
Research Notes for Chapter 11* 
 
Theorem 11.1 is due to Makino (1965). Talwar (1967) proved Talwar’s Rule for up to 4 
jobs and conjectured it holds for any n, with respect to the stochastic counterpart problem. 
The conjecture—Theorem 11.2—was subsequently proved by Cunningham and Dutta 
(1973). Ku and Niu (1986) developed a sufficient condition for stochastic optimality and 
showed that Talwar's Rule satisfies that condition. Kamburowski (1999) weakened (and 
thus improved) that sufficient condition, but no new cases that satisfy the improved 
condition were identified. However, Kalczynski and Kamburowski (2006) generalized 
Talwar’s rule for a Weibull distribution with constant coefficient of variation and showed 
by simulation that it is close to optimal for several distributions, including the Weibull 
itself, subject to the constant coefficient of variation assumption. (Whereas that assumption 
is quite restrictive, in our Research Notes for Chapter 19 we discuss a recent empirical field 
study where we could not reject the hypothesis that activity times have lognormal 
distributions with consistent coefficients of variation. The heuristic of Kalczynski and 
Kamburowski might work very well in such cases.) Safe scheduling results for flow shops 
were developed by Portougal and Trietsch in a series of papers (1998, 2001, 2006). Table 
11.1 is similar to one that appeared in Portougal and Trietsch (2006), where the calculations 
for the normal API case are based on a result originally published by Clark (1961). 
However, we discovered a programming error in the spreadsheet they used, so their 
example was erroneous. Accordingly, we developed a new counterexample to show that 
the normal distribution is not guaranteed to yield a unique API-stable sequence. We can 
report, however, that we had to generate a very large number of examples to obtain that 
counterexample. In other words, in most practical cases we may expect the API heuristic 
to yield a unique sequence. Dodin (1996) observed that the makespan of a flow shop with 
independent processing times tends to be approximately normal when the number of jobs 
is large. The experiments we reported in the chapter confirmed that observation for as few 
as seven jobs. In experiments conducted by Portougal and Trietsch (2006) with 2000 
normally distributed jobs with constant expectation, the makespan distribution could 
indeed be approximated by the normal in general; however, deviations from normality 
could still be detected at the tails. That is, the distribution was approximately normal but 
perceptibly skewed. That may not be surprising, as there are maximum operators at play in 
the calculations which tend to create skewed distributions. 
 Theorem 11.3 is also due to Portougal and Trietsch (2006). Because Theorems 11.4 
and 11.5 rely on the same proof as that of Theorem 11.3, we repeat it here. For 
completeness, we start by listing the two regularity conditions, followed by two lemmas.  
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 R1. (1/u)∑ j = 1,…,u(E(Aj) + E(Bj)) ≥ 2δ where δ > 0;  u = 1, 2,… 
 
 R2. (1/u)∑ j = 1,…,u(V(Aj) + V(Bj)) ≤ γ2 where γ is finite;  u = 1, 2,… 
 
 For notational convenience, we assume that jobs are sequenced in index order. 
Recalling the definition of yj from Chapter 10, we define a random variable Yj, 
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Assuming that jobs are processed on machine 1 without inserted idle time, Yj represents 
the difference between the time required to process the first j jobs on machine 1 and the 
time required to process the first (j – 1) jobs on machine 2. Before job j starts on machine 
2, there must have been at least this much idle time on machine 2, so to minimize the 
makespan it is sufficient to minimize max{Yj}. To solve the stochastic counterpart problem, 
our task is to minimize E[max{Yj}]. Denote E(Yj) by yj and recall that we denote the 
expected processing times by ak and bk. Because Yj is a simple sum, its expected value is 
given by 
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That is, yj is the value we defined in Chapter 10, but for the deterministic counterpart 
problem. By Jensen's inequality E[maxj{Yj}] ≥ maxj{E(Yj)} = maxj{yj}. Hence, the optimal 
makespan of the deterministic counterpart, denoted DCM, provides a lower bound for the 
optimal expected makespan, E(M(s*)). But by condition 1, DCM > δn. Thus we obtain a 
lower bound, E(M(s*)) ≥ DCM > δn. The following lemmas provide an upper bound. 
 
 
Lemma RN11.1.  For any given set of processing time realizations, 
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Proof. 
 
»» By construction, for 1 ≤ k, m ≤ j ≤ n 
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If j = m = k and if the maximum by k is positive, the inequality is satisfied weakly. 
Otherwise, the sum of the two maxima must strictly exceed yj for any j (including the index 
that maximizes Yj). «« 
 
 
 
Lemma RN11.2. Under conditions 1 and 2, E[M(sJ) − M(s*)] ≤ 2γ n , with probability 

1 (w.p.1). 
 
 
Proof. 
 
»» The proof relies on a classical Martingale result that we do not develop here. Instead, 
we refer to Kushner (1984, p. 4). Martingales model the cumulative deviation of a 
continuous stochastic process from its mean. Martingale theory can also be used to model 
discrete processes that can be embedded in a continuous process. The result we use is that 
the expected second moment of the deviation of a Martingale is bounded by four times the 
sum of expected second moments of the elements, w.p.1. Consider the discrete stochastic 
process given by 
 

∑
=

−− −−−=
k

i
iiiik bBaAS

1
11 )]()[(  

 
By construction, as shown in the proof of Lemma RN11.1, Sk = Yk – yk. For each element 
in the sum, we have an expected value of 0 and by condition 2, a finite variance given by 
V(Ai) + V(Bi-1). Because E(Si) = 0, V(Ai) + V(Bi-1) is also the second moment of element i. 
Therefore, it can be shown that Sk is embedded in a Martingale. By the Martingale result 
we cited above, E[supk{Sk

2}] ≤as 4Σ∀i[V(Ai)+V(Bi-1)] (where ≤as denotes ≤ almost surely, 
i.e., w.p.1). By condition 2, it follows that E[supk{Sk

2}] ≤as 4nγ2. Because E(X2) = E(|X|2) ≥ 
(E(|X|))2, we thus obtain E(supk{|Sk|}) ≤as 2γ n . To complete the proof recall that DCM ≤ 
E(M(s*). «« 
 
 
 
Theorem 11.3. Consider a stochastic two-machine flow shop with independent 

processing time distributions subject to regularity conditions R1 and 
R2. Let sJ denote the deterministic counterpart sequence (from 
Johnson’s Rule), s* the optimal sequence, and M(s) the makespan 



associated with the sequence s. Then, as n → ∞, E[M(sJ) − 
M(s*)]/E[M(s*)] → 0, w.p.1. 

 
 
Proof. 
 
»» E(M(s*)) ≥ DCM > δn, so it is sufficient to show that under conditions 1 and 2, for any 
[small] ε > 0 there exists a number nε such that for n > nε, E(M(sJ)) – E(M(s*))/δn ≤as ε. By 
Lemma 2, nε = 4γ2/(δε)2 satisfies the theorem. ««  
 
 Essentially, the proof shows that the Jensen gap is bounded from below by 0 and 
from above by a function that is proportional to the square root of the total variance in the 
system, ∑i=1,…,n[V(Ai) + V(Bi)]. By the same token, the squared Jensen gap is also bounded 
by a function that is proportional to the total variance in the system. If we imagine a large 
stored sample where for each row of realizations we calculate the Jensen gap, essentially 
we are treating the Jensen gap as a random variable (whereas the true Jensen gap is defined 
as the expectation of such results). But the makespan of each row is given by DCM plus 
the Jensen gap realization. The limit on the expected squared Jensen gap realization then 
implies that the variance of the makespan is similarly bounded. Therefore, the ratio of the 
standard deviation of the makespan to the expected makespan tends to zero as n grows 
large; i.e., cv → 0 as n → ∞. This argument is sufficient to also prove Theorems 11.4 and 
11.5. They hold because as cv → 0 the optimal safety time becomes negligible relative to 
the expected makespan.  
 However, it is implausible that the true coefficient of variation tends to zero as n → 
∞. Including linear association in a model is one way to improve its practicality. This 
observation indicates that the practical value of Theorems 11.3, 11.4 and 11.5 is limited. 
Would those results hold with linear association? The answer is affirmative because as far 
as the initial values are concerned, in the limit as n → ∞, cv → 0. Therefore, the distribution 
of the adjusted makespan converges to that of Q scaled by the mean. Thus, in the limit, the 
deterministic counterpart means are sufficient to compare two sequences. That proves the 
following three theorems: 
 
 
Theorem RN11.1. Consider a stochastic, n-job, two-machine flow shop with linearly 

associated processing time distributions, with the objective of 
minimizing the expected makespan. Suppose that the initial 
(independent) processing times are subject to regularity conditions R1 
and R2. Let sJ denote the Johnson deterministic counterpart sequence 
and s* the [unknown] optimal sequence. Then, as n → ∞, [M(sJ) − 
M(s*)]/M(s*) → 0, w.p.1. 

 
 
 
 
Theorem RN11.2. Consider a stochastic, n-job, two-machine flow shop with linearly 

associated processing time distributions, with the objective of 



minimizing Z(s) = d + γE(T). Suppose that the initial (independent) 
processing times are subject to regularity conditions R1 and R2. Let sJ 
denote the Johnson deterministic counterpart sequence, s* the 
[unknown] optimal sequence and Z*(s) the optimal value associated 
with the sequence s (where the adjusted distribution is used to set d). 
Then, as n → ∞, [Z*(sJ) − Z*(s*)]/Z*(s*) → 0, w.p.1. 

 
 
 
 
Theorem RN11.3. Consider a stochastic, n-job, two-machine flow shop with linearly 

associated processing time distributions, with the objective of 
minimizing d(s) subject to to a service level constraint SL ≥ b. Suppose 
that the initial (independent) processing times are subject to regularity 
conditions R1 and R2. Let sJ denote the Johnson deterministic 
counterpart sequence, s* the [unknown] optimal sequence, and d*(s) 
the optimal value associated with the sequence s (where the adjusted 
distribution is used to set d*). Then, as n → ∞, [d*(sJ) − d*(s*)]/d*(s*) 
→ 0, w.p.1. 

 
 
 Next, we present a minor unpublished result for two machines and two jobs with 
independent processing times. 
 
 
Theorem RN11.4. For a two-machine, two-job flow shop with stochastically independent 

operation processing times, the variance of the makespan is bounded 
from above by the sum of variances of all operations.  

 
 
Proof. 
 
»» Without loss of generality, assume the jobs are sequenced in index order. The makespan 
is given by A1 + max{A2, B1} + B2. By independence, the variance is equal to V(A1) + 
V(max{A2, B1}) + V(B2). But by Theorem RN9.4, V(max{A2, B1}) ≤ V(A2) + V(B1). «« 
 
Again, by itself, this result is minor. However, extensive numerical simulation suggests 
that the variance of the makespan cannot exceed the total variance of all jobs for m 
machines and n jobs, either. We conjecture that the same property applies to the makespan 
in job shops and projects as well. 
 

Some Empirical Results for the Stochastic Counterpart 
 
In Baker and Trietsch (2009), we experimented with the three main heuristics presented in 
the chapter: Johnson’s heuristic, Talwar’s heuristic, and the API heuristic. As might be 
expected, our results show that Johnson’s heuristic is quite robust, API tends to improve 



upon the Johnson heuristic, but at the expense of slightly higher variance, and the Talwar 
heuristic works very well when coefficients of variation are high. 
 

The m-Machine Model 
 
 Not too many results exist for the stochastic m-machine model, and much of the 
existing results rely on very strong assumptions. For example, Pinedo (1982) addresses the 
stochastic m-machine flow shop with the expected makespan objective, but he assumes 
that each job has a single distribution that applies to all operations. (In other words, the 
processing times of job j constitute a sample of m draws from the same distribution). He 
also assumes that the n distributions are non-overlapping (in other words, we can sort the 
jobs by expected processing time and the realization will be in the same order on all 
machines). In the deterministic counterpart of this model, the sequence does not matter. 
Pinedo shows that any SEPT-LEPT sequence—defined such that the first few jobs are 
ordered in increasing expected processing time (smallest EPT first) and the remainder in 
decreasing EPT—minimizes the makespan by expectation. Any pyramid sequence is 
therefore optimal. Under these conditions, the shop is ordered for any possible realization, 
but recall from Chapter 10 that in general it does matter which pyramid sequence is selected 
in an ordered shop, whereas here any one will do. Ku and Niu (1986) observe that Pinedo’s 
proof can be extended to show that any SEPT-LEPT sequence is stochastically minimal. 
Pinedo (1982) also addressed a case where only two jobs are stochastic, and not necessarily 
non-overlapping. Here, the makespan obtained by arbitrarily selecting one of the stochastic 
jobs to go first, the other one last, and the deterministic jobs at any order in between, is 
stochastically minimal.  
 The m-machine model with blocking can be generalized directly for the stochastic 
counterpart, but recall from Chapter 10 that even in the deterministic case no efficient 
solution is known for more than for two machines. For two machines, this case retains the 
TSP structure of its deterministic counterpart except that the distance matrix contains 
elements of the stochastic form Dij = max{Aj, Bi} instead of the deterministic form Dij = 
max{aj, bi}. Therefore, the polynomial algorithm of Gilmore and Gomory does not apply. 
When processing times are independent, we can always compute the cdf of the maximum 
of two or more random variables as the product of their cdfs. For instance, for max{X, Y} 
we have Fmax(t) = FX(t)FY(t). Thus, we can compute the expected makespan for any 
sequence and any m. Therefore, as in the deterministic case, we can still use neighborhood 
search heuristics in a straightforward manner. In contrast, the no-wait case does not have a 
proper deterministic counterpart because we cannot guarantee no waiting unless we 
postpone the start of job [j] on machine 1 until the actual completion time of job [j − 1] on 
machine m. Obviously, this is a very conservative solution, and a safe scheduling approach 
would be more suitable. However, to our knowledge, this research area has not been 
explored yet.  
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