cost of 10 + 12 + 21 + 21 = 64. We can now crash 
activities B, C, and D by one day, at a marginal cost of 30; the minimal feasible duration is 
thus 10 and the total crashing cost is 64 + 30 = 94. During the process, activity C was 
tentatively crashed, de-crashed, and re-crashed. 
 



 
 

Figure RN16.6. The Interdictive Graph 
 
 In our solutions of both Examples 16.3 and RN16.1, we identified the best crashing 
opportunities by essentially comparing all options. Both Kelley (1961) and Fulkerson 
(1961) observe that it is possible to use the network flow model to identify these 
opportunities efficiently. The technical details of the Ford and Fulkerson network flow 
algorithm are not complex, but they are beyond our scope. Actually, in a practical sense, 
they are less important today than they were at the time because modern personal 
computers can solve the basic crashing LP for large projects without much difficulty by 
using generic LP solvers, so there is no compelling practical reason to utilize the network 
flow algorithm in this application. Interested readers can find the versions used by Kelley 
and by Fulkerson in their respective 1961 papers, and the classic reference is Ford and 
Fulkerson (1962). But it is instructive to study the underlying structure that makes this 
approach applicable.  
 One of the most insightful results developed by Ford and Fulkerson is known as the 
min-cut max-flow theorem [minimum-cut = maximum-flow]—essentially a duality result 
that identifies the set of connections in a network that limit its throughput, thus acting 
together as the bottleneck. To explain the relationship to crashing, we need to define cuts 
in our context. We have already used cuts informally in our solutions of Examples 16.3 
and RN16.1, but now we provide a slightly more formal description. Consider any AOA 
directed activity network with a start node and a finish node, to which we also refer as 
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source and sink.* Suppose there are N nodes, then there are 2N−2 ways to partition them to 
two complementary subsets with one including the source and the other, the sink. Our 
interest is confined to a subset of these partitions, called proper. To define proper partitions, 
we start by distinguishing between directed paths and [unspecified] paths. The definition 
of a directed path is recursive. There is a directed path between two distinct nodes i and j 
if activity (i, j) exists (in which case the path is also basic), or if for some node k there is a 
directed path between i and k and a directed path between k and j. The critical path is an 
example of a directed path between the start and finish nodes. Such a directed path can be 
denoted by the ordered set of all nodes which it traverses; for instance, when activities (i, 
k) and (k, j) form the directed path, it is denoted by {i, k, j}. By our rules (as given in the 
chapter), if a directed path {i, …, k, …, j} exists then i < k < j. A not-necessarily-directed 
path is defined similarly but without regard to orientations. A basic path connects two 
distinct nodes, i and j, if either activity (i, j) or activity (j, i) exists. More generally, a path 
connects i and j either if they are connected by a basic path or if, for some distinct node k, 
there is a path between i and k and a path between k and j. By definition, directed paths are 
a subset of paths. For example, consider Figure RN16.6. There is a path through nodes {1, 
2, 3} which is directed, and there is a path through nodes {1, 3, 2} which is not directed 
(and indeed 3 appears before 2 in the ordered set but (3, 2) cannot be a legitimate activity 
because 2 < 3). Considering nodes 1 and 2, there are one (basic) directed path and two 
additional undirected paths connecting them (namely {1, 2}, {1, 3, 2}, and {1, 3, 4, 2}). 
We say that a subset is connected if any two nodes in the subset are connected by at least 
one path that does not visit any node outside the subset. For a partition to be proper, we 
require both subsets defined by it to be connected. To explore that notion further, we define 
a cut set as the set of all basic paths (in our context, project activities) that start in one 
subset and end in the other. For instance, let the first subset consist of nodes 1 and 3, and 
we note that there is a direct path connecting 1 to 3 and another direct path connecting 2 to 
4, so the partition is proper. For these subsets the cut set consists of (1, 2), (2, 3), and (3, 
4). If we cut these arcs (that is, delete them from the project network), then there will be 
no path connecting the source to the sink; hence the term "cut set." Now suppose that the 
cut set for a given partition leads to more than two connected subsets. This situation can 
occur if, not counting the source, a node in the first subset has no direct predecessor in the 
first subset. A symmetric case occurs if a node in the second subset, not counting the sink, 
has no direct successor in the second subset. In the former case, all direct predecessors of 
a node in the first subset are in the second subset and there can be no chain connecting it 
to the first subset that does not include nodes from the second subset. Hence, the first subset 
is not connected. Using the cut set for a partition with such structure, once we cut all the 
connections of the node to the second subset, it is not connected to either subset. But in a 
proper partition there are two connected subsets and every node must belong to one of 
them. In the symmetric case, the second subset is not connected. When a partition is proper, 
the cut set associated with it is also called proper. One characteristic of a proper cut set is 
that if we fail to cut any of the arcs in it, the source and the sink remain connected. In other 
words, when the objective is to cut the source from the sink, a proper cut set does not 
include any superfluous arc. 

                                                 
* Kelley (1961) calls them origin and terminus, but the name terminal is often used as well. The terms source 
and sink follow the notation favored by Fulkerson, and suggests a focus on flows, as in the network flow 
model. 



 At any stage in a project’s course, we can identify a subset of nodes (including the 
source) which have been completed already and the complementary subset of nodes that 
have not yet been completed (including the sink). This defines a proper partition. 
Furthermore, when we consider the cut set of this partition, we can see that all activities on 
it start in the first subset and end in the second subset. Such cuts, called unidirectional cuts 
(UDC), are a subset of the proper cuts. The UDCs in our example are {(1, 2), (1,3)}, {(1, 
3), (2,3), (2, 4)}, and {(2, 4), (3,4)} (or, equivalently, {A, B}, {B, C, D} and {D, E}), 
whereas the cut set  {(1, 2), (2, 3), (3, 4)} ({A, C, E}) is proper but not unidirectional (C 
starts in the second subset and ends in the first subset). By definition, at any given time 
only the activities of some UDC can be performed in parallel. When one activity is 
complete, the UDC may or may not change, depending on whether all activities with the 
same ending node are also complete. A proper cut must include at least one arc directed 
from the first subset to the second. Such arcs are positively directed. A UDC comprises 
only positively directed arcs. Other proper cuts also include reversed arcs, which are 
directed from the second subset to the first. For example, in the cut {A, C, E}, C is a 
reversed arc. Suppose that each arc has a capacity to support a flow, and we wish to 
maximize the total flow from the source to the sink through the arcs without violating the 
capacity of any arc and such that if we exclude the source and sink, flow is conserved—
i.e., all the flow coming into a node must exit it. The source is allowed to generate a net 
positive flow and the sink absorbs it. (Conceptually, if we connect the sink to the source 
by another arc, we obtain circular flow—which we have not allowed in our analysis so 
far—the flow is conserved in these nodes as well. This is often done for flow analysis.) 
The capacity of an arc is an upper bound on the flow assigned to it, but in general, lower 
bounds may also apply (e.g., in cold weather a pipe that carries no flow may freeze). For 
our purpose, we can safely ignore such lower bounds. For this case, the capacity of a cut 
is the sum of the capacities of the positively directed arcs in it. (In the presence of minimal 
flow constraints, the capacity of a cut is reduced by the sum of the lower bounds on the 
reverse arcs.) The min-cut max-flow theorem states that the maximal flow possible is equal 
to the capacity of the minimal cut (the bottleneck). It is clear that the maximal flow cannot 
exceed this capacity, because the flows must cross the cut and there is no way to support 
more than the total capacity of the arcs in any cut, including the minimal one. The non-
trivial part of the Ford and Fulkerson proof essentially shows that it is also possible to 
allocate flows to arcs in such a way that the capacity of the minimal cut will be fully 
utilized. (This is perhaps the earliest capacity bottleneck result in the literature.) 
 The duality between the min-cut and the max flow forms the connection between the 
network flow problem and crashing. The best crashing plan involves selecting the best cut, 
but by duality there is an associated maximal flow associated with it. In more detail, 
consider any cut, and clearly at least one activity in the cut must be critical (because the 
critical path must cross the cut). Now associate with each activity that is critical but not yet 
fully crashed a crashing cost of cj. An activity that has positive float is allocated a crashing 
cost of zero (i.e., we treat the removal of float as a form of crashing), and a fully crashed 
activity gets a crashing cost of ∞ (or a sufficiently high positive value that will prevent any 
attempt to crash it further). However, if a reversed arc is crashed, it gets a crashing cost of 
−cj (because we crash such an activity by reducing the original amount by which it had 
been tentatively crashed). If we decide to crash a set of activities that form a cut, then the 
cost of crashing the project by one time unit is the sum of the crashing costs on that cut. 



Thus, the optimal way to crash the project by one time unit is to find the cut that has the 
minimal total crashing cost. That is exactly what we did in Example 16.3, but we only had 
UDCs to contend with, which simplifies the analysis. In Example RN16.1, the cut {A, C, 
E} was not unidirectional. But to solve the parametric crashing problem we had to use this 
particular cut in the second step. In the general case involving reversed arcs, if such a 
reversed arc has been tentatively crashed in a previous stage, and it later forms part of a 
minimal cut, we can reduce the amount of crashing on that arc and recoup the crashing cost 
that was tentatively allocated to it; for this reason we assign it a negative crashing cost. If 
no previous crashing of that sort exists on such an arc and we crash the other activities on 
the cut, we add float to this arc. Thus, if it is possible to reverse a previous crashing decision 
on a reversed arc we can reduce the crashing cost of that cut and this would make the cut 
more attractive, but otherwise such arcs can be ignored. So what we need to do is to find 
the cheapest cut and if any previously crashed arc in a cut is reversed we should take into 
account that it now becomes possible to reverse that decision. Reiterating the connection 
to network flow, if the minimal cut defines the maximal flow, it should be possible to form 
the problem of identifying and using the minimal cuts as a network-flow model because 
there is a conceptual maximal flow associated with this minimal cut. Essentially, similarly 
to the manual solution we presented for Examples 16.3 and RN16.1, the idea is to identify 
the current cheapest cut and crash it maximally if it is cost-effective. Once any arc on that 
cut is fully crashed, the cut is no longer available, and we seek the next cheapest cut (which 
may involve reversing one of the previous crashing decisions), etc. However, if the network 
is series-parallel, all proper cuts are UDCs, and it is never useful to reverse a tentative 
crashing decision. 
 
On Hierarchy 
 Although Malcolm et al. (1959) discuss the possibility of representing subprojects 
by composite activities, they explicitly state that a project network—such as the one used 
for the Polaris project—can include thousands of activities. Indeed, that is the way PERT 
has been used in similar projects. The resulting network drawing can easily be very large. 
For instance, one of us witnessed a PERT network for a ship overhaul project in the US 
Navy that measured about 20 feet long by 2 feet wide, with quite fine print. Such networks 
have so much detail that it is almost impossible to comprehend the full picture. By contrast, 
CPM was designed differently. Kelley (1961) states that each activity can and often should 
represent a subproject, so the total number of activities on a chart does not become 
excessive. (That representation also has implications for the crashing model. Essentially, it 
implies that the unit crashing cost of an activity actually represents the optimal crashing 
cost of a subproject.) Kelley’s recommendation amounts to a hierarchical representation of 
projects. This approach yields networks of more modest sizes—say 50 to 300 activities—
that are easier to understand. Moreover, given the limited computer capacities available 
when Kelley was writing, such networks would be more amenable to an optimization 
approach than a network containing the full detail. Even with today’s more powerful 
computers, this approach still has merit when we consider the complexities of stochastic 
analysis and sequencing (which neither Kelley nor the PERT team addressed at the time). 
Because PERT aimed to coordinate thousands of activities, it did not adopt an optimization 
approach. Instead, it was designed to help managers make time/cost and resource allocation 
decisions by asking "what if?" questions—that is, PERT was primarily a decision support 



system that did not optimize decisions but helped managers assess the effect of possible 
options. By contrast, CPM took a deterministic and hierarchical approach, which led to 
smaller networks and allowed for a more active optimization approach. 
 This issue is related to the very practical problem of how to actually manage a large 
project with thousands of activities. In reality, there are always interactions between 
activities; for instance, they may share some common resources (although, when possible, 
each resource unit should be dedicated to an activity until it completes). A prime example 
of a shared resource that cannot be fully dedicated is managerial attention. That is, activities 
must be coordinated and that requires someone to do the coordinating.* Most humans can 
coordinate between five to nine interacting activities. On the bright side, it is not necessary 
to coordinate all activities at once; complete activities and activities that are not due to start 
soon can usually be ignored. Nonetheless, in a project with thousands of activities, dozens 
of activities may be occurring in parallel, and some activities that have not been started still 
require managerial attention in advance. In particular, it is often necessary to stage 
resources for activities before they can actually start (as in Example 18.5), but some 
network models omit such staging activities, treating them as implicit. The point here is 
that these staging activities should take place while predecessor activities are still active, 
thus adding to the total managerial burden. As a result, it is impossible for a single manager 
to coordinate a large project well unless some tasks are delegated. The trick is to use the 
network structure and the PERT/CPM analysis to allocate the management of activities in 
a sound hierarchical manner. Clearly, if we can identify meaningful subprojects and replace 
them by single activities then such activities are really projects (albeit smaller than the 
parent project) which may require dedicated project managers (with or without the title). If 
we organize the parent project so that at any one time no more than about seven activities 
(or subprojects) run in parallel, then the project manager should be capable of coordinating 
the efforts of the individual subproject managers. Using the same principle, each subproject 
may have to be represented by sub-subprojects, and so on. This type of hierarchical 
aggregation constitutes one way to manage projects hierarchically, but it is not the only 
way. Another way would be for the project manager to focus on the most critical activities, 
using criticality metrics, and delegate the other activities. Each delegated activity then has 
to be managed to achieve a prescribed service level, as we discuss in Chapter 19. 
 
 

PERT 21: A PERT/CPM Framework Fit for Use in the 21st Century 
 
To be useful and usable, project scheduling and control framework should: 
 
(1)  Yield reliable and relevant results  
 
(2)  Be intuitively acceptable to decision makers, and  
 
(3) Require modest information inputs from users and provide easy-to-utilize outputs.†  

                                                 
* We discuss this issue in terms of human management, but we note that even computerized systems cannot 
coordinate too many entities without some kind of a hierarchy or networked processing.  
† This implies that the input/output interface should be simple to use. However, we are not requiring the 
scheduling models themselves to be simple, as long as they are tractable. Such models should be 



 
In spite of the spectacular historic success of PERT and CPM, for reasons we discussed 
extensively in the chapter and above, they do not fulfill the first condition. CPM simply 
ignores the stochastic nature of activity times; PERT accounts for them incorrectly and 
lacks the optimization approach of CPM. Perhaps for that reason, there has never been a 
serious attempt to use optimization methods alongside the PERT stochastic analysis. 
Furthermore, to the extent that providing triplet estimates is not only unreliable (Tversky 
and Kahneman, 1974) but also onerous (Woolsey, 1992), PERT fails to fully satisfy the 
third condition. 
 PERT 21 aims to satisfy all three conditions better than any existing framework. 
Again, the single most important difference between PERT 21 and traditional PERT/CPM 
is a stochastic analysis "engine" that is much more effective and also more efficient than 
the traditional one. The new engine provides reliable activity time distributions suitable not 
only for control but also for planning. These distributions make it practicable to address 
issues such as sequencing, scheduling due dates and release dates (that is, safe scheduling), 
and crashing by relevant stochastic models. That opens the door to a true merger of the 
historical contributions of PERT and CPM while avoiding the historical pitfalls. It is well 
known that PERT underestimates the project duration (by ignoring the Jensen gap). That 
problem is not an issue, however, when simulation is used. But the most pernicious flaw is 
the statistical independence assumption at the heart of PERT. The technical details of this 
point are addressed in a working paper available at this same website (Trietsch et al., 2010). 
 The paper analyzes field data from two Armenian project organizations as a basis 
for validating the new engine of PERT 21. One organization provided few projects but the 
data were sufficient to show that the lognormal assumption with linear association is at 
least as good as the conventional alternative. The insights gleaned from that analysis were 
then used to analyze a family of nine projects provided by the second organization. That 
case also involved the Parkinson effect, which makes the analysis slightly more complex 
and essentially requires simulation. However, the new engine does not aim to replace the 
need for simulation, but rather to provide more realistic simulation inputs. The final result 
indicates that PERT would grossly underestimate the true variance of the makespan, 
whereas the new engine leads to excellent results.* 
 Given this finding, one might ask why PERT was so successful historically. The 
answer is that PERT may be a poor planning tool but, apparently, it proved itself as a useful 
control tool, as suggested by the following quote: "the general observation can be made 
that in the long run the value of any control system has always depended on the individuals 

                                                 
computerized and, unless they take too long to converge, their internal complexity does not matter to the 
user.  
* As is the case with any empirical study, the results should not be interpreted as "proof" that the model is 
correct. The study did show that the PERT assumptions did not hold. In a practical sense, that means that the 
new model is probably a better alternative. Further research, preferably by others, is required to validate, 
reject or improve the model. In this connection, we note that the research essentially studied ratios between 
actual activity durations (sorted by projects) and the original estimations of the same activities. Surprisingly, 
there is very little information in the literature about such ratios. Hill, Thomas and Allan (2000) did study the 
relationship between realizations and estimates in a software organization. The structure of their regression 
analysis was not sufficiently similar to that of Trietsch et al. (2010) to allow a direct comparison or to make 
possible testing the new model on their data. Their observations are compatible with the new model, but 
cannot be used directly to validate it.  



who use it in making decisions[.] If they have confidence in the system, and feel that it aids 
them in the decision process, then there is strong and sufficient testimony as to its worth" 
(Malcolm et al., 1959, p. 668). A good control tool should help managers manage critical 
activities on an ongoing basis, and PERT evidently does that well. However, as part of 
planning, PERT is also used for long-term scheduling, starting with a schedule that serves 
as the initial benchmark for the subsequent control. Reliable scheduling and good control 
are not conflicting goals: more reliable schedules provide better benchmarks for subsequent 
control. Thus, a good schedule can increase the likelihood that the project will complete 
within the time and the budget originally allotted to it. Furthermore, good planning is the 
key to reliable estimates: during the control phase it is simply too late. Although we focus 
here on scheduling, similar principles apply to budgeting.* 
 
PERT 21: Recommended Ingredients 
 Trietsch (2005) discusses the challenge exposed by the debut of a framework known 
as Critical Chain Project Management, popularized by Goldratt (1997).† The paper 
highlights the shortcomings of CCPM and provides a road map for the development of a 
system such as PERT 21. One recommendation is to consider stochastic variation during 
crashing and sequencing decisions. Another recommendation is to perform sequencing and 
crashing iteratively, starting with sequencing: until we sequence, we don’t know which 
activities have a sufficiently large criticality to justify crashing. The paper also discusses 
the need to use statistical control principles in controlling projects. Such recommendations 
cannot really be implemented unless we have reliable activity processing time 
distributions, however, which is where the new stochastic engine comes in. PERT 21 
advocates replacing the PERT stochastic engine without completely abandoning 
PERT/CPM. Except for that engine, PERT/CPM is a solid and tested framework. 
Furthermore, industry is heavily invested in PERT/CPM software, and that investment can 
and should remain productive. On the one hand, the new engine requires historical data of 
the type collected by PERT/CPM software, so it would fit best in existing information 
systems. On the other hand, it requires less direct input from the user. Thus it is also more 
efficient. But full-fledged PERT 21 implementations can go further than just replacing the 
old engine. The new engine also opens prospects for improved stochastic sequencing, 
scheduling and crashing models, thus finally making it possible to integrate the two parts 
of PERT/CPM. Furthermore, sequencing models that rely on neighborhood searches have 
recently been proposed for projects (Fleszar and Hindi, 2004), as we discuss in Chapter 17. 
Such models can be applied directly using stored samples and thus achieve true stochastic 
sequencing models. In this connection, the current version of the new engine generates 
activity time distributions that are lognormal and share the same coefficient of variation. 
Importantly, such variables are stochastically ordered: an activity with a higher estimated 
duration is stochastically larger. Stochastic sequencing models are often more tractable if 
they can rely on stochastic ordering (see Chapter 7). Thus, such models are supported by 

                                                 
* During the last decade, one of us followed the progress of two new academic buildings in two academic 
institutions. They exceeded their budgets by about 75% and 150% and were tardy by 30% and 80%, 
respectively. In both cases, the decision makers had no clue about the true range of possible outcomes. 
(Remarkably, only the one who missed by less maintained his dignity by resigning his position.) 
† According to Ash and Pittman (2008), the original CCPM idea is due to Pittman (1994). We discuss 
CCPM in more detail in our Research Notes for Chapter 18. 



the systemic error model. PERT 21 can also incorporate new graphical representations 
designed specifically for stochastic analysis and control (such as predictive Gantt charts, 
as we show in Chapter 19). All in all, PERT 21 has the potential to be the first truly effective 
stochastic planning and control framework for projects. 
 Several existing and prospective models become practicable once we obtain realistic 
distributions using the new stochastic analysis. In Chapter 19 we discuss how to utilize 
such distributions to obtain sample-based optimal results of various sorts. In our case, these 
realizations must be correlated as dictated by the systemic error model, but there is no 
conceptual difficulty in building such stored samples. Given a stored sample that represents 
reality sufficiently well, if we optimize various measures with respect to the sample, the 
result is approximately optimal in reality. There are two simple keys to the validity of the 
approach: (i) the sample must be based on realistic distributions; and (ii) the sample must 
be sufficiently large. Given modern computing power, it is easy to satisfy the second key. 
As for the first, our new engine is designed precisely to provide such realistic distributions. 
In Chapter 19 we discuss a safe scheduling model that optimizes release dates for activities 
that require staging inputs that should not be made available much earlier than might be 
necessary. That model indirectly sets optimal safety time buffers for the project by 
balancing criticalities. We also provide a model for stochastic crashing, and we sketch a 
model for booking expensive resources. The latter is essentially based on a hierarchical 
application of the release date optimization model. Such models should also become part 
of PERT 21. In addition, there is room to develop similar models for multiple projects. 
 An important future application of the new engine worth developing is the control of 
an ongoing project. As noted above, the initial success of PERT was predicated on its 
perceived success in aiding managers control ongoing projects. Similar short-term control 
decisions can be supported by the new engine without any adaptation. However, as a 
project progresses, we may evaluate the estimation bias that applies to it and apply further 
corrective actions beyond short-term control. We present a model for this purpose in our 
Research Notes for Chapter 19. 
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