
Research Notes for Chapter 12* 
 
Below we discuss early research in lot streaming with a makespan objective (on which our 
chapter focuses). We then cover the historical role of the JIT movement in this research. 
That role is associated with MRP—which had been developed in America at the time JIT 
was developed in Japan. The advent of JIT revealed that MRP required major 
enhancements, of which the need for lot streaming models was one. We then show that the 
problems we identified in the chapter as polynomial are indeed in P, provided we need a 
discrete solution. This is important because there is a view in the literature according to 
which the problem is not even in NP (because for arbitrary s it is impossible to write down 
the solution in polynomial complexity). Next, we turn our attention to models with other 
objectives and point out related sources. Finally, we generalize the results we reported in 
Section 12.2.4 for two machines with equal processing times and attached sublot setups to 
unequal processing times. A comprehensive treatment of lot streaming models can be 
found in the monograph by Sarin and Jaiprakash (2007). 
 
Sources and Comments 
 
Whereas the term lot streaming was coined in the sixties (Reiter, 1966), with few 
exceptions, explicit attention to lot streaming models started with the advent of Just-In-
Time (JIT) in the US in the 1980s (e.g., see the title of Kulonda, 1984). The earliest 
exception that we should mention is that if we ignore the fact that the optimal solution for 
several jobs may call for mixing sublots (see Example 12.5, which is due to Potts and 
Baker, 1989), then in our coverage of Mitten (1959) in Chapter 11 we implicitly considered 
sublots by modeling overlapping (in a multi-job context). The main distinction is that there 
was no attempt to study the effect of lot size or limit the number of transfers. Allowing any 
number of transfers would be appropriate when machines are close by. When transfers are 
not easy we can take the approach of the chapter—originally espoused by Szendrovits 
(1975, 1976) in a study of the effect of equal sublots without idling on inventory holding 
costs—and limit the number of sublots explicitly. Alternatively, we can estimate the cost 
of each transfer and account for it in the model, so the number of transfers is part of the 
solution (Goyal, 1976). For instance, we can impose a budget constraint on the total cost 
of transfers. For two machines, the budget can be translated to a number of sublots, s, but 
for several machines the results are different. For instance, consider the following three-
machine example from Trietsch (1987a, 1989): U = 5, p1 = 1, p2 = 1, p3 = 5, c12 = 1, c23 = 
10, and B = 23 (where cij denotes the transfer cost between machines i and j, and B is the 
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budget constraint). Figure RN12.1 depicts the optimal continuous solution, which happens 
to be integer. The makespan is 27 and the solution requires three transfers between 
machines 1 and 2 but only two between machines 2 and 3. Intermittent idling is also 
necessary to achieve the minimal makespan.  
 

 
 

FIGURE RN12.1 Lot Streaming with a Budget Constraint 
 
 None of the methods addressed in the chapter can solve this problem. For instance, 
if we were to use two sublots throughout, the makespan would increase from 27 to 27.5. 
(The optimal integer makespan is 29.) We may conclude that the budget version of the 
problem is more complex. Using a budget constraint on transfers does not directly ensure 
that the plan will be feasible with a given fleet of transporters, but it is conceptually possible 
to adjust the budget until a feasible plan is achieved. Furthermore, this approach provides 
a basis for making optimal transportation capacity decisions. 
 The general problem of transporter scheduling (with or without a capacity sizing 
element) is an open research question. But basic models for minimizing the makespan of 
the two-machine case with a given number of transporters, which schedules each transfer, 
have been published. Truscott (1986) solves the single-transporter case by branch and 
bound. Trietsch and Baker (1993) solve for any number of transporters efficiently, by 
extending the discrete lot sizing model covered in the chapter. They show that when the 
transporter can accommodate the whole batch if necessary, the solution is similar to the 
basic case, with geometric sublots. The same observation still holds if transporters have 
limited capacity, but there are enough transporters to support the machines. In that case, 
some lots can be geometric but other lots have a fixed size as dictated by the transporter 
capacity. However, if transporters have limited capacity, once their number drops below a 
particular threshold, makespan and capacity (throughput) are dictated by the transporters’ 
capacity. If items have to be processed by an additional resource that takes fixed time 
between machine 1 and machine 2, such as an oven, the same model applies because such 
resources are mathematically equivalent to transporters: they take constant time and can 
serve more than one item concurrently. (In Chapter 13 we discuss the scheduling of such 
resources in for multiple jobs, but without lot streaming.) 
 In the chapter, we have relied on other results originally reported in Trietsch and 
Baker (1993). There, in turn, we reviewed models published mostly in the 1980s and 
included some material from theretofore unpublished papers, namely Baker (1987), 
Trietsch (1987b), and Trietsch (1989). Specifically, the fundamental partition was 
originally defined in Trietsch (1989) to solve the variable sublot m-machine model. He also 



defined an additional partition that allows additional machines relative to the fundamental 
partition without necessarily increasing the makespan (for the budget version of the 
problem). In the case discussed in the chapter, however, where n is a given parameter, the 
solution of the continuous m-machines variable sublot case is obtained by using the 
fundamental partition. In each part, sublots are geometric with q as given in Theorem 12.2 
(even though the context is different). It is also straightforward to generalize the procedure 
for obtaining discrete lot sizes for each part, similarly to our analysis for three machines in 
the chapter.  
 The relevance of the fundamental partition to the consistent sublot case emerged 
independently. As noted in the chapter, the linear programming approach generalizes to 
any number of machines. For the special case of three machines, however, a more 
streamlined solution algorithm was developed by Glass, Gupta and Potts (1994). Later it 
was extended to m machines by Glass and Potts (1998), to whom Theorem 12.2 is due. 
Clearly that result relies on the fundamental partition. Example 12.5 is based on Potts and 
Baker (1989). The heuristic of Section 12.5.2, which also relies on the same partition, is 
from Baker and Pyke (1990). The experimental results we reported in Section 12.4 are due 
to Baker and Jia (1993). Little progress has been made analyzing lot streaming in stochastic 
models, but some encouraging results have been encountered in the simulation results of 
Jacobs and Bragg (1988) and Smunt, Buss and Kropp (1996). The latter studied the efficacy 
of transfer lots within a job shop environment, where it is possible that sublots from various 
jobs will compete with each other. Nonetheless, the use of smaller sublots proved beneficial 
both for makespan and flowtime measurements. (We return to the flowtime version of the 
problem later.) In that paper the authors also note that when an attached batch setup is 
involved, it is useful to send a small initial sublot to enable the setup earlier. Our analysis 
on page 280, where we showed that the first sublot should be smaller, is compatible with 
that observation. One important observation in those stochastic simulations is that they 
apply the lot streaming model, initially developed for one job in a flow shop to a much 
more general job shop environment with multiple jobs and different routings. Nonetheless, 
they each show that lot streaming is highly advantageous. Dauzère-Pérès and Lasserre 
(1997) reached the same conclusion for a job shop with deterministic processing times. 
They highlighted two important results of their numerical experimentation: (i) the 
makespan can be reduced considerably by very few sublots; (ii) using small sublots, it is 
possible to approach the lower bound that can be easily obtained for job shops by 
considering the total load on the machine without too much attention to forced idling on 
bottleneck machines. The latter result essentially states that it is easier to load critical 
machines fully when the effective size of production batches is reduced. For this purpose, 
however, it is necessary to allow mixing sublots of different jobs (which implies that we 
effectively work with a larger number of smaller jobs) and the sequencing heuristic should 
have a certain level of sophistication. In particular, the authors use a shifting bottleneck 
procedure (see Chapter 14) to initially sequence jobs, and then they use a second heuristic 
to create sublots and allow re-sequencing to obtain lot mixing where necessary.  
 To our knowledge, there has been no research on safe scheduling models with lot 
streaming, although Trietsch (1987b) comments briefly that rounding up the size of the 
first lot decreases the probability of intermittent idling on the second machine. In other 
words, one way to formulate safe scheduling lot streaming models would be to size the 



first sublot in a manner that balances the need for smooth operations and for a short 
makespan. 
 
The Role of JIT as Compared to MRP 
 
To return to the 1980s, at that period American manufacturing was in decline whereas the 
Japanese were ascending. The Japanese strategy was predicated on perfecting repetitive 
manufacturing (mass production). The American strategy was (and at the time of this 
writing still is) more focused on non-repetitive manufacturing, with jobs often involving 
large batches of items. We should clarify, however, that even quintessential mass 
production industries such as the automobile industry used the batch production model to 
fabricate parts, and there was no clear incentive to use smaller batches. In repetitive 
manufacturing, the main driver of batch size is setup time. Suppose, for instance, that a 
press has to produce five part numbers (products) at an average rate of 120 per eight hour 
shift. Suppose the production rate (capacity) is 100 items per hour. A quick calculation 
shows that the press should operate six hours per day to satisfy the requirements of all five 
part numbers. This requires cyclic production with five setups per cycle. Now suppose that 
an average setup takes four hours. Without accounting for random problems, each shift 
only has two free hours for setups. A full cycle has five setups, and thus requires 20 hours 
of setup. With two free hours per shift, we must make each cycle large enough to supply 
ten shifts. That calls for average batches of 1200 items. With safety time of just one hour 
per shift, these batches must be doubled. In practice, such numbers were often exceeded, 
and each batch might be sufficient to feed the assembly line for several weeks or even 
months. Cost accounting showed, however, that the inventory holding cost of such batches 
contributed only a small fraction of the total operation cost, and therefore no problem was 
perceived. 
 Under JIT, by contrast, such large batches were considered wasteful. Pioneered at 
Toyota under the leadership of Taiichi Ohno, a concerted drive was undertaken to reduce 
batch size, and because the most visible symptom of batch size is WIP, that drive targeted 
WIP as the manifestation of waste and sought to minimize it. Batch sizes could only be 
reduced by reducing the total setup time per cycle. That, in turn, required either buying 
more presses—which was not an economically viable option—or cutting setup times. We 
already mentioned the technical approach developed for that purpose—SMED—in our 
Research Notes of Chapter 8. SMED was developed by Shigeo Shingo at the behest of 
Ohno. It is based on sound industrial engineering concepts implemented by teams of 
workers. Emphatically, SMED implementation rarely involves automation or hi-tech 
solutions. However, it takes time to learn how to achieve significant results and a large 
factory involves many such setups which, together, take a long time to address.  
 In addition to setup compression, JIT involved the use of kanbans to control the total 
WIP in the system. Kanbans are essentially cards that must be attached to every batch 
(often they are attached to containers of the right size to hold a batch). In more modern 
systems a kanban may be an electronic signal, but it is still conceptually attached to a batch. 
Without a kanban, there is no authorization to start a new batch. A batch that is consumed 
(typically by a downstream work center) releases its kanban so it can be attached to a new 
batch, thus authorizing new production. By restricting the number of kanbans, JIT controls 
the total WIP in the system, and thus it is possible to adjust the WIP level to achieve the 



best results that balance flowtime and throughput. Importantly, the work centers—also 
known as cells—are typically organized as small flow shops with a U shape. The U shape 
has two important advantages. First, the areas for input and output to and from the cell, at 
the ends of the U, are close to each other. As we shall see, this is helpful for dispatching 
decisions. Second, workers can easily see the whole line and move freely between 
machines. Kanbans control the flow of materials between cells but within a cell processing 
is overlapped. Essentially, these systems are job shops with cells acting as machines, so 
the job shop comprises a collection of small flow shops. Kanbans are used to control the 
total WIP in the job shop. Incoming batches, with kanbans attached, wait in cell input areas, 
whereas free kanbans (for the next stage) are posted in the output area.* When they wish 
to start processing a new batch, cell operators dispatch a free kanban for some part number 
for which they have the necessary inputs. That is, sequencing various part numbers is done 
by nondelay dispatching, following simple rules based on the urgency of the part number 
downstream: part numbers with many free outgoing kanbans typically receive priority. 
Thus, the decision is based on what the operator observes in the output area, but it is 
constrained by availability of incoming kanbans. Formally, to be eligible for processing, a 
job must to be present (attached to an incoming kanban) and authorized (by a free outgoing 
kanban). Once the batch selected is inducted into the cell, the now-free input kanban of 
that part number is sent back to its source. Because cell operators are not authorized to 
process a batch unless there is a free outgoing kanban, the system may be blocked. Because 
they simply cannot process a batch if its incoming queue is empty, starvation is also 
possible. For instance, if a particular cell is a consistent bottleneck we will typically 
observe a large incoming queue ahead of it, accompanied by a large number of outgoing 
free kanbans: that is, there is work authorized and available, but the cell cannot handle it 
fast enough. By contrast, other cells may idle due to lack of supply (e.g., when they follow 
a bottleneck, directly or indirectly) or lack of demand (e.g., when they feed a bottleneck, 
directly or indirectly). Finally, we should note that it is especially easy to pursue quality 
improvements in such a system. The small batches imply that defects, if any, are detected 
early, while lessons can still be learned and before damage is done to a much larger number 
of items. As a rule, the continuous pursuit of quality improvements is an integrated part of 
a full-fledged JIT system.  
 Although modern JIT plants are computerized, when JIT was developed in the 1960s 
it did not rely on computers. By contrast, at the same period, to operate well in the large 
batch environment, major American industrial organizations placed heavy bets on 
computerized production planning systems known as MRP (Materials Requirements 
Planning). MRP, and its direct offspring MRP II (Manufacturing Resource Planning), is 
the forerunner of what is known today as ERP (Enterprise Resource Planning). The purpose 

                                                 
* When the output area of a cell is far from the input area of the next cell for a particular kanban type, 
transporters may be used for the necessary transfers. If containers are involved, the transporter should take 
full containers from the output area of the upstream cell to the input area of the downstream cell and bring 
the empty ones back. (In such case, the kanban can be permanently attached to the container; effectively, 
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kanbans are just a type of processing kanbans. Note, however, that we would require one such transportation 
kanban for full containers going downstream and one for empty containers going upstream. Then again, if 
the production kanban is attached to the container, it is clear that a full container upstream should go 
downstream and an empty one upstream should travel back.  



of MRP is to manage inventories by releasing production orders to the shop floor and 
purchasing orders to vendors. That has to be done in a coordinated way such that all the 
parts necessary for an assembled product will arrive by the time they are needed, without 
holding excessive safety stocks of each and every part number. (Under JIT, these desired 
outcomes are assured by the kanban system.) There is no question that non-repetitive 
production on a large scale requires computerized support. Unfortunately, in objective 
terms (but perhaps justifiably given the state of the art when MRP was developed), the 
logic behind typical MRP systems is flawed in several important ways (Baker, 1993). 
Typically, MRP scheduling starts with a due date and schedules release dates (i.e., 
scheduling backwards). The main problem is an implicit assumption that if we use CON 
logic (that is, transform the basic CON equation, dj = rj + γ, to an equivalent form, rj = dj − 
γ), capacity will be sufficient. This is called the infinite capacity assumption. Thus, an 
initial MRP schedule would not involve any attempt to actually sequence jobs. To achieve 
smooth production planners had to go through a semi-manual iterative step of capacity 
planning involving flowtime adjustments (by increasing γ) and crude heuristics to shift 
production from overloaded periods earlier. Too often, this process did not work very well 
in practice. Another problem was that in terms of timing, scheduling was done in relatively 
large time buckets. One additional flaw in the logic—the one relevant to our current 
context—was that overlapping is simply not accounted for in basic MRP. When combined 
with the use of large time buckets, the scheduled processing time of a batch would span at 
least as many periods as there were work centers (machines) through which the batch had 
to be processed. Overlapping was often practiced, but by expediting rather than by 
following the MRP schedule. The practice of expediting has its own weaknesses, however, 
which are legion. The typical end result was very high levels of work in progress 
inventories with a very large proportion of tardy jobs. On top of that, the quality of 
American products at that time, while perhaps reasonable by previous standards, was no 
longer competitive with that of Japanese products.  
 After more than a decade during which Japanese industry perfected JIT while the 
American competition remained unaware of its existence, advanced Japanese companies 
achieved substantial results and opened a gap that would take years to close. The 
competitive edge JIT provided is outside our scope. Suffice it to say that it proved to be 
quite decisive. One result was that American business, and business schools, started to pay 
more attention to production and operations management. The Japanese success was—
correctly—attributed to the pursuit of total quality and JIT. JIT, however, was 
simplistically presented as Zero Inventory production; that is, the role of SMED was 
glossed over.* Furthermore, SMED is easier to implement in repetitive nature of 
production—within which it was initially developed. American manufacturers could not 
always imitate these conditions. Even to the extent SMED applied to their operations, it 
takes a long time to implement it extensively. Against that backdrop, one response that 
received a lot of attention was an advanced MRP program called OPT—an acronym for 
Optimized Production Technology—that employed forward scheduling and focused on the 
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have the needed goods arrive in the quantities at the needed time. In no way is the Toyota production system 
a zero-inventory system.” (Ohno and Mito, 1988, p. 25, emphasis added). 



busiest machine, or the bottleneck machine. OPT also allowed transfer lots, which 
encouraged overlapping and thus reduced work in progress relative to traditional MRP. 
The software was associated with a set of nine optimization rules (Ronen and Starr, 1990), 
but these rules were initially kept secret and presented as “nine proprietary equations that 
guarantee optimality.” Once published, it became clear that most of the rules were 
practically identical to JIT principles. There was one notable exception, namely an 
excessive focus on the bottleneck machine.* Nevertheless, the combination of secret 
algorithms and secret principles, alongside the false suggestion of optimality, was 
successful in raising the interest of the research community in the subject.† Specifically, it 
became clear that MRP should be enhanced (Vollman, 1986; Graves and Kostreva, 1986). 
The purpose of typical lot streaming papers was to support that development. 
 
On the Computational Complexity of Discrete Lot Streaming Models 
 
Consider the computational complexity of the problem, for a given s. As noted in the 
literature, just writing the solution down requires complexity of O(s), and formally 
speaking that complexity is not bounded by a polynomial of the input size. Notice that the 
input only requires m + 2 numbers: U, s, and pj (j = 1, . . ., m). This implies that the problem 
is not even in NP, because we cannot check, or even write, the solution in polynomial time. 
However, that conclusion is misleading. Without loss of generality we could add a 
constraint that each transfer lot should include at least one item even in the continuous case 
(Trietsch, 1987b), and it is certainly true in the discrete case. Starting with the two machine 
case, if we also have q ≠ 1, then Trietsch (1987b) showed that the number of usable sublots 
is bounded by O(log U). Therefore, writing down the solution takes O([log U]2)—where 
the square reflects the fact that it may take up to O(log U) to write down a lot size. But it 
also takes O(log U) to write down the number U itself, and that number is part of the 
minimal input needed to state the problem. Therefore, for q ≠ 1, the practical complexity 
of writing down the solution is polynomial in input size after all. Because we can find the 
optimal integer solution in time polynomial in s, the discrete version is in P. Now assume 
q = 1, and in the continuous case all sublots are equal. Therefore, again, the solution can 
be written down sufficiently compactly and the problem is in P. Moving on to the discrete 
case with q = 1, even if U does not divide by s, we can obtain an optimal integer solution 
by rounding the first few sublots up and the others down. Calculating the number of lots to 

                                                 
* In Chapter 14 we discuss the Shifting Bottleneck Algorithm, which is a highly effective optimization 
approach for deterministic job shops. Essentially, this algorithm recognizes that it is effective to focus on the 
bottleneck machine but it is essential to recognize that the identity of the bottleneck machine shifts as we 
proceed through the algorithm. That algorithm demonstrates that the identity of the bottleneck can shift even 
during a procedure designed for deterministic processing times. In stochastic environments bottlenecks are 
even more likely to shift. When we say that OPT placed an excessive focus on the bottleneck, we essentially 
mean that it failed to recognize that the bottleneck can shift. See Trietsch (2005a; 2005b; 2007) for a detailed 
discussion of the relevant pitfalls and remedies. 
† Eventually, one disappointed industrial customer, MARS, won a law suit against the OPT vendors (Creative 
Output, Inc.), forcing them to reveal the details of their algorithms to MARS, so MARS could prove that the 
marketing claims that induced them to purchase the software were false (Wilkins, 1984). Perhaps as a result, 
these false claims subsequently stopped.  



be rounded up takes constant time and writing the solution down remains compact.* In 
other words, a solution that is polynomial in s is in P for any q.  
 Trietsch (1989), addressing variable sublots, showed the same result, that the number 
of usable sublots is O(log U), for each part of the fundamental partition of the m-machine 
case. So for any given m we again obtain an output size polynomial in input size, and the 
problem is again in NP. Now consider the consistent sublot version with m machines. 
Recall from Theorem 12.2 that optimal sublots for the continuous case follow the same 
geometric ratio structure on successive parts of the fundamental partition. Therefore, the 
proof that the problem is in NP can be extended. Specifically, each part of the fundamental 
partition by itself would dictate either O(log U) transfer lots or that part would contribute 
a number of equal sublots that can be written down compactly (as x sublots of y each). So 
even if each part would by itself contribute the maximal s associated with it, we could still 
write the full solution in time polynomial in input size. In this connection, we reported that 
the benefit from the first sublot (increasing s from 1 to 2) accounts for more than half of 
the full potential. This result has been shown independently by Trietsch (1987b, 1989) for 
variable sublots and by Potts and Baker (1989) for consistent sublots. Thus both models 
require a similar number of sublots and in both, adding a transfer has a similarly decreasing 
marginal effect.  
 
Lot Streaming with Flowtime Minimization Objective 
 
The total flowtime objective is usually formulated as a nonlinear measure, rendering its 
optimization difficult. Chang and Chiu (2005) provide an extensive survey of lot streaming 
models, including ones with flowtime objectives. Some flowtime results can also be found 
in Sen et al. (1998). Notably, for flowtime reduction, equal sublots with intermittent idling 
are quite effective (Kropp and Smunt 1990). They also have an advantage of simplicity. 
To see that, consider the effect of geometric sublots on flow time. If the second machine is 
faster, the first sublot is the largest and reaches it late, whereas with equal sublots the first 
lot arrives earlier. Because we allow intermittent idling on the second machine, it will also 
complete the first lot earlier. If the second machine is slower, the advantage of using equal 
sublots is less pronounced; the use of equal sublots will increase flowtime in early sublots 
but improve it downstream, for an overall approximately balanced effect. In the latter case, 
intermittent idling does not help (unless the first machine could be utilized for another job 
during its idling periods). Bukchin, Tzur and Jaffe (2002) address the flowtime version of 
the two-machine problem with lots setups and teardowns, which imply batch availability. 
Although there is no simple solution of the type we developed for the makespan problem, 
the problem can be solved by generic IP. Bukchin and Masin (2004) consider the makespan 

                                                 
* In this connection we should mention that at least for large lots there is another option: to round the lot size 
and change the batch size to s times the rounded lot size. Whereas this solution is outside the box defined by 
the formal model, in practice one cannot guarantee in advance that starting a batch of, say, 10000 items will 
yield precisely 10000 items of acceptable quality. To respond to that fact of life, a typical commercial contract 
allows small deviations in the precise number delivered. In practice, during the era in which basic sublot 
models were developed, deviations of 5% in batch size were often acceptable. Therefore, using explicit or 
implicit long and short penalties, the critical fractile model can be used to decide the optimal actual batch 
size required for servicing the nominal batch size. In such a system, if we have to produce 10100 items instead 
of 10000, then if we decide to use nine lots of 1122 each, the fact that 10100 does not divide by nine is 
insignificant: even a lot size of 1125 is not likely to lead to appreciably different expected economic cost. 



and the flowtime objectives together. A tradeoff exists between the two, so Pareto-optimal 
solutions may be identified. Again, a very effective heuristic for the purpose of achieving 
a good makespan without increasing the flowtime too much is the use of equal sublots with 
intermittent idling.  
 
Lot Streaming with Total Cost Objective 
 
Nearly all of the literature on lot streaming focuses on traditional scheduling objectives, 
such as makespan or flowtime. An exception is due to Langevin et al. (1999). They 
formulate an objective function that contains four components, each representing a source 
of direct cost in a typical flexible manufacturing system. The four components are: material 
handling cost, pallet costs, inventory holding cost, and machine cost. The first two 
components are related to the number of round trips by the material handler, and the other 
components are related to time that work in progress spends in the system. 
 
The Case of Attached Sublot Setups with Two Unequal Machines 
 
Early models with setups appeared in Truscott (1985), Trietsch (1987a) and in Baker 
(1988). Here we show how our generic approach can solve the two-machine makespan 
model with attached sublot setups and teardowns of the type considered by Bukchin, Tzur 
and Jaffe (2002). This analysis expands our coverage of Subsection 12.2.4 where we 
assumed the two machines have the same production rate (q = 1). We now show the 
analysis for the q ≠ 1 case with attached setups (and thus with sublot availability). Our 
approach is similar to the one adopted in the chapter for the regular case. For convenience, 
let h denote h2; that is, h = (SU2 − SU1)/p1.  In addition to the notation given in the chapter, 
let qr = p1/p2 (= 1/q)—i.e., it is the value of q as defined for the reversed problem—and, 
similarly, let hr = (SU1 − SU2)/p2. (By this definition, if h > 0 then hr < 0 and vice versa.) 
By arguments similar to those we used in the chapter for the no-setup case, all sublots in 
an optimal solution must be critical, and thus there should be no waiting of sublots 
completed on machine 1 for processing on machine 2, and there should be no idleness on 
machine 2 between sublots. Therefore, Lj should start its setup on machine 2 when Lj+1 
starts its setup on machine 1 (for j = 1, 2, ... , n − 1); and, similarly, Lj completes its teardown 
on machine 2 when Lj+1 completes its teardown on machine 1. For our case, q ≠ 1, this 
leads to the following (n − 1) equations: 
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Recall from the chapter that for q = 1, optimal sublots form an arithmetic series. Equation 
(1) indicates that when processing times are different, sublots form a sum of an arithmetic 
series and a geometric series, and thus they reflect a more general case than any we 
encountered so far. However, Equation (1) is not sufficient to solve the problem: we seek 
n unknowns Lj but with only (n − 1) equations. The additional equation we need is given 
by ΣLj = U, yielding, 
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We can find Lj for any j by substituting L1 in Equation (1), recursively. Thus, for any given 
n and U, along with SU1, SU2, p1, and p2, the equations above determine the series {Lj}j = 

1,...,n uniquely. Accordingly, we may address Lj as a function of n and U, Lj(n, U); but we 
suppress the argument U if it is given (which is usually the case). We need to allow n to 
vary because our task remains to find the optimal n to minimize the makespan. When n is 
too large (or U too small) one or more of the constraints Lj ≥ 0, which we ignored so far, 
may be violated. However, that cannot happen if both L1 and Ln are nonnegative. To check 
both without solving all intermediate values, we can find Ln by symmetry; that is, to find 
Ln we can use qr and hr instead of q and h in Equation (2). It can be shown, however, the 
optimal solution obtained without considering this constraint is guaranteed to be feasible, 
so we can safely ignore these constraints. Formally, we will say that n is admissible if the 
n equations associated with it yield Lj ≥ 0 for both L1 and Ln, (and thus for all j).  
 Because there is no need for intermittent idling, the makespan is given by the time to 
complete L1 on machine 1 (including one setup) plus the time to process the whole batch 
on machine 2 (including n setups). The symmetric makespan expression should yield the 
same value, with Ln taking the place of the first sublot and the machine indices reversed, 
thus leading to the following result. 
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By substituting Equation (2) for L1, this expression becomes an explicit function of n. 
Given some admissible n value, all sublots are uniquely determined and thus the makespan 
is also given. Because U is a known parameter, our problem boils down to the optimal 
selection of n, which can be done in various ways, including trial and error. A useful 
approach is to treat U as a variable and study the conditions under which some fixed n is 
optimal. Clearly, as we increase U, Lj(n, U) increases for all j, and vice versa. One 
advantage of this approach is that if production of this particular product is repetitive, we 
can tabulate the results so we won’t need to solve repeatedly for every possible U. This 
intuitive result can be formally verified by observation of (1): for example, it includes 
elements of the form L1qj−1, which all increase with L1, as well as a constant function of A. 
As long as we keep n constant, any increase in U must be apportioned to the Lj values as 
proportional increases to all the elements L1qj−1. Similarly, for a given n, if we add a transfer 
the former sublots must decrease, and if we cancel a transfer the remaining sublots must 
increase, i.e., Lj(n−1, U) > Lj(n, U) > Lj(n+1, U) for all relevant j. To see this formally it 
may be convenient to select the primal version of the problem if h ≥ 0, and the reversed if 
hr > 0. Therefore, we can assume without loss of generality that h ≥ 0. When we add (delete) 
a transfer lot, the effect is a reduction (increase) in the processing time of L1 accompanied 
by the addition of SU2 to the total setup and processing time on machine 2. Suppose now 
that the following two inequalities hold: 
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then n must be optimal for U: The first inequality requires that adding a sublot will not 
decrease L1 enough to compensate for the addition of SU2, since it will only reduce the 
processing time of L1 on machine 1 by less than SU2. Thus, n is better than n+1 if this 
inequality holds strictly, and it is indifferent if it holds as an equality. The second 
inequality, similarly, requires that reducing the number of sublots by 1 will not decrease 
the makespan because the additional processing time on machine will exceed SU2. Thus, 
the two conditions together suffice for n to be optimal. We can find the optimal n by a 
standard search procedure that takes O(log U). Notice that equations (4) and (5) can easily 
be used to determine not only if n is optimal but also, if it is not optimal, whether it is too 
small or too large. For example, when the left hand side of (4) is larger than the right hand 
side, n should be increased, and, similarly, when the left hand side of (5) is smaller than 
the right hand side, n should be decreased. Therefore we can find the optimal n by bisection 
search.  
 
Numerical example: Let U = 75, p1 = 2, p2 = 3, SU1 = 6, SU2 = 16. Using the q = 1 result 
from the chapter as an approximation leads to  
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Equation (4) is satisfied by n = 4, but by Equation (5), n = 4 is excessive; thus it is clear that 
n = 3 satisfies Equation (4). Checking Equation (5) again we find that n = 3 is optimal. The 
optimal CV solution with 3 sublots leads to a makespan of 303.2105. The solution with n = 4 
is close, however, at 303.3076. For n = 2, we obtain 319 (and this case happens to yield an 
integer solution with lots of 28 and 47) and n = 5 would yield 309.9573 (i.e., higher than 
303.2105) but it is infeasible in the sense that the first lot has to be negative to achieve this 
makespan, so the true minimal makespan with n = 5 must be higher. In general, it can be 
shown that the optimal n never leads to a negative sublot. 
 We can generalize the algorithm from the chapter to find the best integer solution. 
However, we can only use it determine integer lot sizes for a given n, and we may need to 
employ trial and error to identify n* for the discrete case. This is not difficult in practice 
because the discrete n* tends to be close to the continuous one. For that reason, it is reasonable 
to start the algorithm with n = n* as determined in the continuous case. 
 
0. For a given n, let j = 0, S0 = 0, with M as obtained for the continuous case. 
 
1. Set:  j = j + 1 
  Sj = min{max{(M − p2(U − Sj−1) − jSU1 − (n − j + 1)SU2)/p1, 0}, U} 
  fj = min{max{(M − p2(U − Sj−1) − jSU1 − (n − j + 1)SU2)/p1, 0}, U} − Sj 
  ej = 1 − fj 



 
2. If j < n, return to step 1; else, continue 
 
3. If Sn = U, STOP (the current value of M is optimal for n); else continue to step 4 
 
4. Set j = 0 and M = M + p1minj{ej}; return to step 1. 
 
 Again, we cannot guarantee that the optimal discrete solution utilizes the same number 
of transfer lots as the continuous one. The optimal numbers of transfers for the continuous 
version and the discrete version tend to be close to each other when the setups are large. 
Otherwise, the difference between them can be reduced if we utilize a version that ensures Lj 
≥ 1, without which the theoretical optimal n can even exceed U. On the one hand, n is bounded 
by U / min{SU1, SU2} but, on the other hand, with zero setups we obtain n = ∞, leading to a 
makespan of Umax{p1, p2}. The algorithm, however, requires n as input. In practice, we 
should check the neighboring n values. But it is not necessary to solve for all these values: 
using branch and bound logic, it is enough to check whether the optimal M for the current n 
is feasible for those neighbors for which the continuous minimal makespan does not exceed 
the current M. That is, once we get one solution for one n value, typically using the optimal 
continuous version n, it can serve as an upper bound on the optimum and there is no need to 
test any version whose lower bound obtained by the continuous version is higher. 
 
Numerical example (continued) 
 
Performing the computations for n = 3 starting with the trial makespan of 303.2105, we obtain 
L1 = 12 with a fraction f1 of 0.10525 and a complement e1 = 0.89475. Similarly, the next two 
lots are 23 and 39 with ej values of 0.89475 and 0.39475. S3 = 74 < 75. Therefore, we should 
add p1min{ej} = 2 × 0.39475 to M, yielding a new trial value of 304. This leads to the optimal 
solution with L1 = 12, L2 = 23, L3 = 40. As it happens, the same optimal solution can also be 
achieved with n = 4 sublots of 4, 11, 22, and 38. However, 304 is less than the continuous 
makespans for n = 2, n = 4, and n = 5 so it follows that n = 3 and n = 4 are globally optimal. 
That n = 4 is suboptimal for the continuous case but optimal for the discrete case indicates 
that there is no guarantee the optimal n values for the two cases coincide. Finally, the solution 
with n = 4 is better in terms of flow time: the flowtime associated with n = 3 (without 
intermittent idling) is 17020, as compared to 16564 for n = 4. 
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