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Abstract
This study examines how electric utilities and regulators can encourage residential
consumers to conserve electricity during the hottest summer days and shift electricity
load from the day to off-peak, nighttime hours. We analyze a two-year field experi-
ment involving 280 Texas households that explores approaches to conservation and
load-shifting to enable emission reductions and reduce generation costs. Our critical
peak pricing intervention reduces electricity consumption by 14% on the peak hours
of the hottest days, leading to greenhouse gas emission reductions of about 16%. A
key contribution of this study is the use of high-frequency appliance-level data. We
show that 74% of the critical peak response is from reducing air conditioning. In a
complementary nighttime pilot program, consumers respond strongly to lower prices
by programming the timing of electric vehicle charging. Our work highlights how
automation can influence the consumer tradeoffs relating to effort costs, discomfort,
monetary incentives, and warm glow.
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1 Introduction
Climate change is a crucial issue of our time, and we face major challenges in transi-

tioning to a deeply decarbonized electricity system. One of the primary hurdles lies in

adapting to higher proportions of intermittent renewable energy sources, which pose sig-

nificant difficulties for balancing real-time electricity supply and demand in the absence

of large-scale battery storage, particularly during peak demand periods.

In many locations, peak electricity demand occurs during and just after the hottest af-

ternoons of the year. Utilities must maintain sufficient generation capacity to meet these

high-demand periods, but peak period generation is often associated with the highest

marginal generation costs and emissions. Critical peak pricing strategies temporarily in-

crease the price of electricity during a small number of periods with the greatest need for

more electricity generation, usually due to high demand. In contrast to the peak periods

during the day, there are also often very low-priced periods at night, especially in regions

with abundant wind power. Strategies to lower nighttime electricity rates can be used as

a complement to critical peak pricing by encouraging the shifting of loads that are easy

to adjust, such as electric vehicle charging, to off-peak hours when marginal generation

costs are low. Shifting electricity demand away from the peak has the long-run potential

to lower generation costs and emissions, ease the transition to intermittent renewables,

and more effectively use the generation assets available in a region.

Therefore, a critical question for business leaders and policymakers revolves around

finding ways to cost-effectively influence electricity demand. This paper empirically ex-

amines strategies that electric utilities and regulators can deploy to incentivize residential

consumers to (i) conserve electricity during summer peak periods and (ii) shift electricity

usage from daytime to off-peak nighttime hours. Addressing these questions paves the

way for cost-effective climate change mitigation, reduced air pollutant emissions, lower

electricity generation costs, all while ensuring reliable service and affordability.

We begin by analyzing the results of a two-year field experiment involving 280 house-

holds in Austin, Texas with two programs of treatments: one in summer critical peak
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hours and one in shoulder-season off-peak hours. We first show that (i) there is a signifi-

cant reduction in residential electricity usage in our critical peak pricing (CPP) treatment

and (ii) this reduction is mainly attributed to a reduction in air conditioning usage (about

74% of the total response). We then provide evidence that the nighttime off-peak pric-

ing treatment successfully shifts electricity use from daytime hours to nighttime hours,

and this load shift appears to be from changing the timing of charging of electric vehi-

cles. Our study focuses on a neighborhood in Austin with a higher than average electric

vehicle ownership rate, allowing us to better understand consumer charging behavior.

We calculate that for each of the 27 CPP events, the average reduction in carbon diox-

ide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx) emissions is 7,027 tons, 7,542

lbs, and 10,720 lbs respectively when extrapolated to all of Texas. Thus, the energy con-

servation from CPP comes with real environmental benefits, which we value at $1,721,000

per event based on recent social cost of carbon estimates. The nighttime treatment shifts

electricity to a time of day when demand is low and there is more than enough generation

capacity. Furthermore, while the marginal emission intensity of the electric grid at night

in Texas may be high today, Texas has been building large quantities of wind generation,

which tends to generate the most electricity at night, so in a future decarbonizing electric

grid, the nighttime electricity could be very clean.

A key contribution of our work is well-identified evidence of the causal impact of CPP

during the day and lower prices of electricity use at night using rich appliance-level data.

This is the first study to show that the source of energy conservation from CPP is reduced

air conditioning and the source of nighttime load shifting is primarily from changing the

timing of electric vehicle charging. These results provide guidance for business leaders

and policymakers by suggesting that pricing and automation measures hold promise for

fostering pro-social behavior and aiding the shift to renewable energy, and they also set

the stage for future research on this topic.

The field experiment also includes treatment arms that test how information provi-

sion and conservation appeals influence behavior during the same especially hot days
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and hours as our CPP treatment. These treatment arms do not generate the robust effects

we observe in our CPP and nighttime load-shifting treatments, consistent with some re-

cent studies on information treatments (Andor et al. 2022). But we cannot rule out that

information or conservation appeal treatments could have an effect on electricity use.

We do find substantial behavioral changes in our study. We observe reduced electricity

use and emissions during 27 of the hottest days over two summers, a time when demand

is so high that the most expensive generation is being used, and a shift in electric vehicle

load to times with very low demand for electricity. In the future, leveraging these behav-

ioral responses could enable high levels of intermittent renewable generation by helping

to accommodate periods of very low renewable generation where a response in demand

would be exceptionally valuable.1 Fundamentally, our results stem from consumer trade-

offs between effort costs and comfort versus monetary incentives and pro-social conser-

vation motivations (Alizamir et al. 2023). As has been shown in recent literature, such as

in Bollinger and Hartmann (2020), automation can reduce the effort cost of responding to

signals. Our ability to observe the electricity consumption at the appliance level allows

us to look at the underlying process for the behavioral response to CPP, showing that it

comes about from an end use that is often programmable (air conditioning), thus indi-

cating that consumers are trading off reduced comfort and a minor effort cost to achieve

financial rewards and (potentially) a warm glow from conservation.

Furthermore, our appliance-level data reveal that the nighttime load-shifting response

appears to be driven by changing the timing of electric vehicle charging, which is a highly

programmable and automated response. In fact, it may require only a one-time effort each

season. We view this novel electric vehicle result as more suggestive and illustrative due

to the relatively small number of electric vehicles and less-than-perfect balance across

treatment groups, and see this as an important area for future work. While the changes

in behavior that we observe could be possible without automation, we believe that they

1For more on the importance of shifting consumer demand in Texas to reduce what is commonly called
‘stress on the electric grid’ during peak times, see https://www.texastribune.org/2022/05/13/
texas-power-conservation-heat/.

3

https://www.texastribune.org/2022/05/13/texas-power-conservation-heat/
https://www.texastribune.org/2022/05/13/texas-power-conservation-heat/


are much more likely to be realized in the presence of automation. Indeed, we see our

results as having important relevance for understanding behavior moving forward, for

many home appliances and electric vehicles are likely to have automation capabilities in

the future. Further, these findings relating to automation point to the potential efficacy of

an alternative approach for electricity conservation in peak hours: allow households to

enroll in automatic control of air conditioning or electric vehicle charging by the utility

(a next step in automation beyond a programmable appliance). Automatic control could

potentially garner much of the gains from pricing.2

While others have evaluated pricing experiments in different contexts and with dif-

ferent research questions, our study contributes to the literature by quantifying the sig-

nificant value of flexible electricity demand towards reducing greenhouse gas emissions

based on appliance-level experimental evidence in residential electricity conservation

from pricing. Ito et al. (2018) study critical peak period pricing and electricity conser-

vation appeals in the context of a major natural disaster in Japan–a very different con-

text than our own–and cannot explore the mechanisms underlying the response with

appliance-level data. Jessoe and Rapson (2014) run a field experiment with 250 house-

holds in Connecticut to explore how in-home devices that provide real-time information

on electricity pricing and consumption influence the total household response to a small

number of critical peak pricing events over a two-month time period.

Similarly, Prest (2020) apply a machine-learning method to estimate heterogeneity in

the the conservation of electricity in response to a time-of-use pricing scheme in Ireland.

Fowlie et al. (2021) show the effect of default options on electricity consumption in a crit-

ical peak pricing field experiment in Sacramento, California. Anderson et al. (2019) study

a field experiment with Danish electricity customers to look at rebates intended to lower

the cost of electricity to shift electricity consumption to lower-demand periods, similar to

our off-peak pricing experiment, although with much shorter low-demand periods and

no insights into the appliances that drive the results. Other examples of field experimen-

2This is a concept Texas regulators are eager to spread; see https://www.texastribune.org/
2012/08/01/texas-push-save-power-peak-times/.
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tal work on electricity pricing in Texas, such as Royal and Rustamov (2018) and Zarnikau

et al. (2015), provide useful evidence but do not have the breadth or depth of our study.

In line with much of the literature performing field experiments in electricity con-

servation, a limitation of our study is that it focuses on a particular location and has a

modest sample size. Accordingly, we view our research as laying additional groundwork

for further field experiments to influence electricity demand in other empirical settings.

2 Research Design

2.1 Design of the Field Experiment
The two programs of our field experiment were conducted in 2013 and 2014 in Austin,

Texas and were focused on the Mueller neighborhood. The non-profit “Pecan Street Inc.”

is our partner and data provider (see https://www.pecanstreet.org/about/). House-

holds were told that by enrolling they could save on their electric bills and were provided

a $200 sign-up incentive for participating regardless of their behavior. The recruitment

e-mails also were clear that there was no possibility of a loss (see Online Appendix A for

the e-mail text). The recruitment was highly successful and 256 households in the Mueller

neighborhood (out of about 5,000 dwellings) who agreed to participate were included in

the experiment, along with 24 from elsewhere in Austin.

The primary reason for the relatively small sample size is that all 280 households in the

study had appliance-level electric meters installed on major appliances and circuit-level

meters installed in rooms that did not have major appliances. For the 256 households in

the Mueller neighborhood, these were installed upon construction of the homes. For the

24 households elsewhere in Austin, these were installed upon participation in any Pecan

Street activity (all prior to this experiment).3

The 256 households in the Mueller neighborhood were randomly assigned to one of

five groups: (1) Control - 57 homes did not receive any treatment during 2013 and 2014.

Like the other groups, they also had appliance-level and circuit-level metering. (2) Passive

3The installations were paid for by grant funding raised by Pecan Street and the budget only allowed
for 280 houses to be included in the study.
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Information - 44 homes were provided access to an online portal that tracks appliance-

level electricity use. (3) Active Information - 47 homes were sent a text message appeal

24 hours prior to every CPP event stating “A Pecan Street Project critical peak event is

taking place tomorrow from 4PM to 7PM.” (4) Active Information + Recommendation -

46 homes received the same text message as in #3 along with one of three recommended

actions: “Pre-cool your home,” “Reduce your air conditioning usage,” or “Do not use

your clothes dryer.” (5) Pricing - 62 homes faced CPP during the summer months (June-

September) of 2013 and 2014. They received a text message 24 hours prior to each event

stating “Tomorrow is a Critical Peak Pricing event. Your experimental electric rate will

be $0.64 per kilowatt hour from 4PM-7PM. Pecan Street Inc. Pricing.” During the months

of March, April, May, November, and December, when wholesale prices at night are low,

they received a text message 24 hours prior to the start of the nighttime pricing stating,

for example “Pricing Trial Reminder: November and December are wind enhancement

months.” The lower experimental price was 2.65 cents/kWh. The 24 homes elsewhere in

Austin received no intervention and serve as another control group.

The summer (June-September) electric rate in 2013 was 11.4 cents/kWh and in 2014

was 12.1 cents/kWh for the local utility, Austin Energy. In the winter (October-May) it

was 8.7 cents/kWh in 2013 and 8.9 cents/kWh in 2014. Thus, the pricing treatment led to

a substantially higher marginal price during the peak event periods and a substantially

lower marginal price during the nighttime off-peak event periods. These rates are set

based on a negotiation process between the utility and state regulator. Under the standard

Austin Energy pricing, peak periods were not priced differently than any other period,

so residents would not experience savings from reduced electricity consumption during

peak periods besides through the normal cost savings from using less electricity. Twenty-

seven critical peak treatment days occurred during the months of June through September

2013 and 2014. These event days were called a day in advance based on the expected

temperature (see Online Appendix A for further details). All treated participants were

sent an e-mail upon their registration indicating that they could save money during peak
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times by shifting laundry, dishwashing, and air conditioning usage to another time.

The randomization occurred once and was used for both programs of the field exper-

iment: the summer CPP program and the winter lower pricing program. In effect, the

households in the pricing treatment had their tariffs moved closer to wholesale prices

in both the off-peak and summer months. One challenge in the experimental design is

that changing electricity rates requires a major process involving the utility and the state

regulator, the Public Utility Commission of Texas. Pecan Street has a relationship with

customers just like the utility, but is not the actual utility, which is Austin Energy. Thus,

to change the effective retail electricity rate, we followed the same approach as in several

recent papers, including Wolak (2006) and Gillian (2018). Specifically, Pecan Street set up

a credit account for each household in the pricing treatment, which they could view on

the online portal. Households received their usual electric bill from Austin Energy but

also received a modified bill from Pecan Street. If the bill using the experimental CPP

rate was lower (e.g., from the off-peak night program) than participant’s Austin Energy

bill, the difference is deposited in the credit account. If the bill using the experimental

rate was higher (e.g., from critical peak pricing), the difference was deducted from the ac-

count. The participants in the experiment had their balances adjusted every month with

their regular bill, and at the end of both pricing experiments in October 2014, participants

were issued a payment.

If there are behavioral biases, the effect of this payment scheme may not exactly match

the effects of critical peak pricing performed by the utility that directly changes the single

electricity bill. Pecan Street attempted to mitigate this as much as possible by commu-

nicating the critical peak prices in the text message and by emphasizing in e-mail com-

munications that the household’s true electric bill is the Pecan Street bill. At the end of

the experiment, 97% of the pricing participants had positive credits, implying that they

saved money from their actions under the experiment. The average payment was $125.13

and the highest payment was $260, plus the $200 flat-rate participation payment that all

participants in all treatment groups received (so the largest overall payment was $460).

7



Due to the possibility of site selection bias, it is worth considering how representative

the Mueller neighborhood is of the city of Austin. In Online Appendix A, we compare

Census demographic data from 2014 for the Mueller neighborhood and the city of Austin

(see Table A.1). Our comparison of observables indicates that households in the Mueller

neighborhood are quite similar to the average household in the city of Austin. In fact, the

confidence intervals overlap in five of the eight observables. There are some differences.

Households in the Mueller neighborhood are very slightly wealthier and better-educated

than households in Austin as a whole. Not surprisingly, because the homes are relatively

new, the median home value for owner-occupied housing units is higher than average in

the city of Austin. However, the number of rooms in the homes is slightly smaller. The

sample also contains more households with electric vehicles (56 households; 22% of the

sample) than the average electric vehicle market share of new cars in Texas in 2013-2014,

which is under 1% (it is nearly 4% in 2023Q1). This provides an important opportu-

nity to explore load shifting of electric vehicle charging, but also points to a limitation of

the study in that our population is representative of early adopters of new technologies,

rather than the mainstream population.

Indeed, we are cautious in extrapolating our results too far beyond Austin, especially

for our nighttime program. They are likely the most applicable to other settings in the

south and southwestern parts of the United States that have similar climates, demograph-

ics, and affinity for new technology (e.g., certain neighborhoods in Albuquerque, San

Antonio, Dallas, etc.). The additional 24 households include outside the Mueller neigh-

borhood provide some further evidence on external validity to the rest of Austin.

3 Data, Econometric Analysis, and Results

3.1 Data
The primary outcome variable in our study is electricity consumption. We have

unique minute- and appliance-level electricity consumption data for each household from

March 2013 through October 2014. Appliances that are separately metered include HVAC

and other air conditioning units, refrigerators, electric vehicle chargers, clothes washers
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and dryers, dishwashers, ovens, and electric water heaters. In addition to the separate ap-

pliances, circuit-level meters are also included when there are circuits for specific rooms.

For example, there are readings for bedrooms, kitchens, and bathrooms. Our data also

contain a variable for total electricity consumption, which may include some electricity

usage that is not individually metered. There are roughly 200 million observations in

our dataset. Before performing any analyses, we conduct some minor data cleaning (see

Online Appendix B.1 for details).

Table 1 presents a summary of electricity usage data by period: summer (June-

September), non-summer (all other months), and the summer critical peak pricing pe-

riods. We have minute-level data in units of kWh per minute. In Panel A, we divide

observed appliance-level electricity consumption into two broad categories: adjustable

consumption and unadjustable consumption. Adjustable consumption refers to sources

that are likely to be easily switched up and down. For example, air conditioning, clothes

washing and drying, etc. Many of these end-uses are programmable. In non-summer

periods, adjustable consumption is just under 40% of the total on average, but it increases

to 58% of consumption in the summer and 73% of consumption during event periods.

Unadjustable consumption refers to sources that run all the time, such as refrigerators.

In non-summer months, this makes up 8% of consumption, but it drops to 5% in the

summer months and to 4% during event periods. As mentioned above, not all electricity

usage is individually metered. Thus, we have a third category for unmeasured electric-

ity consumption, which is equal to the total electricity consumption minus the sum of

the measured consumption. In non-summer months, this is over 50% of consumption, as

might be expected due to the many small appliances in a typical household (e.g., com-

puters, phone chargers, hair dryers, electric tools, etc.). In summer periods, this drops to

37% and in event periods, it drops further to 23%. The three categories sum up to 100%.

In Panel B of Table 1, we include four of the most important individually metered

uses. In the winter, heating is primarily natural gas heating, with electricity used to run

the fan. In the summer, cooling is via air conditioning. The data contain consumption
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by central air conditioning as well as window units, and we aggregate these together

into a single “AC” variable. We see that in the non-summer months, heating and cooling

constitute 16% of electricity use. In the summer months they constitute 45% of electricity

use and during event days they reach 63% of electricity use, dominating electricity use. In

contrast, washers and dryers constitute 3% of electricity use in the non-summer months,

and less than 2% during the summer or event days. These summary statistics provide a

glimpse into the unusually rich nature of our data and illustrate how heating and cooling

are the most important electricity service demands. For the households in the pricing and

other treatment groups that have electric vehicles, electric vehicle electricity use makes

up 5.7% of total use (averaged over minutes).

Next, we examine the balance of observables between the control group and the treat-

ment groups to assure that our randomization was carried out effectively. For this, we

relied on a survey of all households performed at the beginning of the field experiment.

Of the 280 households in the study, we received survey responses from 162 households.

Table 2 displays the balance of observables between households in the control group and

households in the treated groups (see Online Appendix B.2 for the breakdown by each

treatment). With the exception of the presence of an electric vehicle, none of the observ-

ables are statistically different between the control and treatment groups at even a 5% sig-

nificance level. We did not randomize based on the differences in electric vehicles across

treatment groups, and the differences across treatment groups are an unfortunate result

of randomization with a relatively small sample. We very carefully analyze the electric-

ity use in the pre-treatment period and perform robustness checks, but view our results

relating to electric vehicles as more illustrative than our causal results relating to the use

of other appliances, which are quite balanced across treatment groups. Row 1 of Table 2

indicates there is no statistical difference between treatment and control group non-event

day electricity use, which is a useful placebo test indicating that the randomization was

effective with respect to electricity consumption.4

4See Online Appendix B.3 Table B.5 for further summary statistics on electricity consumption.
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3.2 Summer Event Treatment Effects
Our empirical specification for the average treatment effect (ATE) for all summer treat-

ments j is the following linear equation:

Yit =
∑
j

βjTijt +Xγ + ρi + ϕ(t) + εit, (1)

where Yit is the electricity usage by household i in minute of the sample t. Tijt is a dummy

variable indicating that household i is in treatment group j and receives the treatment in

time t (i.e., it is an event hour on an event day and the household is treated). ρi are house-

hold fixed effects to control for unobserved heterogeneity at the household level. ϕ(t) is a

set of quarter-hour of the sample fixed effect (i.e., fixed effects for each 15 minute interval

of the sample) to control for time-specific demand shocks. X is a vector containing any

remaining interactions not subsumed by the fixed effects (e.g., it is an event day and the

household is treated with one of the treatments, or it is a peak time and the household is

treated).5

Our econometric specification in (1) can be viewed as a triple-differences specification

in that it exploits variation across treatment and control, across critical peak days and non-

peak days, and across treatment and non-treatment hours. Identification fundamentally

relies on the randomization of the field experiment, but further benefits from comparing

differences in trends in the triple-difference. We cluster standard errors at the household

level to account for any pattern of household-level correlation across the residuals (our

5To be clear, the triple differences are 1) control versus treated, 2) event day versus non-event day, and 3)
event period versus non-event period (4PM-7PM). The triple difference specification would include each of
these variables independently, all two-way interactions between these variables (e.g., 1X2, 1X3, and 2X3),
and the interaction between all three, i.e., the triple difference. However, our fixed effects absorb all the
variables and most of their two-way interactions.
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results are robust to also clustering at the daily level).6,7,8

3.2.1 Primary Results

Column (1) in Table 3 presents our raw results without any household or time fixed

effects. We observe that for all but the pricing treatment, there is very little difference in

electricity consumption between the treatment groups and control group. Looking at the

mean during the treatment period, the pricing treatment effect (-0.39 kWh per minute)

amounts to about a 14% reduction in usage.

Column (2) in Table 3 presents our main results from estimating Equation (1), which

controls for household and time fixed effects. Relative to the control group, the results

show no statistically significant effects for the online portal, text message, and text mes-

sage + recommendation treatment. It is important to note that although the information

treatment point estimates are close to zero and not statistically different from zero, the

lower bound of the text+action treatment 95% confidence interval (CI= -0.197,0.117) is

nearly the same as the upper bound of the pricing treatment 95% confidence interval (Cl

= -0.586,-0.194). Our experiment may be underpowered to detect small effects from infor-

mation if they are present.9

One might conjecture that there would be a large and significant effect from informa-

tion provision based on findings in the previous literature (Bollinger et al. 2011; Tucker

6Multiple hypothesis testing (MHT) is a potential concern in all empirical work, and occasionally
economists have begun adjusting for it. The statistical significance stars in our tables are based on stan-
dard tests, but we also use the Bonferroni MHT correction procedure to adjust the p-values in all of the
models run in this paper, and find very few changes. All of the statistically significant coefficients in the
critical peak program remain statistically significant with little change in the stars. We lose somewhat more
significance in the off-peak pricing treatment, but the off-peak treatment hour-specific results still show
statistically significant treatment effects in some hours.

7One question this specification raises is whether there may be spillovers from event hours to non-event
hours on an event day. When we drop the two hours prior to the event period and/or the two hours
after the event period, it turns out this has very little effect on our estimates. See Table C.1 in the Online
Appendix C.1 for details. We also explore other subsamples of the data, such as removing the day before
and after a treatment day when one might be worried about spillovers. We find no perceptible differences
in results.

8Clustered standard errors may be somewhat conservative, so we also use Newey-West standard errors
(with 60 lags based on the common 0.75 ∗T (1/3) rule of thumb, where T is the number of time periods). We
find no notable changes in the statistical significance.

9The pricing treatment effect is statistically different from the information treatment effects with p-values
of 0.0000, 0.0002, and 0.0002 for the text, text with information, and portal treatments respectively.
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and Zhang 2010, 2011; Grubb and Osborne 2015). However, this might be countered by

the effort and discomfort costs from reducing AC use on hot summer days that may make

information alone less effective. Indeed, recent evidence suggests that information alone

is not always effective (Andor et al. 2022). Further, there may be information overload

from the large amount of information on the online portal (Bettman et al. 1998; Chen et al.

2009). While our results are not by any means definitive on the effect of information, we

found the contrast between the information treatment coefficients and the significant and

much larger coefficient on the pricing treatment to be notable.

Our coefficient estimates in Table 3 indicate that pricing reduces event period electric-

ity use by 0.39 kWh per minute. The average electricity consumption during the event

hours for the control group is 2.79 kWh per minute, so this can be seen as a 14% decrease

in electricity consumption, which exactly matches the decline the raw data.10 For com-

parison, this decrease in electricity consumption is equivalent to $0.75 per event or $20.22

across the 27 event periods.

To visually demonstrate these core results of the paper, we present a series of figures.

We begin with non-event days when no treatment occurs to show just how similar the

patterns of electricity consumption are between the pricing treatment group and control

group. Figure 1 presents electricity usage by minute on average for all non-event days

in our sample for the pricing treatment group.11 For reference, the event day treatment

period is shown by the shaded areas, although no treatment is occurring. We observe no

difference between the pricing treatment and control.12

Figure 2 presents the same figure for the pricing group in critical peak event days

only. We see that the treatment and control groups are nearly identical for most hours,

10By convention, our data is measured in kWh per minute, which is a rate. We could determine the
total kWh used by each house by dividing use by 60 to get kWminute per minute and summing across all
minutes in the sample.

11The figure presents electricity consumption net of a house fixed effect to cleanly focus on the variation
we are interested in between the treatment and control. In other words, we regress consumption on a
household fixed effect and then predict consumption based on the constant and the residuals.

12Specifically, we perform two-sided t-tests, and cannot find a significant difference (even at the 10%
level) for any hour for any of treatments. The closest is midday for the text with message treatment, but
even this is not statistically significant.

13



but there is a large reduction in electricity usage during the treatment hours. This is an

important observation as it shows that there is no evidence of load shifting (i.e., total

daily consumption declines), which could limit emission reductions. Online Table C.8 in

Appendix C.5 shows that when we econometrically estimate hourly treatment effects, we

again see no evidence of load shifting.

3.2.2 Appliance-level Results

We now turn to results leveraging our appliance-level data. Columns (3) and (4) of Ta-

ble 3 replace Yit in (1) with electricity use from major categories, as previously defined in

Table 1. Column (3) shows that the reduction in electricity consumption from adjustable

uses across treatments is very similar to the total reduction in column (1).13 The treatment

effect for pricing is almost identical in columns (2) and (3), suggesting that the reduction

in electricity usage can be attributed entirely to adjustable uses. Column (4) presents re-

sults for non-adjustable uses, and it shows no statistically significant effects for any of the

treatments, as would be expected.14

A reasonable conjecture is that adjustable uses are the ones where a consumer is bal-

ancing effort costs and disutility from reduced comfort against monetary rewards, and

thus these would be the uses where we see an adjustment. We can dive deeper into this

conjecture in Column (5) of Table 3, which focuses on air conditioning. As we showed

in Table 1, air conditioning comprises 63% of electricity use during event days and is an

adjustable and programmable electricity use that inherently involves consumers making

tradeoffs between effort costs, comfort, and monetary costs, so one might expect much of

the response to be from this use. The results show a reduction of 0.29 kWh per minute

from air conditioning usage alone for the pricing treatment group–74% of the total reduc-

tions in electricity use. Figure 3 visually presents the treatment effect on air conditioning

use on event days, showing a pattern that is almost identical to the pattern in Figure 2.

Online Appendix C.1 presents the results for other major electricity uses, for which we

13Adjustable uses include all monitored lights, bathroom use, bedroom use, clothes washer use, dryer
use, dining room use, dishwasher use, kitchen use and kitchen appliance use, and office use.

14The results for the “unaccounted” electricity use are similar to those for the non-adjustable category,
with no statistically significant effects (See Online Appendix C.1).
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see minimal effects from the pricing treatment, underscoring the importance of air condi-

tioning.

3.2.3 Heterogeneity Analysis

We also explore heterogeneity in the treatment effects. The most interesting finding

comes from interacting the pricing treatment dummy with the billing tier that the cus-

tomer is on. All of the customers in our sample are on an increasing tier schedule for

their electricity rates, whereby households face a higher marginal price if they consume

more electricity. Online Appendix Table D.1 shows that households on the lowest tiers

(i.e., consume the least) show a much larger response (in terms of kWh conserved) than

households on the highest tier. This result may be because those on the lowest tier are

much more cognizant of their electricity use and perhaps face lower discomfort costs and

effort costs. We also explore interactions with demographics, but find mostly insignificant

results.

3.2.4 Robustness Checks

We perform a series of robustness checks (see Online Appendix C.1). We exploit dif-

ferent sources of variation and find that our results are quite robust. We also estimate our

primary specification with a logged dependent variable and aggregate to 15-minute-level

data instead of minute-level data, and find nearly identical results.

We next replace the control group in our estimations with a control group of 24 house-

holds elsewhere in Austin and find similar results (Online Table C.1). This last robustness

check with the Austin-wide control group suggests that our results likely have at least

some external validity beyond the Mueller neighborhood. Finally, we limit the sample to

households with similar demographic characteristics to Texas more broadly. We estimate

our primary specification on this subsample to explore external validity relative to the

rest of Texas (based on observables). Despite a reduction in sample size, the results are

robust (see Online Appendix C.2). For more robustness tests that provide some evidence

on mechanisms, see Online Appendices C.3 and C.4 where we find evidence indicating

that households did not pre-cool their homes (perhaps due to the effort costs) and that

15



people did not leave their homes during the critical peak hours.

3.3 Nighttime Off-Peak Pricing Treatment Effects
In the nighttime off-peak pricing program, households who were randomized into the

pricing treatment group receive a text message at the beginning of each off-peak month

(March, April, May, November, December) letting them know that their effective price

from the hours 10PM to 6AM is $0.0265 per kWh for that month.15 Harding and Lamarche

(2016) find load shifting from households with programmable thermostats, and thus a

reasonable conjecture is that we will see some changes in electricity use, especially from

thermostat settings and electric vehicle charging, which requires minimal effort to pro-

gram to complete charging by a certain hour. Accordingly, we focus our analysis on total

electricity use, electric vehicle charging, and heating. As mentioned above, a limitation of

this analysis is that electric vehicle ownership is not perfectly balanced across treatment

groups. Thus, it is especially important to look at electricity consumption outside of the

treatment period to assure it is similar across the control and pricing groups. One could

also view these results as a “proof of concept” intended to lay the groundwork for further

research in this area.

We begin by examining the average treatment effect during nighttime hours. Here we

only include households in the pricing treatment and control group and over the relevant

(off-peak) months. We also exclude the daytime hours to account for load shifting. We

estimate the following linear specification:

Yit =
∑
h

βhTiht + ρi + ϕ(t) + uit, (2)

where Yit is again electricity usage by household i in minute t, Tiht is a dummy for be-

ing a treated household during the hour of the night h, where h is each hour over the night

from 10PM-6AM (or an average over several of the hours). As before, ρi are household

fixed effects, and ϕ(t) are fixed effects for each 15-minute interval in the sample.

For ease of presentation, in Table 4 we present coefficients for two four-hour time

15Recall that off-peak prices were between 8 and 9 cents/kWh in 2013-14.
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frames of night hours: 10PM-2AM and 2AM-6AM.16 Column (1) presents the results for

all electricity uses, column (2) for electric vehicles, and column (3) for heating. We find an

average increase in total electricity consumption in the 2AM-6AM off-peak hour window

of 0.13 kWh per hour (p-value = 0.063 and 95% CI =-0.007,0.267). This is a large increase,

and it is even more dramatic if we examine the treatment effect by hour (by interact-

ing with each hour separately rather than the two four-hour time frames). For example,

between 3AM and 4AM, we see an increase of 0.18 kWh per hour (p-value < 0.05 and

CI=0.023,0.337). There is also a significant effect for the hours 2AM-3AM that is similar

in magnitude to the effect for 3AM-4AM. Figure 4 visually illustrates these findings by

hour. Looking over the entire day, we see that the response to the night pricing is almost

entirely load-shifting, so that total electricity consumption over the day does not change.

The coefficient in column (2) indicates that 85% of the overall increase in electricity

consumption during the night off-peak hours is from the charging of electric vehicles,

highlighting that electric vehicles have potential to help manage electricity load due to

the minimal effort cost to program the charging.17 Notably, when put in terms of elastic-

ities, the response to the night price decrease (price elasticity=-0.28 (95% CI=-0.58,0.02))

appears to be greater than the response to the CPP increase (price elasticity=-0.03 (95%

CI=-0.06,-0.02)). This result is likely due to the ease of automation (a single one-time ac-

tion can adjust charging times for the entire season) and the fact that there are minimal

or no discomfort costs from the action. As electric vehicles become more common, this

finding suggests that nighttime low pricing will be increasingly valuable by encouraging

households to shift the charging of electric vehicles to low-cost or low-emission hours.

And the potential may be even greater when electric vehicles can send power back to the

electric grid, otherwise known as “vehicle-to-grid.” The results in column (3) show that

heating plays a much smaller role in the response to the lower prices at night, likely be-

cause the effort and discomfort costs weigh heavily against the modest financial incentive

16Table C6 in Online Appendix C.5 presents the results by hour.
17Online Appendix E provides model-free evidence also showing that the effect appears to be greater for

electric vehicle owners.
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(in contrast to the large incentive from the CPP).

As mentioned above, we do not have perfect balance between the pricing treatment

and control group in electric vehicle ownership, which may raise sample selection con-

cerns. Figure 4 very clearly shows that the treatment and control groups had extremely

similar electricity consumption outside of the treatment period, which is very helpful for

internal validity. In columns (4) and (5) of Table 4, we present further evidence supportive

of the internal validity of the analysis. First, we use a larger control group that also in-

cludes the control homes from elsewhere in Austin (column (4)). This brings the fraction

of electric vehicles in the control group to 34% (versus 37% in the treatment). The results

are comparable to our primary results. Second, we use a matching estimator, where we

match on pre-treatment electric vehicle usage (see Online Appendix C.5 for details). The

results are again similar (column (5)). While these robustness checks do not eliminate the

limitation of our “proof-of-concept” analysis, they suggest that sample selection is less

likely to be biasing our results.

4 Implications for GHG Emissions and Cost Savings
In the current Texas electricity system, the time of the day with the lowest prices (and

lowest marginal generation cost) is almost always at night, due to low demand for elec-

tricity and high generation by wind in West Texas. In the future, with continued building

of wind generation, it is likely that the marginal emissions at night could be very low.

However, at the moment, coal-fired generation is sometimes used as the marginal gener-

ator at night in Texas. Thus, the lowest-cost time of day – at night – may be the time with

the lowest average emissions but not necessarily the time of the lowest marginal emissions,

leading to a tradeoff today between lowering the overall cost of electricity generation and

lower emissions. This tradeoff will disappear over time with higher levels of renewables

and retirements of coal plants. Indeed, the ability to use pricing and automation to shift

electricity use could also be used in the future to optimally increase use at the times of

the lowest greenhouse gas (GHG) intensity depending on the development of different

renewables.
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To estimate the impacts on emissions and costs, we bring together data on marginal

emissions and the marginal costs of generation at the hourly level. We begin by esti-

mating the marginal emissions by hour of day for carbon dioxide (CO2), sulfur dioxides

(SO2), and nitrogen dioxides (NOx) following Holland et al. (2016). We perform this anal-

ysis for summer peak periods (4PM-7PM) and off-peak night hours (10PM-6AM). Online

Appendix F provides estimation details.

4.1 Emissions Reductions
Applying the marginal emission factors to our field experiment results allows us to

calculate daily emission reductions (Table 5). For these illustrative calculations, we scale

the results to all residential households in Texas, assuming a similar effect if all received

the CPP treatment and responded similarly to those in our field experiment.18 Panel A

shows an average reduction in CO2, SO2, and NOx emissions of 7,027 tons (16% reduc-

tion), 7,542 lbs, and 10,720 lbs respectively. Using a $185/ton social cost of carbon (Ren-

nert et al. 2022), a $92,000 per ton cost of SO2, and a $14,000 per ton cost of NOx (EPA

2013), these figures translate to a reduction of $1,299,999, $346,923, and $75,044 per CPP

event period respectively. The reduction in the social costs from CO2 emissions is equiva-

lent to driving a Ford F-150 approximately 15 million fewer miles.19 Panel A also displays

the impacts of the CPP on air conditioning alone, which amounts to roughly 75% of the

total benefits.

One natural question that arises when thinking about these results is how much addi-

tional energy, and therefore emissions, will be required to keep homes cooled to preferred

temperatures as outdoor temperatures increase from human-induced climate change.

Panel B of Table 5 provides the emission reduction estimates for a one degree and three

degree change in air conditioning thermostat setting (see Appendix F for calculation de-

tails). These results show the potential added costs and emissions (if we had today’s

18We assume 11,000,000 houses in Texas based on Census data in https://www.census.gov/ quick-
facts/TX.

19F150 Average fuel efficiency 0.05 gallon/mile * 0.00889 tonnes CO2/gallon * Social Cost of Carbon
185$/tonne = $0.082/mile or the damages from driving a Ford F150 1 mile. Comparing to the avoided
damages from the CPP $1,299/999/$0.082/mile=15,808,882 miles.
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electric grid) from increases in temperature due to climate change.

Panel C of Table 5 displays the additional emissions and social costs of these emissions

associated with the increase in electricity use from the nighttime off-peak treatment, ex-

trapolated to all registered vehicles in Texas for illustrative purposes.20 We find that the

increase in emissions is relatively small, and not too different than if the electric vehicles

are charged during the day. This finding would change over time if much more wind

generation is built in the Texas electric grid. The social costs of the additional emissions,

even with the electric grid today, are modest ($55,192 total across the three pollutants).

4.2 Generation Cost Reductions
In addition to emissions, generation costs are also important, as they determine the

affordability of electricity and thus the likelihood that households will electrify end-uses

that are currently most often powered by fossil fuels (e.g., vehicles, heating, etc.). We

bring in data on hourly load and generation from the independent system operator on

the Texas electric grid, ERCOT, for 2013-2020.21 We also bring in an estimate of the hourly

marginal costs (“system lambda”) from Federal Energy Regulation Commission Form

714. We multiply the marginal costs during the CPP periods by the CPP electricity reduc-

tions.

In Panel A of Table 6, we find a reduction in generation costs of $0.059 per house per

treatment period or $652,419 if all houses in Texas received the treatment, a value far

greater than the cost of the treatments. Panel B displays the additional generation costs

associated with warmer outdoor temperatures, which shows that a one degree increase in

temperature would add $48,513 in generation costs per evening in Texas. One limitation

in this calculation is that the generation mix and marginal cost of generation are likely to

evolve over time, but this calculation provides a useful benchmark given today’s electric

grid.
20There are 52,190 electric vehicles registered in Texas according to https://electrek.co/2021/08/

24/current-ev-registrations-in-the-us-how-does-your-state-stack-up/. For this calculation, we simply take
the nighttime treatment effect and multiply it by the marginal emissions during the non-nighttime hours
(6AM-9PM).

21The sources are http://www.ercot.com/gridinfo/load/load_hist/ and http://www.
ercot.com/gridinfo/.
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In Panel C of Table 6, we present illustrative calculations showing that our field exper-

iment results – when extrapolated to electric vehicles in all of Texas – suggest savings of

$26,157 over the treatment period by shifting electricity usage from the day to the low-cost

night hours. This is approximately 50% of the additional social costs of the emissions from

the switch, so the switch to EV charging during night hours is net negative from a social

perspective given the current generation portfolio. Yet, this simple analysis misses the

long-run potential of load-shifting to different times through automation, which could

allow for the electric grid to accommodate greater amounts of intermittent renewables

while keeping the lights on.

5 Conclusions
This paper examines interventions for electricity conservation and load shifting to re-

duce generation costs and emissions. A unique aspect of the study is the use of appliance-

level data to provide the first evidence on the large contribution of air conditioning to the

critical peak pricing response and electric vehicle charging during off-peak times. Greater

use of the demand side interventions in our study holds potential to allow utilities to bet-

ter balance electricity supply and demand, and consequently enable a greater market

share of intermittent renewables on the electric grid.

A theme that runs through these results is the tradeoff that households are making

between comfort and effort costs to change behavior versus financial rewards and pro-

social warm glow motivations. Another key theme is that automation allows for greater

responses, as air conditioning temperature settings and electric vehicle charging can be

readily programmed. In the future, automation may have great potential to allow home-

owners to program a variety of appliances to allow them to respond to price signals from

the utility (Bollinger and Hartmann 2020).

These findings have important implications for the environment and climate by show-

ing that CPP can result in notable emission reductions of carbon dioxide and other air

pollutants. The nighttime program served as a “proof-of-concept” for how consumers

could be incentivized to change the timing of load. Such a behavioral response is likely
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to be very important in a deeply decarbonized electricity system with high levels of in-

termittent renewables, as there will be periods of very low-cost clean electricity flooding

the system, which would be optimal periods to charge electric vehicles.

Our study does have limitations. It is a randomized controlled trial with self-selected

participants, similar to much of the recent literature (e.g., (e.g., Kahn and Wolak 2013;

Jessoe and Rapson 2014; Ito 2014). The study was performed in a heterogeneous neigh-

borhood in a hot climate where many households were interested in solar energy and

electric vehicles, so we certainly cannot claim external validity to all neighborhoods in

the United States. Our experiment also compensates households to participate in the pro-

gram, and thus it should not be interpreted as identical to a utility-run pricing program.

Our findings should be viewed in light of these limitations as providing an useful “proof

of concept” of interventions that have potential to reduce emissions and electric grid costs

that future research with larger samples and in other locations could corroborate.

Indeed, while the results in our study lead us to focus on air conditioning usage and

electric vehicle charging, as smart homes become more widespread with greater automa-

tion of appliances, additional opportunities for emission reductions and cost reductions

may arise. One could imagine consumers allowing a signal sent from the utility to elec-

tric vehicles to ramp charging up or down depending on the cost and carbon intensity

of the electricity. Future work on these topics can leverage the findings of our analysis

to provide deeper insights for manager and policymakers working at the intersection of

business and climate change.
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Tables & Figures

Table 1: Use By Major Category (Percent)
Variable Non-Summer Summer Event Period

Panel A: Use by major category
adjustable 39.3 58 72.8
unadjustable 8.3 5.2 4.3
unmeasured 52.4 36.8 22.9

Panel B: Use by major appliance
heating/cooling 15.7 44.9 63.2
washer/dryer 2.9 1.6 1.0
kitchen 9.1 5.2 4.4
Electric vehicle 4.6 2.9 2

Notes: The values in Panel A add up to 100%. “Unadjustable” refers to
appliances such as refrigerators that must run all the time. “Adjustable”
refers to usage from individually metered appliances that can easily be
turned up and down (e.g., air conditioners, clothes washers, dryers, etc.).
“Unmeasured” is the difference between total consumption and the sum
of the adjustable and unadjustable individually metered usage, and it
includes any appliance that does not have an individual meter. Panel B
includes selected metered appliances, and thus does not add up to 100%.
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Table 2: Balance of Observables
Control Treatment

mean std. dev. mean std. dev. mean diff p-value
Non-event-day 4-7 PM Electric Use (kWh/minute) 2.58 2.32 2.82 2.49 -0.24 0.14
Pre-Treatment Electric Use (kWh/minute) 0.82 1.19 0.98 1.6 -0.15 0.054
Income (categorical) 4.61 1.27 4.25 1.39 0.36 0.17
Education (categorical) 1.58 0.57 1.63 0.59 -0.05 0.67
Preferred Thermostat Temp (◦F) 76.74 2.23 76.93 2.47 -0.19 0.67
Number of Televisions 1.72 1.06 1.74 0.92 -0.02 0.92
1(Has Solar PV System) 0.08 0.27 0.18 0.38 -0.10 0.12
1(Has Electric Vehicle)1 0.14 0.12 0.51 0.24 -0.37 0.00
1(Has programmable thermostat) 0.68 0.48 0.76 0.43 -0.08 0.44
Number of Residents 2.34 1.07 2.44 1.32 -0.10 0.67
Square Footage of House 1889 612 2076 705 -187 0.25

Notes: Data on demographics was obtained from the Pecan St. survey. An observation is a household. Average income is approxi-
mately $85,000 for treatment and control groups. Some houses only responded to certain questions, hence the number of observations
varies by observable. The number of observations for each observable are as follows: N income = 107, N educ = 110, N temp = 109,
N number of televisions = 110, N solar pv = 110, N residents = 99, N house square footage = 88, N Programmable Thermostat = 87.
1EV is only for the pricing and control groups as we only evaluate electric vehicle use during the off-peak pricing trial. Adding all
information treatment groups to the control group increases the proportion of houses in the control group with EVs to 34% (25 houses
with EVs in the expanded control group). This expanded sample is used in Table 4 and described in the text. The pre-treatment period
is defined as March-May 2013.
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Table 3: Summer Event Treatment Effects
(1) (2) (3) (4) (5)

Electricity Electricity adjustable nonadjustable AC only
βTDPj coefficients Use Use (include AC)
Pricing -0.39*** -0.39*** -0.38*** -0.001 -0.29***

(0.09) (0.09) (0.10) (0.002) (0.08)
Text + Action -0.04 -0.04 -0.10 -0.001 -0.08

(0.07) (0.08) (0.08) (0.001) (0.07)
Text Message 0.05 0.04 -0.003 0.005 -0.02

(0.08) (0.08) (0.10) (0.003) (0.08)
Portal 0.02 0.02 -0.07 -0.001 0.01

(0.08) (0.08) (0.08) (0.001) (0.06)
Household FE N Y Y Y Y
Quarter of Sample FE N Y Y Y Y
R-squared 0.03 0.16 0.09 0.24 0.06
N 194m 194m 145m 194m 145m

Notes: Column (1) does not include any fixed effects, but includes all triple difference variables. Dependent
variable in columns (1) and (2) is total electricity use, in (3) is electricity use from all adjustable appliances
(e.g., air conditioners, washers, dryers, etc.), in (4) is electricity use by non-adjustable uses (e.g., refrigerators),
and in (5) is electricity use by air conditioners (AC) only. Triple-difference coefficients shown; all other
interactions in (1) are included. An observation is a household-minute and electricity use is in units of kWh
per minute. Standard errors clustered on i in parentheses. The number of observations changes in each
column because not all households have everything individually-metered. The average control group usage
during the event periods is 2.79 kWh per minute. *** denotes p<0.01.
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Table 4: Nighttime Off-Peak Pricing Experimental Program
(1) (2) (3) (4) (5)

Use EV Heating EV EV
Original Original Original Expanded Matched
Sample Sample Sample Control Sample

1(Treated × 10PM-2AM) 0.02 -0.08 0.01 -0.07 -0.01
(0.07) (0.07) (0.05) (0.06) (0.09)

1(Treated × 2AM-6AM) 0.13* 0.11* 0.01 0.11** 0.17**
(0.07) (0.06) (0.06) (0.05) (0.09)

Household FE Y Y Y Y Y
Quarter of Sample FE Y Y Y Y Y
R-squared 0.15 0.09 0.11 0.07 0.02
N 30m 13m 30m 20m 12m

Notes: Dependent variable in (1) is total electricity use, in (2), (4), and (5) is electric vehicle
use, and in (3) is heating electricity use. Only triple-difference coefficients shown; all other
interactions in Equation (2) are included. An observation is a household-minute and electricity
use is in units of kWh per hour. Regressions only include off-peak period hours (10PM-6AM)
to exclude load shifting effects during non-treatment hours as evidenced by Figure 4. Columns
1-3 use the original sample of houses. Column 4 adds control houses from the information
treatment groups. Column 5 matches treated houses to control houses in the original control
group based on pretreatment EV usage. The average control group usage during the nighttime
period is 0.66 kWh per minute. Standard errors clustered on i in parentheses. * denotes p<0.01.

Table 5: Emissions
CO2 SO2 NOx

Panel A: Critical Peak Pricing Emissions
Total Use Emissions Reductions (tons (lbs)/Texas/event) -7,027.02 -7,541.82 -10,720.71
Social Cost of Total Use Emissions Reductions ($/Texas/event) -1,299,999 -346,923 -10,720
AC Emissions Reductions (tons (lbs)/Texas/event) -5,225.22 -5,608.02 -7,971.81
Social Cost of AC Emissions Reductions ($/Texas/event) -966,666 -257,969 -55,803

Panel B: Additional Cooling Emissions
Emissions from 1 ◦F (tons (lbs)/Texas/evening) 522.52 560.8 797.18
Social Cost from 1 ◦F ($/Texas/evening) 96,667 25,797 5,580
Emissions from 3 ◦F (tons (lbs)/Texas/evening) 1,567.57 1,682.4 2391.54
Social Cost of 3 ◦F ($/Texas/evening) 290,000 77,391 16,741

Panel C: Wind Pricing Emissions
Emissions from Additional Nighttime Use (tons (lbs)/all EVs/nighttime) 16.41 25.48 16.36
Emissions if Charged During Day (tons (lbs)/all EVs/daytime) 16.06 23.93 16.28
Additional Emissions from change in charging profile (tons (lbs)/all EVs/treatment period) 52.92 232.03 12.21
Social Cost of Additional Emissions ($/all EVs/treatment period) 44,433 10,674 85

Notes: Panel A displays emissions reductions from the CPP treatment effect for a single event period. Tons are used for CO2, while pounds are used for SO2 and NOx. Results are
extrapolated to 11,000,000 houses in Texas. The CPP emissions reductions are approximately 16% of total emissions during an average event period. Panel B displays the additional
emissions and social cost of emissions from a 1 or 3 ◦F increase in temperatures above the preferred thermostat setting. Texas is expected to experience a 3 ◦F increase in average
temperatures by 2050. The numbers are for 11,000,000 houses in Texas for a single 3-hour peak period. Panel C displays the emissions from the additional EV charging at night
relative to charging in the daytime. We use a social cost of carbon of $50 ton. We use a $92,000 per ton cost of SO2, and a $14,000 per ton cost of NOx.
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Table 6: Generation Costs
Panel A: Critical Peak Pricing Costs

CPP Generation Cost Reductions ($/house/event) -0.059
CPP Generation Cost Reductions ($/Texas/event) -652,419

Panel B: Additional Cooling Costs
Generation Costs from 1 ◦F ($/Texas/evening) 48,513
Generation Costs from 3 ◦F ($/Texas/evening) 145,540

Panel C: Wind Pricing Costs
Generation Cost During Night ($/house/nighttime) 0.012
Generation Cost During Night ($/all EVs/treatment period) 98,066
Generation Cost During Day ($/house/daytime) 0.016
Generation Cost During Day ($/all EVs/treatment period) 124,223
Reduced Generation Costs from Change in Charging Profile ($/all EVs/treatment period) -26,157

Notes: Panel A displays generation cost reductions from the CPP treatment effect for a single event period. Results are extrapolated to 11,000,000
houses in Texas. Panel B displays the additional generation cost from a 1 or 3 ◦F increase in temperatures above the preferred thermostat setting.
The numbers are for 11,000,000 houses in Texas for a single 3-hour peak period. Panel C displays the generation costs from charging EVs dur-
ing the nighttime treatment period, from charging EVs during the daytime control period, and the difference in generation costs between the two.
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(d) Pricing Treatment

Figure 1: The plots display non-event day mean minute level use by treatment group net
of a household fixed effect. Shaded region is treatment period.
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(d) Pricing Treatment

Figure 2: The plots display event day mean minute level use by treatment group net of a
household fixed effect. Shaded region is treatment period.
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Figure 3: The plot displays event day mean minute level air conditioning (AC) use for
the pricing treatment and control groups net of a household fixed effect. Shaded region

is treatment period.
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(b) Electric Vehicle Use

Figure 4: The plots display event period mean minute level total use and electric vehicle
use for the night low pricing treatment and control group net of a household fixed effect.

Shaded region is treatment period.
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