
Research Notes for Chapter 1* 
 
One of our guiding principles when organizing the main text was to go from simple to 
complex topics and maintain technological order—that is, basing each new result only on 
previously covered results. A secondary guiding principle, was to minimize any discussion 
of connections between models, thus maintaining a simple structure. The subject area we 
describe, however, did not develop along the same lines, and therefore it may be helpful 
for research-oriented readers to look at the bigger picture without adhering to these 
principles with the same fidelity. One purpose of our research notes is to provide such a 
discussion. Another purpose is to consider research issues chronologically, extending 
speculatively into the future. In that spirit, we discuss some seminal historical 
developments, and we mention open research questions that should be addressed by future 
research. We also cover topics that are not sufficiently central to justify inclusion in the 
text itself. Finally, to prepare research-oriented readers to read original source material, we 
occasionally need to discuss issues that do not appear in the main text but are likely to be 
encountered in the literature. When this is the sole motivation, we do not provide in-depth 
coverage or an exhaustive reference list. Typical papers that would require such detail also 
provide the necessary references. In the research notes of this chapter, we discuss some 
historical developments and discuss computational complexity in more detail. 
 The issue of sequencing must have been on the agenda ever since mankind became 
involved in large projects, at the latest. But there were probably no formal models involved 
with those endeavors. The first modern scheduling tool, the Gantt chart, is due to Henry L. 
Gantt, and was developed during World War I. But mathematical models for scheduling 
took off only after the publication of a seminal paper by Johnson (1954) on the optimal 
sequence of jobs on two consecutive machines (an arrangement known as a flow shop) to 
minimize the makespan, defined as the time from the start of the first job until the 
completion of the last job. Johnson provided a simple rule for this purpose (which we cover 
in Chapter 10) but he also noted that with some exceptions, the three machine problem was 
already much more complex. (Indeed, today we know that the three-machine flow shop 
makespan minimization problem is NP-hard.) Soon thereafter, another seminal paper, 
Smith (1956), captured in one place several simple sequencing models—including 
Johnson’s rule—all based on sorting the jobs and sequencing accordingly. (We discuss 
most of these models in Chapter 2.) Although both authors also addressed problems that 
resisted their own simple rules, these two papers still encouraged the thought that it should 
be possible to solve many more models efficiently and elegantly, and much energy was 
devoted to this end, with a handful of notable successes but also with a lot of frustration: it 
became increasingly clear that most scheduling models were not easy to solve efficiently. 
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This state of affairs characterized the first 25 years of the development of scheduling 
theory.  
 With few exceptions, the models addressed during this period ignored the 
uncertainty that is so prevalent in practical situations. They also assumed that finishing a 
job early is always at least as good as finishing it on time. Ignoring uncertainty in the early 
models was not the result of failing to see that it exists. Right from the start, it was clear to 
the pioneers of scheduling theory that practical scheduling challenges involve 
combinatorial complexity (of the type addressed by Johnson and Smith) and the complexity 
associated with uncertainty. In general, one way to address uncertainty—and the way we 
proceed in the text—is to use stochastic models. Stochastic models assume that the 
uncertainty can be addressed by providing probability distributions for key parameters in 
models that are otherwise deterministic. Such distributions are ideally estimated from 
historical data. Nonetheless, there are situations where historical data is sparse or missing 
but we can still recommend the stochastic approach. This type of analysis is based on 
Bayesian statistics, one of whose basic tenets is that the very fact that a decision must be 
made is tantamount to the use of subjective distributions by the decision makers, and it is 
better to do so explicitly. Interested readers can find out more about the theory of decision-
making under uncertainty and the use of subjective distributions for this purpose (if 
necessary) in Raiffa and Schlaifer (1961). But because deterministic models (which 
addressed combinatorial aspects) were already very challenging, practically all the work 
concerned deterministic models. Only the most tractable stochastic models were addressed, 
reflecting a tiny percentage of research publications of that era; e.g., see Rothkopf (1966). 
Furthermore, during the first 25 years all models had regular performance measures. A 
performance measure is regular if it cannot be improved without making at least one job 
finish earlier; i.e., there is no incentive to delay a job unless this allows another job to finish 
earlier. For example, the makespan—Johnson’s performance measure—is regular, and so 
were all the models addressed by Smith. Thus, when stochastic scheduling emerged as a 
major research direction, around 1980, the deterministic arsenal was all about regular 
models. 
 This state of affairs was not due to negligence or ignorance. Based on the analytical 
scientific approach, it was rational to address combinatorial complexity first, by 
deterministic models and postpone stochastic analysis. Indeed, there is evidence suggesting 
that the reason stochastic models were rarely addressed during the first 25 years is directly 
related to the magnitude of the challenge to solve even deterministic and regular models 
analytically. The evidence lies in the fact that PERT (program evaluation and review 
technique) was introduced in the late 1950’s, and it involved sophisticated stochastic 
analysis right from the start. To appreciate how sophisticated this analysis had been, see 
not only Malcolm et al. (1959) but also Clark (1961)—a source that showed how to 
approximately calculate the moments of a project makespan distribution in spite of the 
complex dependencies that are involved. (The PERT team chose not to include this model 
in the original paper for simplicity, but they did mention its existence). They could do that 
because sequencing decisions were not involved. When sequencing issues were 
subsequently studied in the context of PERT—see Wiest (1964)—deterministic models 
were employed there, too. As a result, to this day, there are project related papers that 
address stochastic issues, some of which also address safety, and there are project related 
papers that address sequencing, but we know of no deep analysis of the two issues in 



combination. Meanwhile, PERT aside, stochastic issues were addressed by two major and 
somewhat overlapping approaches. One, by queueing theory, started (in this context) with 
the work of Jackson (1957), who modeled a job shop as a network of M/M/1 queues. The 
other was by simulation.  
 Queueing theory put very little emphasis on sequencing effects, and the main results 
showed how variation is transformed to waiting time. The simplest queueing models—
those that generalized the M/M/1 model to job shops—could also be used to calculate 
distributions of waiting times, but more general models could rarely achieve that.  
 For the study of sequencing issues, simulation (of the type we cover in Chapter 15) 
was perhaps more successful. At the start, a job set was generated randomly and stored, 
complete with arrival times, processing times, due dates and routing information. For this 
stored set, various dispatching rules were used and the results compared in terms of the 
fraction of jobs tardy and the mean tardiness. For example, it was discovered that choosing 
the shortest job first frequently yields few tardy jobs but tardy jobs are liable to be very 
tardy). Such simulations are used to this day to compare heuristic dispatching rules, and 
their practical value lies in the fact that sequencing is often carried out in practice precisely 
by such dispatching rules. With few exceptions, however, once the job set had been 
determined, these simulations treated the job descriptors as deterministic. So some aspects 
of randomness escaped the analysis. For example, one cannot sequence by the final 
processing time but only by its distribution (e.g., by its mean) because the precise 
processing time is not known before processing has taken place. Thus, in a technical sense, 
these simulation studies left a lot to be desired, but they still provided the most practical 
results of scheduling theory at that time. 
 To summarize, by the time the field turned 20, a lot of work had been done on 
deterministic models. From PERT, we learned some important lessons about stochastic 
scheduling (without sequencing decisions); from simulation we learned the systemic effect 
of simple dispatching rules; and over the years we have also acquired an impressive arsenal 
of highly theoretical deterministic scheduling models. It was not until then that the NP-
complete equivalence class was discovered and its ramifications for scheduling theory 
started to percolate through the research community. Suddenly, the inherent computational 
limits of most deterministic scheduling models became abundantly clear, explaining the 
resistance of some models to efficient solution. This gave rise to several responses, not 
necessarily mutually exclusive. Some researchers focused on identifying NP complete 
models and defining the borderline between the models that are NP complete in the 
ordinary and the strong sense (an important distinction we discuss presently). For an 
impressively long list of the earlier contributions of this genre, see Garey and Johnson 
(1979), which remains the classic reference on the subject. Studying complexity theory at 
more depth, as these researchers did, also yielded methods that were guaranteed to yield 
nearly optimal results in polynomial time for some models. Others focused more attention 
on devising efficient heuristics, and indeed it became easier to publish heuristic methods. 
Still others saw this as an opportunity to move to new pastures, of which, in our context, 
stochastic scheduling was an important one.  
 A more recent area of work that emerged after the discovery of NP-completeness 
addresses objectives with earliness/tardiness (E/T) penalties. The E/T objective is not a 
regular measure, which does make a significant difference even within the confines of 
deterministic scheduling. They are important because in practice finishing jobs too early 



may be costly as it leads to various forms of inventory holding costs. Indeed, the advent of 
these models was associated with the JIT (just-in-time) production control method, which 
penalized earliness as well as tardiness and strongly discouraged excessive inventories. But 
the field of stochastic scheduling was shaped just before the advent of these E/T models, 
at a period when deterministic models were all regular. As a result, very naturally and 
without any explicit deliberation, stochastic scheduling addressed itself to stochastic 
counterparts of deterministic models with regular performance measures. Such 
counterparts are defined by replacing important job descriptors from deterministic scalars 
to stochastic distributions, or possibly considering random machine downtime, and by 
aiming to optimize a traditional deterministic performance measurement by expectation. 
But what was missing for a long time thereafter was a focus on including safety time in 
schedules. That is a relatively new development that we call safe scheduling, and this is 
the first textbook that discusses such models. As it happens, the most studied safe 
scheduling models to date are stochastic counterparts of deterministic E/T models. In other 
words, there are two traditional limits that must be removed to achieve safe scheduling 
models: deterministic data and regular objectives. Conventional stochastic scheduling only 
addresses the former, whereas safe scheduling adds the latter. We discuss basic stochastic 
models in Chapter 6 and safe scheduling starting in Chapter 7. 
 The historical significance of computational complexity theory highlights its 
centrality in modern scheduling research, so we now present it in more detail than we did 
in the chapter, but we still refer the readers to Garey and Johnson (1979) for a sufficiently 
thorough introduction. The theory of NP-completeness involves decision problems, 
whereas in this text we are concerned with optimization problems. A decision problem is 
answered by either yes or no, whereas an optimization problem seeks some best value. For 
example, consider Figure 1.1 and suppose each interval in the horizontal scale represents 
10 time units. We might focus on the makespan and compose decision problems as follows: 
Can all jobs be completed in at most 100 time units? 140 time units? 135? By the evidence 
in the figure, the answer to the first question is no because the work content the three 
resources must complete clearly exceeds 300 time units, so even if we could have all of 
them operate in parallel without idling it would take more than 100 time units to complete 
the schedule. The answer to the second question is yes, as the figure demonstrates a solution 
that completes in about 137 time units. However, because it is not clear by the figure 
whether another sequence might exist that would take 135 or less, it may be difficult to 
answer the third question. These instances demonstrate that we can approach an 
optimization problem such as identifying the earliest possible completion time by a series 
of decision problems. Thus, decision problems are not irrelevant to optimization, as we 
elaborate later. They also demonstrate that the complexity of an instance may be a function 
of the precise parameters. In response, complexity theory concerns itself with the worst-
case scenario. For instance, the fact that we could answer the question in our example for 
100 and for 140 with ease does not make the problem inherently easy. To continue, for any 
decision problem, an algorithm is a structured set of programmed actions that lead to a yes 
or no answer, as required. An algorithm with a worst-case running time bounded from 
above by a polynomial function of the input size required to describe an instance of the 
model is called polynomial. Problems that can be solved by polynomial algorithms 
compose an equivalence class called P.  



Most scheduling problems, even deterministic ones, have no known polynomial 
solutions, however, so it is highly doubtful that they belong to P. These models are 
combinatorial, which means that their complexity is associated with the fact that there are 
many possible sequences that need to be implicitly or explicitly considered. There are 
exponentially many such sequences and we should not be surprised that identifying the 
best one is often difficult. However, suppose that a sequence were given (e.g., by a guess); 
then it would be easy to calculate its performance in polynomial time. The set of all 
problems where the performance measure of a given solution can be computed in 
polynomial time (and by comparing it to some target providing a yes or no answer to a 
decision problem) is a class defined as NP. In particular, all problems that can be solved in 
polynomial time satisfy this definition, and therefore P must be included in NP. What is 
less clear is whether there exist any problems that are in NP but not in P. The prevailing 
conjecture is that such problems do exist; i.e., that the set NP − P is not empty. We say that 
problem A is transformed (or reduced) to problem B if any instance of A can be formulated 
as an instance of B. If this transformation takes polynomial time, then the complexity status 
of problem A cannot exceed that of problem B. If we can also transform B to A in 
polynomial time, the two problems are computationally equivalent. Polynomial 
transformation is transitive; i.e., if A can be transformed to B and B can be transformed to 
C then A can be transformed to C (by simply following through with both transformations). 
The set NP-complete is an equivalence set of such problems, each of which can be 
transformed to all the others in polynomial time. Initially, for one problem in this set—
called SATISFIABILITY—it was shown by Cook (1971) that all problems in NP can be 
transformed to it in polynomial time. This includes easy and hard problems in NP, ranging 
from polynomial ones to those suspected of being intractable, so SATISFIABILITY must 
be as hard as any problem in NP. This led to the definition of the class NP-complete as the 
class of all problems in NP to which all other problems in NP can be transformed in 
polynomial time. However, because all problems in NP can be transformed to 
SATISFIABILITY in polynomial time, any problem in NP to which SATISFIABILITY 
itself can be transformed in polynomial time must also be NP-complete (because 
polynomial transformation is transitive). Indeed Cook showed that SATISFIABILITY was 
not the only such problem. Notably, however, no NP-complete problem was ever 
transformed in polynomial time to a problem in P (or the conjecture that P ≠ NP would be 
disproved). Another way to show that a problem in NP is NP-complete is by restricting it 
to another NP-complete problem. Restricting problem A to problem B involves showing 
that problem B is a special case of problem A. (Restriction is the reverse of transformation: 
transforming A to B implies that the ability to solve B is sufficient for the solution of A. 
Restricting A to B implies that the ability to solve A is sufficient for solving B.) Using such 
methods, Karp (1972) listed 20 NP-complete problems. Garey and Johnson (1979) were 
able to list hundreds. By now there must be many thousands. 
 NP-complete problems, although they are equivalent by definition, still come in 
two categories that are very different in practical complexity, and often (but not always) 
we know which category a problem belongs to. One category, easier to solve, is the 
subclass of NP-complete problems that have pseudopolynomial solutions. These problems 
are often tractable in practice in spite of their NP-completeness. To explain the meaning of 
a pseudopolynomial solution, a simplified example may be useful. Suppose that our 
problem concerns n identical jobs and yet the solution takes O(n) time. One might think 



that this result is polynomial, and indeed it is polynomial in n, but it is not polynomial 
relative to the size of the necessary input because all it takes to describe n identical jobs is 
a string of length O(log n), and n is not a polynomial function of log n; instead, n is O(2log 

n), which is exponential in the input size, log n. However, if we actually have to process 
these n jobs, then it stands to reason that O(n) is not prohibitive in a practical sense even 
though the problem may be NP-hard in the mathematical sense. There are several other 
common terms by which problems that have pseudopolynomial solutions are known, 
including: NP-complete in the ordinary sense, NP-Complete in the weak sense, and NP-
complete in the binary sense. The more difficult cases are described as NP-complete in the 
strict sense, in the strong sense, or in the unary sense, respectively. It may be worthwhile 
to elaborate on the terms binary and unary in this context. The essence of a 
pseudopolynomial case is that if the size of the input matched the size of the [integer] 
numbers that are involved, the problem would have a polynomial solution. But because in 
computers we can use binary inputs, which require O(log n) to describe a number of size 
n, the solution is not strictly polynomial in input size. The same would remain true with 
decimal inputs or any other base greater than or equal to 2. But suppose that we did not use 
the binary code but instead we used the unary code which represents the number n by n 
repetitions of the digit 1 next to each other. With unary coding, the size of the input would 
be such that a pseudopolynomial solution for binary coding would become polynomial. 
Thus, to say that a problem is NP-complete in the unary sense is the stronger statement: it 
remains NP-complete even if we give up the compactness of the binary coding. In such a 
case the problem can be complex even if its input requires only few small numbers.  
 In the text we will often mention models that are associated with NP-complete 
decision problems, and yet they can be solved for many jobs, say hundreds of jobs on a 
single machine. Typically, these are NP-complete in the ordinary sense. On the one hand, 
the existence of a pseudopolynomial solution does not imply that it is the best solution in 
practice. But on the other hand, there is a correlation and such problems are often easier to 
solve even with algorithms that are not pseudopolynomial. Furthermore, if a problem has 
a pseudopolynomial solution, it is by definition easier to solve for small inputs. But it is 
sometimes possible to reduce the size of any numerical input by the simple expedient of 
rounding numbers with many digits to fewer digits. As a result, it may be possible to solve 
pseudopolynomial problems at least approximately within any given time frame. By this 
we obtain a nearly-optimal solution for an NP-complete problem in polynomial time.  
 We now discuss NP-hard problems, described by Garey and Johnson (1979) as “at 
least as hard as the NP-complete problems.” Liberally interpreted, this implies that any 
problem that can be shown to be at least as hard as an NP-complete problem can be called 
“NP-hard.” Two typical examples of NP-hard problems are optimization problems 
associated with NP-complete decision problems and problems that can be restricted to NP-
complete problems but cannot be shown to be in NP. For an example of the former, suppose 
that we can find the shortest makespan for the problem depicted in Figure 1.1, and denote 
that value by C. Then clearly we can answer any decision problem of the type “is there a 
sequence with makespan not exceeding B” for any B by simply comparing B to C. Thus 
the optimization problem (to find C) cannot be easier than the decision problem and if the 
decision problem were NP-complete the optimization problem is thus proved to be NP-
hard. As an example of the latter, in our context, stochastic scheduling models often involve 
intractable distribution calculations (which we address by simulation) and continuous 



variables. As such, even if posed as decision problems they are not in NP (solutions cannot 
be verified in polynomial time). Nonetheless, they can be restricted to problems in that 
domain by modeling deterministic processing times as degenerate random variables with 
integer values. Because the general problem cannot be easier than a restricted instance, if 
the decision problem associated with a restricted version of such a stochastic problem is 
NP-complete we know with certainty that our original problem is at least as hard 
(intractable) as an NP-complete problem, and is thus NP-hard.  
 One might think that optimization problems are much more difficult than decision 
problems, but that is not necessarily the case. Optimization problems with integer inputs 
and strictly positive performance measures can be expressed as a series of decision 
problems by conducting a numerical search for the optimal value as follows: 
 
1. Select any sequence and calculate its [objective function] value, say U. We now 

know that the answer to the decision problem “is there a sequence with value U or 
less” is “yes.” 

 
2. Let L = U / 2   (where x is the smallest integer not smaller than x; i.e., x ≥ x 

but x − 1 < x). If L = U, stop: U is the optimal value. Else, answer the decision 
problem “is there a sequence with value ≤ L?” If “yes,” let U = L and repeat; else, 
continue. 

 
3. [When we reach this step we have two distinct values L and U, of which U is 

feasible—the decision problem yields “yes”—and L is not. We maintain this 
structure from here on out but we reduce U or increase L until the unique optimal 
value is identified. This occurs when L + 1 = U.] Let k = (L + U) / 2  (where x 
is the largest integer not larger than x). If k = L, stop: the optimal value is U; 
otherwise, continue. 

 
4. Answer the decision question for the value k. If the answer is “yes,” set U = k; else, 

set L = k. Return to 3. 
 
This procedure essentially halves the gap between U and L every time, and therefore it 
takes O(log(U)) time. Since in typical cases O(log(U)) is polynomial in the problem input 
size, the complexity of the optimization problem matches that of the decision problem.  
 From the analysis above, we can conclude that if a decision problem has a 
polynomial (pseudopolynomial) solution, then the associated optimization problem also 
has a polynomial (pseudopolynomial) solution. Thus, there is no complexity difference 
between decision problems and optimization problems. Under the assumption that NP ≠ P, 
operationally, all our optimization problems belong to one of three classes: NP-hard, open, 
and polynomial. An open problem cannot have a known polynomial solution. Furthermore, 
the NP-hard group includes a “pseudopolynomial” subset. This does not imply, however, 
that we necessarily know exactly which category all problems belong to.  
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