
Research Notes for Chapter 10* 
 
There is no question that Johnson’s paper was pivotal in the development of scheduling 
theory. As a consequence the number of papers on flow shops is vast, and we can’t begin 
to do justice to them all. For example, quite a few papers presented new proofs for 
Johnson’s result. Nonetheless, we mention some historical results, and specifically we 
provide the sources we used in the chapter. 
 We observed a connection between the model with start- and stop lags and the model 
with separable setup. The time-lag model is due to Mitten (1959). Johnson (1959) 
commented and elaborated on the results. Among other things, Johnson provided a new 
proof based on his original treatment of three machines. Mitten considered only a start-lag 
but also required it to apply from the completion time on the first machine to the completion 
time on the second machine. That requirement follows directly from a standard assumption 
in the model, that once an operation starts on a machine it must be completed without 
interruption. Thus, an implicit stop lag of vj = uj − Aj + Bj is also imposed. For a single job 
case, the makespan with a time lag is thus given by max{uj + Aj, uj + Bj}. Define the net 
lag for the single-job case as max{uj + Aj, uj + Bj} − (Aj + Bj) = uj − min{Aj + Bj}. When 
the net lag is positive, it increases the makespan; when it is negative, we obtain an overlap 
(in which case the makespan is decreased). Mitten’s solution was by a generalization of 
Algorithm 10.2 that sorts the jobs in U by increasing uj and the jobs in V by decreasing uj. 
Therefore, if we were to set uj = min{Aj, Bj}—the zero net gap case—we would obtain 
Algorithm 10.2. Apparently, Mitten’s algorithm is the origin of Algorithm 10.2 (whereas 
Algorithm 10.1 is due to Johnson himself). To wit, the following quote from Johnson 
(1959): "Note that Mitten’s rule also applies to the standard two-stage problem in [Johnson 
1954] and is perhaps easier to remember than the rule given in [Johnson 1954]." However, 
in (10.3) and (10.4) we did not follow the structure that we just described. Instead, we used 
a presentation that distinguishes explicitly between uj and vj, thus allowing them to be 
defined independently. For additional early references relating to this model, see Graham 
et al. (1979). Furthermore, recall that we described (10.3) and (10.4) as relevant to the best 
permutation sequence. The reason for that is simple: there are cases where the optimal 
solution is not a permutation. According to Graham, Lawler, Lenstra and Rinnooy Kan 
(1979), the general problem had been shown by Lenstra (unpublished) to be NP-hard in 
the strong sense. However, the best permutation cannot be suboptimal unless at least one 
job has a relatively large time lag. Johnson (1959) provided a sufficient condition that 
prohibits such an exchange: suppose jobs i and j are adjacent in that order on machine A, 
then they should not be considered for an interchange unless the net gap of job i exceeds 
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that of job j plus max{Aj, Bj}, which implies that such an interchange should certainly not 
be considered if the net gap of job i is negative; i.e., when the start gap reflects the use of 
transfer batches (with positive overlaps), the result is optimal. 
 The flow shop problem is NP-hard, in the strong sense, for m ≥ 3. That result is due 
to Garey, Johnson and Sethi (1976). They also showed that minimizing F is NP-hard for m 
≥ 2 and if we allow recirculation then the job shop makespan problem is NP-hard for m ≥ 
2.* Recirculation occurs when a job visits the same machine more than once. The job shop 
model we present in Chapter 14 does not include recirculation but it is still NP-hard for m 
≥ 3 because it generalizes the flow shop model. For m = 2 but without recirculation, Jackson 
(1956) showed that Johnson’s algorithm can be extended very simply. There are four job 
types to consider: jobs that require just one machine are denoted a or b whereas jobs that 
require both machines are denoted ab or ba, as per their operations sequence. Jobs of type 
a (b) can be considered to have zero processing times on machine 2 (1), so we may limit 
our attention to ab and ba. We then schedule both types by Johnson’s Rule but for ba we 
treat machine 2 as the first machine. The actual machine loading then loads type ab on 
machine 1 in parallel to type ba on machine 2 and the operations of each type on its second 
machine are scheduled after the other type is complete. In such a schedule jobs of type a 
and b are scheduled in between the other two types but their internal order is immaterial 
(by Johnson’s algorithm they are last on their machine because they require zero time on 
the other machine). Thus machine 1 is loaded {ab}-{a}-{ba} and machine 2 is loaded 
{ba}-{b}-{ab}; both machines start processing at time zero.  
 In general, complexity proofs of the type we discuss here assume n jobs, where the 
data describing those jobs is part of the input. Nonetheless, we can also study problems 
with few jobs and many machines. One might think, for example, that a two-job m-machine 
flow shop is symmetric to an m-job two-machine flow shop, but in fact the problem is 
different. Specifically, the optimal solution may involve passing whereas the two-machine 
problem is optimized by a permutation schedule. The problem is still polynomial, however: 
even the more general m-machine, two-job job shop can be solved in polynomial time. 
Akers (1956) presented a graphical approach to the job shop problem—as posed by Akers 
and Friedman (1955)—and showed that it amounts to the solution of a shortest route 
problem. Szwarc (1960) showed in detail that this shortest path problem is indeed subject 
to efficient solution by dynamic programming but he, too, noted that it is easy to solve by 
inspection.† To appreciate the value of such an approach recall that at the time, computers 
were still at a nascent stage, and it would be very uneconomical to use them for a model 
that could be solved with paper and pencil. For instance, to describe the practicality of his 
rule, Johnson (1954) said: "For example, the decision rule permits one optimally to arrange 
twenty production items in about five minutes by visual inspection." Finally, Conway, 
Maxwell and Miller (1967) point out that the Akers’ graphical approach can also handle 
recirculation. By contrast, recall that the n-job two-machine job shop becomes strongly 
NP-hard once we allow recirculation. 
                                                 
* Graham, Lawler, Lenstra and Rinnooy Kan (1979)—generally an excellent source for numerous important 
early publications and especially ones related to complexity—cite other sources for these results, but with 
later publication dates. 
† The efficient solution of the shortest route problem—which we already described in our Research Notes for 
Chapter 8—was not yet well known at the time these papers were written. In response, Akers simply assumed 
the shortest route can be identified visually. Szwarc solved that problem more formally by a dynamic 
programming model that is essentially identical to Dijkstra’s algorithm. 



 The special 3-machine cases of Section 10.4, starting with Johnson’s own special 
case solution (when machine 2 is dominated), are discussed by Burns and Rooker (1976, 
1978) and by Szwarc (1977). The test results we reported in the chapter are due to Smits 
and Baker (1981). 
 As mentioned in the chapter, although permutation schedules are not a dominant 
set for makespan problems when m ≥ 4, it seems plausible that the best permutation 
schedule should be close to the optimum. That the worst case behavior of permutation 
schedules is not even bounded by a constant but may be roughly as large as 0.5m0.5 is due 
to Potts, Shmoys and Williamson (1991). Their example is based on an instance with fewer 
jobs than machines. Thus it does not contradict the other result we reported, due to 
Portougal and Scott (2001), who show that permutation schedules are asymptotically 
optimal for large n/m, both for minimizing the makespan and maximal tardiness.  
 Much of the early history of exact solutions for the problem is summarized in Baker 
(1975). The state of the art at the time did not include much testing and virtually no 
comparative testing of various solution ideas that had been published by then. Baker 
performed the necessary tests and found that some bounds and elimination methods did not 
justify the effort required for their calculation. As a footnote, it is much tougher to publish 
untested results today, but there is a simple explanation: at the time computer time was 
limited. For the same reason, Baker did not attempt to solve problems with more than 7 
jobs on 7 machines. Later, a more advanced use of branch and bound was described by 
Potts (1980), whose approach uses a version of LB2 and exploits considerations of 
symmetry in the branching process. His results indicate that problems containing 20 jobs 
and 4 machines may be considered "large," although they could be solved in a few seconds 
of computer time. Problem sizes of up to 50 or 100 jobs and 5 machines could often be 
solved with modest computational times. However, some problems of this size required 
very extensive searching. In the Potts study, for example, the algorithm was terminated in 
as many as 25% of the test problems with 50 or more jobs after generating 100,000 nodes 
in the branching tree. Finally, in Chapter 14 we discuss the shifting bottleneck algorithm, 
which constituted a breakthrough in the optimization of job shops. Here we may note that 
there is a strong similarity between that algorithm and the focus on one or two bottleneck 
machines that we describe in Chapter 10. In the shifting bottleneck algorithm, however, we 
may redefine the bottleneck machine as we go along. 
 The slope index algorithm is due to Palmer. In addition to the slope index method 
and the CDS method, which are both specialized to the flow shop model, we can use 
general-purpose heuristic techniques. For instance, Nawaz, Enscore and Ham (1983) apply 
the insertion heuristic to the flow shop problem, and their computational experience 
suggests that although the insertion heuristic requires more effort than the CDS algorithm, 
the additional effort produces slightly better solutions. Similarly, neighborhood search 
techniques have been explored by Dannenbring (1977) and Ho and Chang (1991), 
simulated annealing by Osman and Potts (1989), and tabu search by Taillard (1990), 
Reeves (1993), and Moccellin (1995). Heuristic procedures appear to be able to generate 
solutions that are within about 1% of optimum, on average. Worst-case analyses have been 
summarized by Lai (1996). 
 The source of our application of TSP to the solution of the no-wait flow shop is due 
to Wismer (1972), although the title and some of the narrative may be misinterpreted to 
suggest that the paper addresses the blocking problem. The narrative also suggests that the 



same approach could transform the job shop version of the same problem to a TSP, but 
there is no example to substantiate that claim. We refer to Bagchi, Gupta and 
Sriskandarajah (2006) for a more general survey of flow shop problems that can be 
addressed by the TSP. They also summarize a more modern rendition of the Gilmore and 
Gomory algorithm that runs in O(n log n) instead of the original O(n2). Last but not least, 
they cite a 1960 source for the application of TSP to the no-wait flow shop: Piehler (1960). 
Perhaps due to the fact that it’s in German, that contribution was not well known in the US. 
 Studies of criteria other than the makespan for flow shop problems include Ho and 
Chang (1991) and Rajendran and Chaudhuri (1991) on the F-problem, Miyazaki and 
Nishiyama (1980) on the Fw-problem, and Kim (1993) and Raman (1995) on the T-
problem. 
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