

CONTENTS

Preface				
1	Intr	oduction to Spreadsheet Models for Optimization	1	
	1.1	Elements of a Model	2	
	1.2	Spreadsheet Models	4	
	1.3	A Hierarchy for Analysis	7	
	1.4	Optimization Software	8	
	1.5	Using Solver	10	
	Sum	mary	16	
	Exer	rcises	17	
2	Line	ear Programming: Allocation, Covering, and Blending Models	21	
	2.1	Linear Models	22	
		2.1.1 Linear Constraints	24	
		2.1.2 Formulation	25	
		2.1.3 Layout	27	
		2.1.4 Results	28	
	2.2	Allocation Models	29	
		2.2.1 The Product Mix Problem	36	
	2.3	Covering Models	38	
		2.3.1 The Staff-Scheduling Problem	43	
	2.4	Blending Models	47	
	2.5	Modeling Errors in Linear Programming	52	
		2.5.1 Exceptions	53	
		2.5.2 Debugging	54	
		2.5.3 Logic	56	

vi		CONTENTS
	Summary Exercises	56 57
3	Linear Programming: Network Models	65
	3.1 The Transportation Model	66
	3.2 The Assignment Model	71
	3.3 The Transshipment Model	75
	3.4 Features of Special Network Models	78
	3.5 Building Network Models with Balance Equations	79
	3.6 General Network Models with Yields	84
	3.6.1 Models with Yield Losses	84
	3.6.2 Models with Yield Gains	86
	3.7 General Network Models with Transformed Flows	91 96
	Summary Exercises	96
4	Sensitivity Analysis in Linear Programs	108
	4.1 Parameter Analysis in the Transportation Example	109
	4.2 Parameter Analysis in the Allocation Example	116
	4.3 The Sensitivity Report and the Transportation Example	123
	4.4 The Sensitivity Report and the Allocation Example	127
	4.5 Degeneracy and Alternative Optima	129
	4.6 Patterns in Linear Programming Solutions	133
	4.6.1 The Transportation Model	134
	4.6.2 The Product Portfolio Model	138
	4.6.3 The Investment Model	142
	4.6.4 The Allocation Model	144
	4.6.5 The Refinery Model Summary	145 149
	Exercises	151
5	Linear Programming: Data Envelopment Analysis	160
	5.1 A Graphical Perspective on DEA	162
	5.2 An Algebraic Perspective on DEA	166
	5.3 A Spreadsheet Model for DEA	168
	5.4 Indexing	173
	5.5 Reference Sets and HCUs	174
	5.6 Assumptions and Limitations of DEA	178
	Summary	181
	Exercises	181
6	Integer Programming: Binary-Choice Models	191
	6.1 Using Solver with Integer Requirements	193
	6.2 The Capital Rudgeting Problem	198

CONTENTS			
	6.3 6.4	Set Covering Set Packing	202 205
		Set Partitioning	208
		Playoff Scheduling	211
		The Algorithm for Solving Integer Programs	215
		mary	220
		cises	220
7	Integ	ger Programming: Logical Constraints	227
	7.1	Simple Logical Constraints: Exclusivity	229
	7.2	Linking Constraints: The Fixed Cost Problem	231
		Linking Constraints: The Threshold Level Problem	237
	7.4	· ·	238
		7.4.1 Capacitated Version	239
		7.4.2 Uncapacitated Version	243
	7.5	Disjunctive Constraints: The Machine-Sequencing Problem	246
		Tour Constraints: The Traveling Salesperson Problem	251
		mary	259
		cises	260
3	Non	linear Programming	270
	8.1	One-Variable Models	271
		8.1.1 An Inventory Example	273
		8.1.2 A Quantity Discount Example	275
	8.2	Local Optima and the Search for an Optimum	277
	8.3	Two-Variable Models	280
		8.3.1 Curve Fitting	280
		8.3.2 Two-Dimensional Location	283
	8.4	Nonlinear Models with Constraints	285
		8.4.1 A Pricing Example	286
		8.4.2 Sensitivity Analysis for Nonlinear Programs	288
		8.4.3 The Portfolio Optimization Model	290
	8.5	Linearizations	293
		8.5.1 Linearizing the Maximum	294
		8.5.2 Linearizing the Absolute Value	296
	Sum	mary	299
		cises	301
)	Heu	ristic Solutions with the Evolutionary Solver	307
	9.1	Features of the Evolutionary Solver	308
	9.2	An Illustrative Example: Nonlinear Regression	309
	9.3	The Machine-Sequencing Problem Revisited	317
	9.4	The Traveling Salesperson Problem Revisited	319
	9.5	Budget Allocation	322
	1.0	~ wwg.v. 11104M1011	222

vii	i	CONTENTS	
	9.6	Two-Dimensional Location	324
	9.7	Line Balancing	327
		Group Assignment	331
	Sumn		334
	Exercises		336
Aı	pendi	ces	
1	Supplemental Files and Software		348
	A1.1	Supplemental Microsoft® Office Excel® Files	348
	A1.2	Analytic Solver Platform for Education Software	348
	A1.3	Opensolver Software	349
2	Graphical Methods for Linear Programming		350
	A2.1	An Example	350
	A2.2	Generalities	355
3	The Simplex Method		357
	A3.1	An Example	357
	A3.2	Variations of the Algorithm	362
Index			366

