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Abstract

We examine the impact of lost intellectual property protection on innovation, com-

petition, acquisitions, lawsuits and employment agreements. We consider firms whose

ability to protect intellectual property (IP) using patents is weakened following the

Alice Corp. vs. CLS Bank International Supreme Court decision. This decision has

impacted patents in multiple areas including business methods, software, and bioinfor-

matics. We use state-of-the-art machine learning techniques to identify firms’ existing

patent portfolios’ potential exposure to the Alice decision. While all affected firms

decrease patenting post-Alice, we find an unequal impact of decreased patent protec-

tion. Large affected firms benefit as their sales and market valuations increase, and

their exposure to lawsuits decreases. They also acquire fewer firms post-Alice. Small

affected firms lose as they face increased competition, product-market encroachment,

and lower profits and valuations. They increase R&D and have their employees sign

more nondisclosure agreements.
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What though the field be lost? All is not lost

Paradise Lost, John Milton, 1674.

1 Introduction

Intellectual property protection is at the core of innovation and competition policy. Economic

and legal scholars have debated extensively whether intellectual property (IP) protection in-

creases the incentives of firms to innovate and conduct R&D. The general consensus by many

economists has been that patents stifle innovation as Boldrin and Levine (2013) describe in

their survey article. Galasso and Schankerman (2015) reinforce this view by documenting

a positive impact on small firm innovation following patent invalidation of patents by large

patentees. Examining 60 countries over 150 years, Lerner (2002) also finds limited benefits of

increasing patent protection. He finds decreased domestic patenting following increased IP

protection but increases in foreign patenting, suggesting foreign competitors enter with the

increased protection. Yet not all studies agree that IP protection is harmful to innovation.

Budish et al. (2015) models how the length of patent protection should optimally increase

for long-term costly innovation when commercialization occurs later, otherwise companies

may not have enough incentives to innovate.

Thus, a natural question is how strong to make IP protection? The theories behind

optimal IP protection begin with Nordhaus (1969). In that study, the debate is about the

trade-off between giving patents to encourage innovation and the cost of reducing subsequent

competition resulting from giving the patentee a local monopoly over the life of the patent.

There are also issues with the scope of the patent. If patent protection is too broad, new

entrants and new innovation may be discouraged as the protected scope of existing innovation

might imply high entry barriers. Monopoly profits that arise from IP protection would also

be high, harming consumers. If too weak, then firms would be discouraged from engaging

in costly innovation as the fruits of that innovation would be potentially available to all to
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copy without incurring the costs of discovery.

Our study examines the consequences of weakened IP protection across multiple cate-

gories in a setting that shocked both existing patents and also incentives for future innovation

and patenting in the U.S. in multiple patent categories. We examine firms whose patents are

exogenously weakened by the Alice Corp v. CLS Bank International, 573 U.S. 208 (2014)

Supreme Court decision (Alice, henceforth). This decision revoked patent eligibility in mul-

tiple patent areas. We examine the impact of lost intellectual property protection on a

wide array of future firm decisions including firm innovation, competitive entry, acquisitions,

lawsuits, patent trolls, and secrecy via non-disclosure agreements.

The Alice decision revoked patent protection on business methods patents whose funda-

mental idea is considered abstract with a transformation that is not novel. As part of this

decision, the Supreme Court also ruled that the media and systems claims are similar to

the business methods claims, and they are also patent ineligible. Thus, the Alice decision

impacted multiple industries with patenting including data processing, software, finance,

games, and measuring or testing in microbiology and enzymology. The outcome of this de-

cision was in doubt given prior court decisions, and we show that it had a large impact after

the ruling. In the next section, we summarize the extensive lower court disagreements on

this case preceding the final Supreme Court ruling.1

We document that Alice has had a large impact on patent rejections, and it led to further

decreases in patenting in exposed areas in the years after 2014 in the above-mentioned

industries. Even post-Alice, there is considerable uncertainty about whether a particular

patent sufficiently transforms an abstract idea enough to make it patent-eligible. Rejections

based on Alice represented approximately 20% of the patent subject matter rejections overall

in 2015 and 2016. For example, in the commerce and data processing methods industry,

1Indeed when the case was being considered at the Supreme Court, there were extensive Amicus briefs
filed on both sides. Amicus briefs filed with the Supreme Court in support of CLS Bank included briefs
filed by Google, Amazon, Dell, LinkedIn, Verizon, Microsoft, Checkpoint Software, the Software Freedom
Law Center and Opensource Initiative, and prominent lawyers and economists. There were over 20 Amicus
briefs in support of Alice Corp., including Advanced Biological Laboratories, IBM, Trading Technologies
International, Inc., and prominent lawyers and economists. See http://www.alicecorp.com/fs patents.html
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36.2% of patents filed in 2013 were rejected citing Alice. We also conservatively estimate

Alice’s impact on future patents and find that Alice resulted in at least 3,237 fewer patents

being granted per year after Alice.

While the decision had a large ex post impact on patenting, there was and still exists

uncertainty about whether an existing or proposed patent transforms an idea sufficiently to

be granted patent protection. Given the uncertain impact on each patent, we apply novel

machine learning techniques on regulatory and patent textual corpora to assess how much

a given firm’s patent portfolio is exposed to Alice. Many legal scholars have written about

the Alice decision and the difficulties of measuring and deciding whether there is sufficient

transformation of an abstract idea to warrant a patent.2

We examine all patents in Alice impacted areas that were granted by 2014 (the date of the

Alice decision). Some of these patents are likely to fail to provide protection if challenged in

a court in the post-Alice period. This is a challenging computational task as there are more

than 3.8 million patents granted between 1994 and 2014. We thus focus on the patents with

the same primary Cooperative Patent Classification (CPC) as those rejected by the United

States Patent and Trademark Office (USPTO) per Supreme Court’s Alice criteria. Given

the uncertainty about whether a given patent will be rejected, we use machine learning to

gauge each patent’s textual semantic similarity to patents previously rejected under Alice.

We use a deep learning-based language model called Longformer to predict the likeli-

hood that each of the pre-Alice granted patents in the sample may become weakened and

patent-ineligible due to the Alice decision. Longformer is a transformer model that is an

improvement for long texts on the BERT model, which was released by Google in 2019 and

achieves state-of-the-art performance on various Natural Language Processing (NLP) tasks

(Devlin et al. (2019)). The model is also used in Google search queries, and Google argues

that transformer models help Google Search better understand one in ten searches in the

2See Kesan and Wang (2020) and Lim (2020) for an extensive discussion of these debates and issues.
These difficulties and the impact of Alice gave rise to U.S. Senate subcommittee hearings promoted in 2019
on potential revisions to strengthen intellectual property law in the “Stronger Patents Act.”
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U.S. in English.3 The breakthrough innovation of models like Longformer and BERT is that

they process words in relation to all the other words in a sentence, rather than one-by-one

in order or in a fixed-sized sliding window approach.4 These models can examine the full

context of a word by looking at the words that come before and after it.

We find a large impact of Alice on future patenting and innovation. We verify that ex

post patenting by firms whose patent stock is exposed to Alice significantly decreases for all

impacted firms. We then split firms by size ( and also by market share) as we hypothesize

that smaller firms may be hurt more by the lost patent protection as they have fewer resources

(managerial, financial and organizational) to defend their product spaces, while large firms

are leading firms with more resources who can defend their product areas.5 When we examine

R&D, we find no change for large firms but find a significant increase in R&D for small

firms. These results are consistent with small firms’ attempting to replenish their innovative

portfolio to escape competition from lost IP protection and to rebuild product differentiation.

Examining ex-post changes in sales growth and profitability along with firm value, we find

unequal impact. Large firms gain and small firms lose. Exposed large firms increase sales

and experience insignificant gains in valuation. Small firms whose patent portfolio is exposed

to Alice experience a decrease in operating margins and their market valuations.

It is perhaps not surprising that small firms lose when they experience losses in IP

protection. Farre-Mensa et al. (2020) show that small firms gain from patent protection

beyond the value of the idea itself using an instrument of random assignment of patent

examiners from Sampat and Williams (2019). They show that small firms gain access to

increased funding post-patent. Previous research by Galasso and Schankerman (2015) also

showed that when larger firms’ patents were invalidated, small firms increased innovation.

Our setting is different, and we examine who gains and loses after a change in intellectual

3https://blog.google/products/search/search-language-understanding-bert/
4We use the Longformer model as it outperforms the BERTmodel in our context. Results using SciBERT,

a version of BERT pretrained on a scientific corpus, were in an earlier version and are available from the
authors. Our conclusions using Longformer are fully robust using the SciBERT model.

5In the Internet Appendix, we provide results from classifying firms based on their market shares, and
thus by sales shares instead of assets, and the results are qualitatively similar.
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property protection that impacts whole areas of technology indefinitely for both large and

small firms. This differs from the prior focus on individual firms losing patent protection.

We show that differential losses for small firms are related to changes in competition

relating to decreased IP protection. These small firms face increased competition on a

number of different measures. Both large and small firms face increased venture capital

financed entry into their product space, but this entry is more severe for small firms. Small

firms face increased product similarity with existing competitors, and they complain more

about increased competition. We also find using textual analysis of 10-Ks that small firms

resort to non-disclosure agreements as an alternative way to protect IP post-Alice. Thus,

small firms turn to increased secrecy to defend new IP in the face of lost patent IP protection.

This shows that disclosure is important, which was also noted by Sampat andWilliams (2019)

in the case of technologies that shift from patentable to unpatentable.

We next examine patent infringement and intellectual property risk. We find that large

firms experience fewer claims that they infringe on other firms. This decrease is significant

for both patent-troll lawsuits and lawsuits by operating companies. This is intuitive as firms

would be less likely to sue a deep-pocket firm when the validity of the patents is questionable.

However, we find only weak results with the opposite sign for small firms. Our results are

consistent with losses in IP protection enabling large firms to increase product market power

at the cost of established smaller firms in their markets.

Regarding acquisitions post-Alice, we find that large firms decrease their acquisition

activity. This is consistent with the theoretical arguments and empirical evidence in Phillips

and Zhdanov (2013). They model how high market share firms may buy small firms after

they have successfully patented an innovation. Large firms buy smaller firms to access their

technology to then apply it to their larger customer base. Without a patent, there is less

reason for a large firm to buy a smaller firm. If a large firm can forecast that a small firm’s

patent might lose protection post-Alice, there is less incentive to buy small firms for their

technology as they can implement it for free without infringing the smaller firm’s patents.
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We document the impact of lost IP protection for firms in an entire area and examine

future firm performance, litigation, competition, secrecy, and acquisitions. Empirically we

show how and why small firms lose more from lost intellectual property protection. Small

firms lose as they face increased competition. They increase R&D and increase secrecy

as they use more nondisclosure agreements with their employees. In contrast, large firms

benefit from area-wide patent ineligibility as their sales increase while lawsuits against them

and costly acquisitions decrease. These results are consistent with large firms having more

resources - technological, financial and managerial - which allows them to protect their

product market position. The results are also consistent with the Schumpeterian effect

dominating, with increased innovation after the shock being preformed by laggard small firms

with low profits as Acemoglu et al. (2010) note. We thus conclude that patent protection is

particularly important for small firms competing with larger firms.

Our paper also contributes methodologically by applying machine learning techniques to

a difficult legal environment where the impact of Supreme Court decisions on individual firms

is not known until after a patent is litigated. Our paper points to the benefits of increased

competition and fewer lawsuits from reduced patent protection but also the costs for existing

small firms who most directly face the impact of increased competition from large firms and

new entrants. Our results thus show both costs and benefits of decreased IP protection.

2 Innovation and Alice v. CLS Bank International

There is a substantial debate on how strong to make IP protection. The general academic

consensus is summarized by Boldrin and Levine (2013), who state that there is no empirical

evidence that patents increase innovation and productivity. They advocate for abolishing

patents entirely and using other legislative instruments to increase innovation. Galasso and

Schankerman (2015) document that patent invalidation of large patentees triggers follow

on innovation by smaller firms. However, these were exogenous invalidations of particular
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existing patents and these tests are not about indefinite forward-looking changes to entire

patent areas as is the case for Alice. Lerner (2002)’s comprehensive study of over 60 countries

used patent law changes and showed some benefits of strengthening patent protection for

countries with initially weaker patent protection. Over time, however, domestic innovation

declines with increases in IP protection while foreign patenting goes up. Frequently, however,

such expansions of IP protection have been enacted simultaneously with relaxations of trade

protections.6 There is also evidence (see Budish et al. (2015) for example using cancer clinical

trials) that maintaining incentives to engage in innovation is important if the ideas take a

long time and are costly to develop.

We examine firm outcomes and competition after the landmark Supreme Court case,

Alice Corp v. CLS Bank International, 573 U.S. 208 (2014). This decision impacted large

industry areas - and key for us, not just a subset of an area. These areas previously had sub-

stantial patenting activity. Kesan and Wang (2020) review the impact of Alice and document

large decreases in 11 patent categories including bioinformatics, business methods, business

methods of finance, business methods of e-commerce, software (in general), databases and

file management, cryptography and security, telemetry and code generation, digital cameras,

computer networks, and digital and optical communications. They showed significant rejec-

tions of patents under Alice based on whether the proposed invention sufficiently transforms

an abstract idea or natural law. Section 101 of the Patent Statute specifies four categories

of the invention that are patent eligible: process, machine, manufacture, and composition

of matter. However, there are, three court made exclusions to these categories that limit

patent-eligibility: laws of nature, natural phenomena, and abstract ideas.

2.1 Legal Background of the Alice Case

In 2014, the Supreme Court of the United States decided a landmark case, Alice Corp

v. CLS Bank International, 573 U.S. 208 (2014). It had a major effect on patent eligi-

6Lerner uses an indicator for whether the change took place in the aftermath of the Paris Convention of
1883 or the TRIPs agreement of 1993 to control for endogeneity.
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bility across multiple patent categories. The issue was whether certain patent claims for

a computer-implemented scheme encompass abstract ideas, making the claims ineligible for

patent protection. The Supreme Court decided that known ideas are abstract, and discussing

the computer implementation of a known idea does not make it patentable.

The result of the case was quite uncertain, and it caused a debate among the judges.

After a district court held the patents invalid, the case reached to the Court of Appeals for

the Federal Circuit (CAFC). In this court, a randomly assigned three-judge panel could not

unanimously decide on the case, and the panel reversed the district court decision with a

majority opinion.7 However, given the case’s complexity and its importance for the whole

industry, the CAFC vacated the panel’s opinion and decided to the hear the case in a full

session of all ten judges that then heard the case.89

The uncertainty in the en banc session was not any less than the one in the three-

judge panel. Five of the ten judges upheld the district court’s decision that Alice’s systems

claims were not patent-eligible, and five judges disagreed. Seven of the ten judges upheld

the district court’s decision that Alice’s method claims were not patent-eligible. However,

these seven judges reached their opinions for different reasons. Overall, the judges could

not agree on a single standard to determine whether a computer-implemented invention is a

patent-ineligible abstract idea.

After the deep division in the CAFC, the Supreme Court of the US granted certiorari

and affirmed the en banc decision of the Federal Circuit Court of Appeals.10 The Court

held a two-step framework for determining the patent eligibility of applications that would

be applied to claims of abstract ideas. The Court decided that the claims in Alice patents

cover an abstract idea and the proposed method claims fail to transform the abstract idea

into a patent-eligible invention. The Court also ruled that the media and systems claims are

similar to the methods claim and that they are also patent ineligible.

7CLS Bank Int’l v. Alice Corp. Pty. Ltd., 685 F.3d 1341, 1356 (Fed. Cir. 2012)
8CLS Bank Int’l v. Alice Corp. Pty. Ltd., 484 Fed. Appx. 559 (Fed. Cir. 2012)
9CLS Bank Int’l v. Alice Corp. Pty. Ltd., 717 F.3d 1269, 1273 (2013).

10Alice Corp. Pty. Ltd. v. CLS Bank Int’l, 134 S. Ct. 2347, 2354 (2014).
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The Alice decision had a significant stock market reaction. We compute abnormal re-

turns at the time of the Alice decision by subtracting the equally weighted CRSP market

return. We find a significant negative coefficient at the 1% level for the -1 to +1 event-day

window surrounding the Alice decision for the most impacted firms. There is also substantial

variation, as at the average of our treatment variable, the excess returns were close to zero

at -0.1%. Yet for the top five percent of our treatment variable, this excess return is larger

at -0.8%. Thus, while the Alice decision had a small stock market impact for most firms, it

had a large impact for some firms.

2.2 Consequences of Lost IP protection

The Alice case had a large impact on ex post patenting. The process to eventually reject a

patent first starts with a petition by a litigant or an office action that is filed by a USPTO

examiner. In Table 1, we present statistics for the top 12 industries with patent applications

that were rejected by USPTO patent examiners citing Alice as the reason for reject for

patents applied for prior to the Alice decision. Over 33,700 distinct patent applications

made prior to Alice have been rejected in the 3 years post-Alice by examiners citing the

Alice precedent. These rejected patents cover 5,831 distinct CPC Subgroups (out of 126,540

total), 919 Groups, 283 Classes, and 8 CPC Sections.

This table reports annual statistics from USPTO patent application rejections based

on the Supreme Court’s Alice decision for the top 12 industries based on Alice rejections.

We present the number of patent applications from 2008 to 2017, with the percentage of

rejections in parentheses for these industries. We use rejection data provided by Lu et al.

(2017) that extends until 2016; therefore the ratio of rejection is assigned NA for 2017.

Change reports the percentage change from the number of patent applications in 2013 to

the average number of patent applications for the 2015-2017 period. Corresponding CPCs

for each industry are provided in Table 2.

Table 2 provides a description of the main CPC groups impacted by Alice. In Panel B,
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we provide the industry that contains these Alice impacted CPC groups. Kesan and Wang

(2020) document that about 17.9% of office action final decisions were rejected based on

section 101 for other reasons before Alice was decided. This rate increased to 72.4% of the

rejections of applications filed before Alice but decided afterwards, and 72.8% of applications

filed after Alice. Other categories including computer networks, GUI, document processing,

and cryptography and security also had significant increases in section 101 rejections after

Alice. The number of patent applications per month dropped significantly post-Alice by

12-31% across different categories. For example, patent applications in the business method

area dropped 29.5%. Kesan and Wang (2020) show using a difference-in-difference regression

that section 101 Alice rejections increased significantly in 11 different patent categories.

While Alice had a large impact on patenting, the Supreme Court left substantial ambigu-

ity about whether an individual patent transformed abstract ideas sufficiently to make them

patent-eligible. As legal scholars have noted, the court did not define “abstract” and the

court did not define how to decide whether an abstract idea has been transformed sufficiently

into an inventive concept by including additional limitations to the patent claim, the basis

for rendering claims eligible for patent protection. Given this uncertainty about whether

a given patent would be rejected because of Alice, we use a deep learning based language

model called Longformer to predict the likelihood that each of the pre-Alice granted patents

in our sample might become ineligible due to the Alice decision. We then study ex post firm

decisions and outcomes based on this predicted likelihood.

We split firms by large and small size as we hypothesize that smaller firms might be

hurt more by lost patent protection as they have fewer resources (managerial, financial and

organizational) to defend their product spaces while large firms will be the leading firms with

more resources who can defend their product area. The differential impact on innovation

by leading vs. laggard firms has been modeled for example by Aghion et al. (2005). In

our setting, given the large increase in competition post-Alice, we expect firms left behind

will innovate more in order to escape competition from other small firms. Larger firms
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are predicted to behave more like the Schumpeterian model and will innovate less as most

innovation will be preformed by laggard firms with low initial profits or by smaller firms

looking to break into the market.

We thus examine firm R&D and performance outcomes including changes in sales, oper-

ating income, and market valuations and the impact on competition overall between firms.

While we could conjecture that the impact of the loss of IP protection may be negative for

affected firms, such an unconditional prediction is not clear given predicted differences in

impact for firms with different abilities and innovative resources. We thus focus on testing

predictions separately for large and small firms. Large firms might benefit from losses in

IP protection in their sector, for example, as they may be able to adopt new ideas without

paying the firms who originally created the ideas. These firms might see decreases in the

competitive threats they face. We also test whether acquisitions decrease after Alice, as these

larger firms might be able to copy ideas without buying the firms that created them. Finally,

we predict that firms might seek alternative ways to increase secrecy and protect IP after

patent protection is lost. We predict that afflicted firms will thus use more non-disclosure

agreements and become more secretive to replace lost IP protection.

3 Data and Methods

We begin this section by creating and validating a model of Alice’s impact on lost IP protec-

tion at the patent level by training and applying the Longformer transformer model on the

text of each patent in our sample. We then aggregate patent-level impact to the firm level

to derive our key firm-level Alice treatment variable used in our study. We then discuss our

final sample and present summary statistics.
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3.1 Experimental Challenges

Our experiment needs to identify patents that were granted in the pre-Alice period but that

would lose protection if they are tested in a court in the post-Alice period. This identification

is challenging as there are more than 3.8 million patents granted between 06/19/1994 and

06/19/2014. To make the experiment tractable, we focus on the patents having the same

primary CPC as those that were rejected by the USPTO per the Supreme Court’s Alice

criteria. This filtering leaves us 642,678 patents that we need to score on the likelihood of

losing protection. Since manual examination is not feasible, we consider automated models

with reliable predictions in this context.

Basic text-based similarity techniques such as term frequency–inverse document fre-

quency (TF-IDF) have two major shortcomings. First, as technology vocabulary evolves

and patents use related but different terms, TF-IDF may have limited power to capture

similarity between two patents. Second, even when two patents use a similar vocabulary,

the Supreme Court’s Alice decision might affect one but not the other. These challenges

motivate us to use an automatized system such as the Longformer model, a transformer-

based language model (TLM), which is capable of catching both syntactic and semantic

information.11

The primary benefit of transformer models is that they process words in relation to all

the other words in a sentence, rather than one-by-one or in a fixed-sized sliding window

approach. Therefore, TLMs can examine the full context of a word by looking at the words

that come before and after it. This mechanism is referred to as self-attention and it provides

the capability to understand the intent behind a sentence. To illustrate, we examine two

sentences with similar meaning: i) Symptoms of influenza include fever and nasal congestion;

ii) A stuffy nose and elevated temperature are signs you may have the flu. While a TF-IDF

11A large number of empirical analyses document that TLMs are superior to the traditional NLP models
such as Bag-of-Words (BOW), Term Frequency-Inverse Document Frequency (TF-IDF), Word Embedding
models such as Word2Vec, FastText, GloVe, and other approaches that combine Word Embedding Models
with Neural Networks for Text Classification tasks (Adhikari et al. (2020); Maltoudoglou et al. (2022);
Esmaeilzadeh and Taghva (2021); Minaee et al. (2021); Roman et al. (2021)).
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model that filters the stop words (such as “and”) has a similarity score of 0, the BERT and

Longformer models find 0.86 and 0.98 similarity scores for these two sentences, respectively.

3.2 The Longformer Model

Transformer-based language models (TLMs) are neural network models that revolutionized

the field of Natural Language Processing (NLP) (Kalyan et al. (2021)). BERT is an early

example released by Google in 2019, and it is used in their search engine. BERT also achieves

state-of-the-art performance on various NLP tasks (Devlin et al. (2019)). Even though BERT

is powerful, however, a limitation is that it can only process 400 words from any given text.

A new transformer-based language model (TLM) Longformer (Beltagy et al. (2020)), was

specifically designed to overcome this limitation, and it can handle longer documents up to

3,200 words. Furthermore, for long documents, Longformer is superior to several TLMs, such

as BERT and RoBERTa (Beltagy et al. (2020); Gutiérrez et al. (2020); Xiao et al. (2021);

Gupta and Agrawal (2022)). Our results are consistent with these findings, as we find that

Longformer outperforms these other models.12 We use Longformer to predict the likelihood

that each of the pre-Alice granted patents in our sample might lose IP protection per the

Alice decision.

Since TLMs require high computational power, the Longformer model is pre-trained using

text from the Wikipedia, Book Corpus, CC-News, Open Web Text, and Stories datasets.

The pre-trained model is then fine-tuned for a specific NLP task using an additional deep-

learning layer with labeled data. We use descriptions of patent applications to train the

model. However, patent descriptions are generally longer than Longformer’s 3,200 word

limit. The average number of words is 9,173, and only 12.57% of the pre-Alice granted

patents in the sample have descriptions less than 3,200 words. We thus use the TextRank

12We also compare Longformer’s out-of-sample prediction performance, and its performance on economic
validation tests, to TF-IDF and other computational linguistics methods such as Word2Vec and also to
BERT. Overall, Longformer outperforms the other models on these validation tests and we adopt Longformer
as our baseline model. Results using SciBERT, which is a version of BERT pretrained on a scientific corpus
were in an earlier version of the paper and are available from the authors.
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automatic summarization tool, which internally uses Google’s popular PageRank algorithm,

to reduce the text size to 3,200 words (Mihalcea and Tarau (2004), Upasani et al. (2020)).

3.3 Rejected Patent Applications

We first gather the list of patents that are rejected under 35 U.S.C. §101 from the USPTO

website.13 We then identify the set classified as Alice-rejections based on the method of

Lu et al. (2017). This step leaves us with 56,709 rejected patent applications. However,

some are reapplications with a minor change (i.e., a change of only one or two sentences).

Therefore, we compute pairwise similarities between the applications using TF-IDF and tag

those with 0.99 similarity score as duplicates. For duplicates, we only keep the application

with the latest date. We are left with 33,734 unique rejected patent applications that have a

document number and Cooperative Patent Classification (CPC) information. These Alice-

rejected patents belong to 5,831 unique CPCs.

3.3.1 Training The Longformer Model

There are two phases of training and evaluation. First, we train the system using the text of

Alice-rejected patent applications (positives) and texts of applications that were eventually

granted (negatives). After training, we evaluate predictions using a hold-out testing sample.

From the set of 33,734 Alice-rejected patent applications, we randomly choose 10,000

for hold-out testing and use the remaining 23,734 as positives to train the system. Next,

we create a sample of negatives from patents that are successfully granted after 06/19/2014

(i.e., the Supreme Court’s Alice decision). To ensure robustness, we construct the sample

of negatives in four different ways based on the granularity of a patent’s CPC (which has

five levels): i) section; ii) class; iii) subclass; iv) group; and v) main group or subgroup. For

example, in CPC “B60K35/00”; B, 60, K, 35, 00 corresponds to the Section, Class, Subclass,

Group, and Main Group, respectively.

13https://developer.uspto.gov/product/patent-application-office-actions-data-stata-dta-and-ms-excel-csv
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In experiment A, for each of the 23,734 positives, we find a matching negative patent

that is in the same CPC Group that was granted after 6/19/2014. In samples B, C, and D,

we keep adding 23,734 more matching patents to the negatives pool based on CPC Subclass,

Class, and Section, respectively. Therefore, from A to D, each sample has 23,734 more

negatives with the newly added ones drawn from broader CPC codes.

3.3.2 Testing Longformer and Other Models

In this section, we evaluate how predictions from our trained Longformer Model compare

to predictions from SciBERT, BERT, RoBERTa, TF-IDF, and Word2Vec. For TF-IDF and

Word2Vec predictions, we combine the model with logistic regression, decision tree, and

random forest. In Internet Appendix Section 1, we present a detailed technical comparison

of the transformer language models.

For this testing phase, we start with the 10,000 hold-out positives noted above. For

each positive, we choose two negatives, giving us 20,000 negatives. This 1:2 ratio balances

the fact that the expected rejection ratio is lower than half, and we do not overestimate

accuracy for models that do not learn and only predict negative results.14 To obtain the

20,000 negatives from the 708,115 post-Alice granted patents, we first gather 50,000 negatives

that are randomly selected based on the CPC frequency distribution used in our prediction

sample (see next section). Finally, from this negative pool, we sample 20,000 negatives 1,000

times to boot-strap the performance of each machine learning model.

We then evaluate resuts using standard performance metrics from computer science:

precision, recall, F1 score, and accuracy. These metrics can be calculated from a confusion

matrix with the following elements: True Positives (TP), False Positives (FP), True Negatives

14For example, if the ratio of positives to negatives is 1:9, then a model that does not learn but only
predicts that all patents are negative would have 90% accuracy.
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(TN), and False Negatives (FN):

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, (1)

F1 Score = 2 · Precision ·Recall

Precision+Recall
, Accuracy =

TP + TN

TP + TN + FP + FN
. (2)

Table 3 reports the evaluation results for the machine learning models. In the last

column, we use an ensemble of the two models that have the highest F1 Score and Accuracy

by taking the average of their prediction scores (A has the highest F1 Score and D has the

highest Accuracy). The results show that the ensembled Longformer model is superior to

all other machine learning algorithms. It has the highest F1 Score (0.672) and Accuracy

(0.804).

Insert Table 3 here

3.3.3 Longformer Model Predictions for Existing Granted Patents

Our set of patents “to be examined for lost protection” consists of patents that were granted

between 06/19/1994 and 06/19/2014 and share the same primary CPC with at least one of

the applications that were rejected by the USPTO based on the Alice decision. In total, there

are 642,678 such patents representing 16.6% of the total granted patents over this period.

The results in Table 4 show that 111,420 of these 642,678 patents (or 17.34% of the

sample) have a Longformer score (predicted Alice rejection score) of 0.5 or higher, our

threshold of high likelihood of losing protection if these patents are challenged in a court.

Panel B of Table 4 provides the list of CPCs that have the highest number of patent

applications that were rejected by the USPTO and the list of CPCs that belong to patents

that have a Longformer score of 0.5 or higher. There is large overlap across these two lists.

Eight of the top ten CPCs for Alice-rejected patents are also in the high Longformer score

list.
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In Table 5 we provide further detail by industry and year on the number of granted

patents in impacted Alice industries. We present these by industry for the top 10 industries

along with the percentage of patents our Longformer model predicts would be rejected (those

with Longformer scores ≥ 0.5). The table shows that, among the granted patents in these

industries, multiple industries have over 25% of granted patents with Longformer scores ≥

0.5. These patents would likely lose protection post-Alice. Corresponding CPCs for each

industry are provided in Table 2. These percentages are similar to those in Table 1 for

patents that were actually rejected in post-Alice years.

To illustrate which key words are most informative for the Longformer model, we also

report the top 15 informative words for the top CPC groups impacted by Alice in Table 6.

The table lists the words that are used most frequently in patents with high Longformer

Alice scores (≥ 0.5) compared to those with low Longformer scores (<0.5). These words

“open the black box” and illustrate which words are important.

3.3.4 Longformer Alice Scores Pre- and Post-Alice

The nature of Alice is that it will not only impact current patents but also future patents

in the technological areas impacted by Alice. While it is hard to estimate this impact,

we provide some statistics to gauge its potential magnitude. In particular, we estimate

differences in the patents granted in key technological areas both pre-Alice (2011-2013) and

post-Alice in 2017.

Table 7 shows the distributional density of the Longformer Alice Score of granted patents

before the Alice shock (2011 to 2013) and after the shock (2017) for the Top 20 technological

areas impacted by Alice. To compute the density in a given year, we first identify, the set

of patents granted in that year in the Top 20 technological areas. The number of patents in

each year ranges from 21,404 in 2011 to 31,249 in 2013 to 32,662 in 2017 (of those patents

granted in 2017, 17,643 were applied for after the Alice decision). For the year 2017, as our

goal is to examine the patent distribution post-Alice, we restrict attention to these 17,643
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patents applied for in the post-Alice period. We sort all patents each year into 10 bins based

on each patent’s Longformer Alice Score. Bins are defined as the ten equal segments in the

interval (0,1), which is the range of the Alice Score. For each bin, the density is the number

of patents in the given bin in the given year divided by the total number of patents in the

given year.

Finally, to illustrate the impact of Alice on these areas, we compute the ratio in the final

column as the density in 2017 (column 5) divided by the average pre-Alice density averaged

over the years 2011 to 2013 (column 4). A ratio below unity indicates that the rate of

patenting in the given bin declined post-Alice.

Column (6) of Table 7 shows that, for bins with Longformer Alice scores exceeding 0.5,

patenting has declined sharply.15 In decile 10, the decile with the highest Alice scores,

patenting is only 38% of pre-Alice patenting. Overall, these numbers can be applied to

the number of patents in 2013 to estimate the total number of patents that “likely would

have been granted in 2017 if the Alice judgment had not occurred. In particular, for each

bin having materially positive Alice Scores (those greater than 0.3 in Table 7), we multiply

one minus the ratio in Column (6) by the number of patents in the given bin in 2013. We

then add these “likely lost patents” over these bins, and the result is 3,237 patents. This

calculation thus estimates that Alice resulted in 3,237 fewer patents per year by 2017 in

these 20 technological areas. Because Alice is still in effect, this annual total is likely to

accumulate every year, indicating an economically large impact.

The impact of Alice is also shown graphically in Figure 1, which shows the percentage

of post-Alice patents granted in 2017 relative to the numbers in 2011-2013 (this is Column

(6) of Table 7). The sharp drop-off on the RHS of the figure illustrates that firms greatly

reduced patenting in technologies that had the most Alice exposure.

15We find similar results if we use patent applications instead of patent grants. The tables can be requested
from authors.
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3.4 Patent Sample and Treatment Measure

We create the treatment measure for each firm i that we use in our regressions as follows:

Treatmenti =

∑Ni

j=1 PatentV aluei,j × AliceScorei,j

Salesi
(3)

In this equation, Sales i is firm i ’s total sales in 2013. PatentV aluei,j refers to the dollar

value of patent j for firm i obtained from the KPSS database (Kogan et al. (2017)). We

compute an alternative treatment variable where we replace patent value with the number of

citations the patent received (discussed below). The treatment variable is computed for each

firm in 2014 using all valid granted patents prior to the Alice decision. The patent values

in equation (3) are depreciated using an annual 20% rate relative to the base year 2014.16

Figures are further adjusted for inflation. AliceScorei,j refers to Longformer’s predicted

probability that a patent j loses protection if it were to be challenged in a court. Ni is the

total number of valid patents of firm i.

As an alternative to KPSS-based valuation, we create a citation-based metric to estimate

PatentV aluei,j in Equation (3). In this method, for each patent j, we count the number of

granted patents that cite j and have an application date that is within five years of j ’s grant

date. As we did for the KPSS-based methodology, we depreciate citation-based value using

an annual 20% rate relative to the base year 2014.

3.5 Sample and Key Variables

We include public firms with at least one patent from a CPC category with a rejected patent.

We link patents to public firms using the correspondence provided by Kogan et al. (2016),

who extended the data until 2020. Our patent text data comes directly from the USPTO

website. We also include the competitors of each firm in our sample using the TNIC-3

16We use a 20% depreciation rate following Hall and Li (2020)’s finding that depreciation rates are likely
higher than the 15% typically used in the literature, especially in high technology sectors. Our results are
fully robust to using a 15% rate.
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competitor network of Hoberg and Phillips (2016). Our sample thus includes 3,444 unique

firms: 1,035 Alice-affected firms and also 2,409 competitor firms.

Table 8 displays summary statistics for the sample of firms used in our analysis. Our

sample contains 19,372 firm-year observations based on our sample screens noted above

spanning the period from 2011 to 2017 (excluding 2014, the treatment year). We briefly

describe the variables used in our analysis (full details and a variable list are in Appendix

A). Table 8 presents summary statistics for firms both in the pre-Alice period of 2011-2013

and in the post-Alice period of 2015-2017.

Our goal is to examine firms with granted patents that were exposed to Alice as identified

by our Longformer model. We examine their innovation decisions, their lawsuits and other

legal consequences. We then examine the impact of Alice on their ex post profitability and

the competition they face in their product markets. Lastly, we examine how they change

their acquisitions in response to their Alice exposure.

Panel A of Table 8 presents accounting characteristics including the size of firms measured

by assets and sales, sales growth, age, and profitability (Operating income / Sales) of firms.

We also present firm Tobin’s q ((market value of equity + book value of debt) / book value

of assets). The table shows for example that overall operating margins and sales growth

decline. Later, we explore these findings using rigorous models with firm fixed effects, and

we explore if they differ for large vs. small firms.

Panel B presents the innovation and legal variables used in our study. The variable

Treatment Effect measures the extent a firm’s patent portfolio is impacted by the court

decision as measured using the Longformer model in equation (3). It captures how much a

firm is dependent on patents and also the percentage of patents’ value that are impacted by

the Alice court decision. R&D/Sales is Compustat R&D divided by total sales of the firm

and is set to zero if R&D is missing for our base tests. Log(# of Patents) is the log of one

plus the number of patent applications. We define Acquisitions/Sales as the dollar value of

acquisitions scaled by sales. PatTargets/Sales is the dollar value of acquisitions where target
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has a patent scaled by sales. Acquisitions data is from the Securities Data Corp (SDC)

database.

The legal variables we examine are # Alleged, # NPE Alleged, # OC Alleged,# Accuser,

IPrisk and PatInfringe. We compute the first four using information in the Public Access

to Court Electronic Records (PACER) database, which provides public access to all cases

litigated in the U.S. District Courts, and Stanford Non-Practicing Entity (NPE) Litigation

Database. For the last two, we use textual queries of each firm’s 10-K statement filed with

the SEC. # Alleged is the number of lawsuits that a firm was alleged for infringing on a

patent in that year. # NPE Alleged (# OC Alleged) refer to the number of lawsuits that

the firm was alleged infringing on a patent lawsuit by a Non-Practicing Entity (Operating

Company) in that year. # Accuser is the number of lawsuits that the firm accused another

party for infringing on a patent in that year. IPrisk is the total number of paragraphs

mentioning “intellectual property” in the risk factor section of the firm’s 10-K, scaled by the

total number of paragraphs in the 10-K. PatInfringe is the total number of 10-K paragraphs

containing both a patent word and a word that contains the word root “infringe”, also scaled

by the total number of paragraphs in the firm’s 10-K. The table shows that patents decline

and lawsuits and patent infringement all decline post-Alice while IP risk increases.

Lastly, Panel C of Table 8 presents the competition variables. VCF/Sales, is the a mea-

sure of VC entry in a given firm’s product market and is the total first-round dollars raised

by the 25 startups from Venture Expert whose Venture Expert business description most

closely matches the 10-K business description of the focal firm (using cosine similarities),

scaled by focal firm sales. TSIMM is the firm’s TNIC-3 text-based total similarity to other

public firm competitors from Hoberg and Phillips (2016). The next three variables are con-

structed using the metaHeuristica software package to run high speed queries on 10-Ks filed

with the Securities and Exchange Commission. Complaints is the number of paragraphs in

the firm’s 10-K that complain about competition divided by the total number of paragraphs

in the firm’s 10-K. Noncompete is the number of paragraphs in a firm’s 10K mentioning
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“non-compete” agreements, scaled by the total paragraphs in the 10-K. Nondisclose is the

number of paragraphs mentioning “non-disclose” or NDA agreements in a firm’s 10K, scaled

by the total paragraphs in the 10-K. The table shows that competition overall increases

post-Alice while nondisclosure agreements increase. We now turn to regressions that include

firm fixed effects and explore the differences for large and small firms using above or below

median total assets relative to TNIC-2 industry peers from Hoberg and Phillips (2016).

Our treatment variable is not binary as they represent the multiplication of percentage

of a firm’s patent portfolio value that is exposed to Alice scaled by sales. Each patent’s Alice

exposure score is the probability from our Longformer model that the patent will be ruled

ineligible if it is challenged in court. For roughly half of the sample, the treatment Alice

score is close to 0. The median and average scores of treatment in our sample are 0.001 and

0.062, and the 75th percentile and 90th percentiles are 0.034 and 0.224, respectively. The

standard deviation of treatment variable is 0.025. We show the full distribution of firm-level

treatment Alice scores for patenting firms in Figure 2. Panel A shows the histogram for

our KPSS valuation-based treatment variable and Panel B for our citation-based treatment

variable.

Both panels show that roughly 25% to 30% of our firms have zero Alice scores. Roughly

40% have positive scores that are close to zero. Thus, roughly 65% have Alice scores equal

or slightly greater than zero (from 0.0 to .005). About 6% to 7% of firms have very high

exposure to Alice with Alice scores in the rightmost bin. Using a continuous treatment score

allows us to show how the ex post outcomes vary with the intensity of treatment. Going

forward for parsimony, we refer to the Longformer Alice score just as “Alice Score”.

4 The Impact and Outcomes of Alice

We now analyze the impact of Alice on innovation, firm performance and value, competition,

lawsuits and legal risk, and acquisitions. Throughout this section, we present results sepa-
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rately for large and small firms, as we have found uniformly that there are key differences in

treatment across these two groups.

The justification for examining heterogeneous effects based on firm size follows from

Aghion et al. (2005) and is based on the fact that larger firms are more able to defend their

product markets given their larger resources - both managerial and financial. We define firms

as large or small, respectively, based on whether each firm’s assets are above or below the

median value among its TNIC-2 industry peers (see Hoberg and Phillips (2016)) in 2013.17

For all regression tables that follow, Post is an indicator variable that equals one if the

year is after the Alice decision (2015 to 2017) and zero if before (2011 to 2013). We omit

2014 itself from our analysis as it is partially treated. Treatment throughout is a firm-level

measure that combines information about the extent to which patents are important for

the firm and the extent the firm’s patent portfolio was affected by the Alice court decision.

Throughout, we use the firm treatment value using each patent’s Alice score weighted by the

patent’s importance to the firm. We present results using two different weights: (1.) using

each patent’s KPSS weighted value and also (2.) using each patent’s citations weighted

value. The mathematical notation for the estimation of this measure is provided in equation

(3), with citations replacing patent value for the citation based measure. Inspection of the

subsequent tables reveals that there is little difference in the results across these two different

weighting methods for a patent’s importance to the firm. All regressions include firm and

year fixed effects. Standard errors are clustered at the firm level.

4.1 Alice and Innovation

We first examine the impact of Alice on firm innovation and we examine the number of

patents scaled by sales, the log of 1 plus the number of patents, and R&D/Sales.

Insert Table 9 here

17In the appendix, we also present results that define large vs. small based on each firm’s market share
based on TNIC product-text industry peers. These results are fully robust.
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The results for patents in columns (1)-(4) of Table 9 show that both large and small

firms reduce patenting in the years after Alice. These results are highly significant at the

1% level, and these findings confirm the large importance of the Alice decision to reduce

the incentives to patent through its weakening of IP protection. The effect is also larger

for large firms in columns (3) and (4) consistent with large firms getting more patents in

general. The economic effect of the decision is large. Using the coefficients in column (3),

We calculate that large (small) firms patenting decreases by 9.4% (13.4%) relative to the

mean patenting rates with a one standard deviation in the treatment variable. We show

these results graphically in Figures 3 and 4 for small and large firms, respectively, to test for

pre-trends. The graphical evidence shows no evidence of pre-trends and shows that patents

discretely shifted downwards in the years following Alice.

Insert Figures 3 and 4 here

The results for R&D in columns (5)-(6) show that small firms increase R&D after Alice,

while there is no significant change for large firms. Using the coefficient from column (6), we

calculate that small firms R&D increase by 76.7% relative to the mean R&D of small firms

with a one standard deviation in treatment relative to the mean pre-Alice.

The R&D results are consistent with small firms trying to increase R&D to make up for

lost intellectual property, an interpretation more broadly supported in our later tables. In

contrast, large firms do not increase R&D, indicating they were impacted by the shock in a

fundamentally different way in which more R&D was not seen as a necessary response. This

muted response by larger firms echoes results throughout our paper suggesting that larger

firms (presumably due to their deep pockets and wider-array of knowledge capital) came out

of the Alice shock as winners, whereas smaller firms experienced significant losses.

We also note that our regressions include firm fixed effects, and thus we do not report

the lower interactions including the individual variables (Large, Small, and Treat) as these

are absorbed by firm fixed effects given that they are defined in the treatment year.
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We examine changes in competition in the next section, and relevant to the current discus-

sion, we find that competition increases most for small firms in their local product markets.

The results on innovation combined with these increases in competition are consistent with

innovation spending increasing by small firms to “escape-competition” that materialized

from Alice exposure. In contrast, large firms do not increase R&D as much. The results are

consistent with the Schumpeterian effect where more innovation is done by small firms.

4.2 Alice and Competition

Unlike some existing studies, which focus on the impact of individual patent invalidations,

our study examines the impact of a technology-area-wide loss in IP protection. Such a

market-wide shock impacts both existing patents and also the incentives to patent more in

the future. These shifts in patenting incentives furthermore affect incentives of potential

competitors, and thus it is important to examine the impact of Alice on competition coming

from either new VC funded entrants as well as from existing public firms.

We thus examine several different measures of changes in firm-level competition. We

begin by examining entry by venture capital financed firms in each firm’s product market, and

we also examine changes in competition from existing public firms using product similarity

from Hoberg and Phillips (2016). We also examine the most broad measure of competition

as the intensity at which firms complain about competition in their 10-Ks. Finally, especially

given the strong results we find in firm-year panel data analysis, we then examine measures

of product market encroachment at the level of firm-pairs over time, to specifically examine

if big firms or small firms move “closer” together in the product space post-Alice using

firm-pair-level product similarity scores.

Columns (1) and (2) of Table 10 examine venture capital entry into a firm’s local product

market. The dependent variable, VCF/Sales, is the total first-round dollars raised by the

25 startups from Venture Expert whose Venture Expert business description most closely

matches the 10-K business description of the focal firm (using cosine similarities), scaled by
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focal firm sales (see Hoberg, Phillips and Prabhala 2014). Columns (3) and (4) examine the

firm’s TNIC text-based total similarity (TSIMM ) to public firm competitors (see Hoberg

and Phillips 2016). We examine broad competition Complaints in columns (5) and (6).

Complaints is the number of paragraphs in the firm’s 10-K that complain about competition

divided by the total number of paragraphs in the firm’s 10-K.

Insert Table 10 here

Economically, Table 10’s results indicate that entry by venture capital financed firms

into the market of small firms increases by 99.6% with a one standard deviation increase

in treatment relative to the average entry rate pre-Alice. This is significantly higher than

that for large firms. Looking at direct measures of competition, both product similarity and

complaints increase for small firms with no significant increases for large firms. Complaints

by small firms increase by .33 and product similarity increases by 28.1% with a one standard

deviation increase in treatment relative to the product similarity pre-Alice. We also present

these results graphically for small firms where we allow each pre- and post-year to have its

own indicator variable. These results are presented in Figure 5.

The results in Table 10 show, across all aspects of competition, that small firms face

increased competition from myriad of sources post-Alice. In contrast, large firms face in-

creased entry but do not experience changes in product similarity and complaints in any

of the specifications and are generally unaffected. These results are consistent with our re-

sults on profitability decreases for small firms and decreased market values for small firms

(discussed in the next section). The results reinforce our conclusion that small firms whose

patent portfolios are exposed to Alice experience losses, while large firms experience a smaller

amount of increased VC entry but no other increases in competition. Rather, large firms

actually experience some gains in the form of increased sales and market valuations.

We now examine local pairwise product market encroachment post-Alice in Table 11.

Delta TNIC Score is computed as the change in the TNIC similarity of the pair of firms

from year t−1 to year t. Our panel database for this test is thus a large firm-pair-year panel.
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A higher value of the Delta TNIC Score indicates that the firms in the pair encroached upon

one another in the current year and lost pairwise product differentiation (becoming more

intense competitors). For all RHS variables in Table 11, we use the tags “1” and “2” in each

variable’s name to indicate whether the given variable is a trait of the first or second firm in

the pair. For example, the variable Treat1 indicates the treatment intensity of firm 1.

The results in column (1) of Table 11 show that firms experiencing a larger treatment

effect from Alice experience increased encroachment at the pair level. This is consistent

with weaker IP protection resulting in rivals adopting patented technologies of rivals and

in product offerings of the pair becoming more similar. These results are highly significant

despite the inclusion of firm-pair fixed effects and clustering standard errors by firm-pair.

Column (2) of Table 11 illustrates our main result that outcomes are different for small

and large firms. We find that small firms are particularly sensitive to encroachment when

they lose their IP protection. This is consistent with these firms holding narrower advantages

in the product market, and losses in protection can be catastrophic as rival firms would

have free access to their technologies post-Alice. In contrast, larger firms actually experience

increases in product differentiation when their markets are treated by Alice. This is consistent

with these firms having broad patent portfolios that span technology areas, making it harder

for rivals to enter their product markets.

The final column (3) in Table 11 interacts these results further to examine the four-way

interactions of the sizes of firm1 and firm 2. The results indicate that positive encroach-

ment only occurs when there is a small firm in the pair that is treated by Alice. Indeed,

Small1×Big2×Treat1×Post has a positive coefficient as does Small1×Small2×Treat1×Post.

However, once the treated firm is a large firm, the coefficient flips to negative, indicating

that larger firms tend to experience radically different outcomes than small firms. Indeed

many scholars argue that patent protection could either be harmful or helpful to incentivize

innovation and growth.
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4.3 Alice and Firm Performance

We now examine the profitability of firms post-Alice. Table 12 displays panel data regressions

that examine whether the sales, profitability and market value of large vs. small firms were

differently affected by the Alice decision. In columns (1)-(2), the dependent variable is Sales

Growth, calculated as the natural logarithm of total sales in the current year t divided by

total sales in the previous year t − 1. In columns (3) and (4), the dependent variable is

Operating Income/Sales. In columns (5)-(6), the dependent variable is Tobin’s q, calculated

as the market to book ratio (market value of equity plus book debt and preferred stock, all

divided by book value of assets).

Insert Table 12 Here

Table 12 shows that large firms whose patent portfolios are exposed to Alice experience

sales growth and positive but insignificant gains in profitability and market value (measured

using Tobin’s q) post-Alice. Their sales go up by 1.3 percentage points (14.1% of their 2013

average growth rate). Thus, large firms appear to benefit some when they are operating in

technology markets that experience market-wide losses in patent protection. As our later

results will suggest, these gains at least partially come at the expense of small firms, as large

firms would thus face weakening competition when their smaller rivals have to scale back.

Consistent with this view, Table 12 shows that small firms indeed experience losses after

Alice. Small firms whose patent portfolio is exposed to Alice suffer decreased operating

margins and also losses in their market valuations. These results persist when additionally

controlling for firm age and also for firm size. Economically, small firms’ operating margins go

down by 27.5 percentage points (91% of their pre-Alice operating margin) and their Tobin’s q

declines by 0.21 which is 12 percent of their pre-Alice Tobin’s q with a one standard deviation

increase in treatment.
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4.4 Legal Impact: Contractual Provisions and Lawsuits

The matter of intellectual property protection is inherently a matter of legal protection and

a means of reducing the risk that rival firms will expropriate a focal firm’s technological

advantage. Thus we examine, across multiple legal metrics, how the legal situation changes

for large and small firms post Alice.

We start with two important aspects of firm legal outcomes: the intensity at which they

disclose risk of loss of IP (an important test of validity), and the extent to which firms use

alternative “second best” contracts including non-compete and non-disclosure agreements to

improve IP protection after IP protection through patents is lost following the Alice decision.

Table 13 displays the results. In columns (1)-(2), IP Risk, is the total number of para-

graphs mentioning “intellectual property” in the risk factor section in the 10-K documents,

scaled by the total number paragraphs in the 10-Ks. Noncompete is the total number of 10K

paragraphs mentioning “non-compete” agreements, all scaled by the total paragraphs in the

10-K. Nondisclosure is the total number of 10-K paragraphs mentioning “non-disclose” or

NDA agreements, all scaled by the total paragraphs in the 10-K.

The results in Table 13 show that small firms disclose significantly more information about

increased intellectual property risk in the risk section of their 10-K, economically increasing

by 7.34 percent of their pre-Alice mean. This provides important validation of the primary

impact of the Alice case itself, and that the negative consequences were particularly felt by

smaller firms. The table also shows that small firms also use more non-disclosure agreements

- economically increasing the mention of these by 45.6 percent of their pre-Alice mentions

(although they do not significantly increase non-compete agreements). Across all of these

outcomes, we find no significant changes for large firms. Overall, the results show that small

firms face greater IP risk and use alternative contracts to protect their IP after Alice.

In Table 14, we next examine whether patent lawsuits involving small and large firms

were differentially affected by the Alice decision. We use the Stanford Non-Practicing Entity

(NPE) Litigation Database to find NPE and operating company (OC) initiated lawsuits. In
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columns (1)-(2), the dependent variable, # Alleged, is the total number of lawsuits in which

the firm was alleged to have infringed on a patent in the given year. In columns (3) to

(4), # NPE Alleged is the number of such lawsuits in which the plaintiff is a non-practicing

entity (NPE). In columns (5) to (6), # OC Alleged is the number of such lawsuits in which

the plaintiff is an operating company. In columns (7)-(8), PatInfringe refers to the total

number of paragraphs containing a patent word and infringe* in the firm’s 10-K, scaled by

the total number of paragraphs in the 10-Ks. The 10-K measure establishes robustness, as

some infringement cases might be settled out of court, and might not appear in court records,

but nevertheless might be discussed in a firm’s 10-K. In columns (9)-(10), # Accuser is the

number of lawsuits in which the firm accused any party in a patent lawsuit in the given year.

In contrast to earlier findings that illustrated strong results for small firms, Table 14

shows that small firms’ lawsuit exposure changes less than it does for large firms post-

Alice. We find that lawsuits including small firms increased in some specifications, which

is opposite the widespread and highly significant decrease we observe for large firms. This

result for small firms, especially when viewed alongside the greater IP risk and increased

use of non-disclosure agreements post-Alice for these firms, is consistent with the broader

losing-ground scenario we document. These firms are likely forced to test IP boundaries more

(thus increasing their exposure to lawsuits), and they also attempt to replace lost patent

protection using other contracts such as NDAs.

The results are different for large firms, whose lawsuit exposure significantly decreases

across the board after Alice. Large firm are less likely to be alleged to infringe on other

firms and their exposure to lawsuits also decreases for lawsuits by non-performing entities

(patent trolls) post-Alice. These results are intuitively interpreted through two impacts of

Alice. First, Alice reduced IP protection, resulting in lawsuits becoming less viable as a

means to extract wealth from another party (one needs strong IP to successfully make a

claim of infringement). Second, the gains associated with having fewer lawsuits, especially

from patent trolls, accrued mostly to larger firms whose legal teams were able to internalize
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these gains. Smaller firms, whose ability to defend IP may be more limited, were less able

to achieve this outcome as noted above. Overall our evidence again shows that large firms

appear to benefit, and small firms experience losses, following the Alice ruling.

4.5 Alice and Acquisitions

We now examine the impact of Alice on firm acquisitions by small and large firms. Our

hypothesis is that large-firm acquisitions will decline after Alice following the theory of

Phillips and Zhdanov (2013) and empirical support of Caskurlu (2022). Phillips and Zhdanov

(2013) show that large firms have strong incentives to buy small firms after small firms

develop a new patentable innovation. Without patent protection, there is little incentive for

large firms to continue paying to buy these small firms for their patents, as they can more

cheaply copy the unprotected innovation. If they do purchase a small firm, the purchase

price will be lower as the bargaining power of the small firms will have decreased post-Alice.

In line with Phillips and Zhdanov (2013), Caskurlu (2022) shows that after a firm loses a

patent lawsuit, it is more likely to acquire targets that have substitute patents. When patent

rights are weaker, there will be fewer lawsuits and fewer patent-motivated acquisitions. We

thus examine the impact of Alice on the dollars spent on acquisitions scaled by sales and the

log of one plus the dollar value of acquisitions.

The results are displayed in Table 15. Across many specifications presented in Table 15,

we indeed find that the amount spent by large firms on acquisitions post-Alice decreases

significantly. Although we do not find results for the total unconditional number of acquisi-

tions scaled by sales in columns (1) and (2), we do find the predicted results in columns (3)

and (4) when we only consider acquisitions in which the target firm has at least one patent

(as our hypothesis only applies to patented technologies). We also find results for the log of

the number of acquisitions in columns (5) and (6). In contrast, we find no impact on small

firms. Our results are overall consistent with the predictions of Phillips and Zhdanov (2013)

and Caskurlu (2022) that decreased patent protection leads to decreased bargaining power
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for small firms that are targets, and thus large firms acquire less and pay less for any firms

they do acquire. These results once again point to potential gains by large firms post-Alice

(who save by spending less on acquisitions), and additional losses for smaller firms (who have

fewer options for monetizing their IP through M&A).

4.6 Robustness Tests

Table 3 shows that the Longformer model outperforms other linguistic models in predicting

out-of-sample predictions of a patent’s likelihood of being rejected. In this section, we also

assess the economic advantages of using the Longformer model.

We thus re-estimate our econometric tests using the SciBERT model. These results were

in a previous version of the paper and are available from the authors. We also estimate

our results separately using the TF-IDF method and also a simple binary dummy variable

for the CPC category to identify a patent’s exposure to Alice (see Section 3 in the Online

Appendix). The SciBERT model came out second-best in our model performance validation

tests, and these economic robustness tests indicate that its overall results are quite similar to

Longformer. For the TF-IDF method, in the calculation of the treatment variable depicted

in equation (3), we use a TF-IDF score instead of a Longformer Alice score. The binary

CPC method sets exposure equal to one if the patent’s primary CPC code belongs to one of

the top-20 CPCs that have the most frequent Alice rejections. We then aggregate each over

all of the firm’s patents as before to get a total firm exposure. We expect and find material

improvements using transformer models such as Longformer and SciBERT relative to using

less-advanced methods such as TF-IDF or CPC dummies.

We present in the online appendix a large number of tables using these alternative models

that estimate exposures to Alice. For example, Tables IA7 and IA8 display tests for the

patenting and innovation results that are analogous to Table 9, but use the TF-IDF method

and binary CPC category method, respectively.

Overall, in across all of our robustness tests, the signs are similar to our main results
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using the Longformer model. Yet the results also show the gains to using the more accurate

Longformer model, as we lose some significance for patenting for small firms using TF-IDF

and for R&D using the binary dummy variable. We also lose significance for several of the

competition variables for small firms using either of these two less sophisticated methods.

Given the higher out-of-sample prediction accuracy shown in Table 3 for the Longformer

model versus the other methods, we conclude that the gains associated with using the deep

learning neural network Longformer model are both statistically and economically important.

Our Alice Score treatment variable is estimated using machine learning techniques, and

hence is measured with some noise. Although noise generally results in findings being under-

stated, recent work in econometrics (de Chaisemartin and D’Haultfoeuille, 2018) indicates a

new technique for estimating a fuzzy difference-in-differences model that is applicable in our

setting. In Table IA9 and Table IA10, we report the local average treatment effect (LATE)

indicated by the authors using the fuzzydid model (see de Chaisemartin et al. (2019) for

implementation in Stata). Although power is somewhat reduced in this setting, we find that

most of our results are robust in this specification.

5 Conclusions

We examine the impact of lost intellectual property protection on firm innovation, perfor-

mance, competition, and mergers and acquisitions. We examine firms whose patents would

likely lose protection if challenged following the Alice Corp v. CLS Bank International,

573 U.S. 208 (2014) Supreme Court decision. This decision revoked patent protection on

patents whose fundamental idea is considered abstract with a transformation that is not

novel. It impacted multiple areas including business methods, software, and bioinformatics.

The outcome of this decision was very much in doubt and was not anticipated.

While the decision had an extremely large ex post impact on patenting, there was (and

is) uncertainty about whether an existing or proposed patent transforms an idea sufficiently
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to be granted patent protection. Given the uncertainty about whether the Alice decision

impacts individual patents, we apply an array of novel machine learning techniques on patent

textual corpora to assess how much a given firm’s patent portfolio is exposed to Alice.

We document that ex post patenting by firms whose patent stock portfolio is identified

as being exposed to Alice significantly decreases for both large and small firms. We find a

significant increase in R&D for small firms. These results are consistent with small firms’

attempting to replenish their innovative portfolio as predicted by Aghion et al. (2005). Ex-

amining ex-post changes in sales growth and profitability along with firm value, we find an

asymmetric impact of Alice on firms whose patent portfolio is exposed to Alice. Large firms

gain and small firms lose. Exposed large firms gain in sales. Exposed small firms experience

a decrease in operating margins and their market valuations decline.

We show that these differential losses by small firms can be explained by changes in

competition and limited legal options to replace losses in IP protection. Small firms face

increased competition using a number of different measures, while large firms are only mini-

mally impacted. In the post-Alice period, small affected firms face increased venture capital

financed entry into their product space, lost product differentiation relative to their existing

competitors, and they complain more about increased competition. Consistent with trying

to protect IP that has lost protection, small firms resort more to non-disclosure agreements

with their employees post-Alice. In contrast, large firms once again appear to relatively

gain as they face fewer lawsuits from both operating companies and non-producing entities

(“patent trolls”), and decreased direct competition from smaller firms. They also acquire

fewer target firms, especially those with patents, after Alice. Our results illustrate an uneven

impact of lost IP protection across firms.

Our paper finds benefits of increased competition and fewer lawsuits from reduced patent

protection but costs for existing small firms who most directly face the impact of increased

competition from both large firms and new entrants. Our results overall show the costs and

benefits of decreased IP protection.
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Figure 1: Ratio of Post-Alice Density to Pre-Alice Density

The figure illustrates whether there is a decrease in applications and grants of patents with high Alice scores

after the Supreme Court decision (the final column of Table 7). We compute the density of the Alice score

based on ten bins (increments of .1) from zero to unity both before Alice (2011 to 2013) and post Alice

(2017). The figure reports the ratio of the density for each bin. The values below unity for the rightmost

bins below indicate that many fewer patents with high Alice scores were applied for (Panel A) and granted

(Panel B) after the Alice Supreme Court decision.
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Figure 2: Histogram For Treatment

This figure shows the histogram for the treatment variables for firms with patents. In Panel A, the

treatment is based on KPSS, and it is based on citation in Panel B. The bin width is 0.01 and y-axis is the

percentage of treatment falls into the bin.
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Figure 3: Patent Applications For Small Firms

This figure reports the point estimates per year for Small× Treatment from Table 9, where the dependent

variable is Log(# of Patents). The regression specification is the same as those reported in columns (3)

and (4) of Table 9, except that Small × Treatment is allowed to vary by year, and 2013 is chosen as the

reference year. The treatment is calculated by using the KPSS values in Panel A, and it is calculated by

citations in Panel B. The gray line indicates the 90% confidence interval.
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Figure 4: Patent Applications For Large Firms

This figure reports the point estimates per year for Large× Treatment from Table 9, where the dependent

variable is Log(# of Patents). The regression specification is the same as those reported in columns (3)

and (4) of Table 9, except that Large × Treatment is allowed to vary by year, and 2013 is chosen as the

reference year. The treatment is calculated by using the KPSS values in Panel A, and it is calculated by

citations in Panel B. The gray line indicates the 90% confidence interval.
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Figure 5: Competition For Small Firms

This figure reports the point estimates per year for Small × Treatment from Table 10 columns (1) and (2)

where the dependent variable is VCF/Sales. The regression specifications are the same as those reported

in columns (1) and (2) of Table 10, except that Small × Treatment is allowed to vary by year, and 2013 is

chosen as the reference year. The treatment is calculated by using the KPSS values in Panel A, and it is

calculated by citations in Panel B. The gray line indicates the 90% confidence interval.
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Figure 6: Competition For Small Firms

This figure reports the point estimates per year for Small × Treatment from Table 10 columns (3) and (4)

where the dependent variable is Total Similarity (TSIMM). The regression specifications are the same as

those reported in columns (3) and (4) of Table 10, except that Small × Treatment is allowed to vary by

year, and 2013 is chosen as the reference year. The treatment is calculated by using the KPSS values in

Panel A, and it is calculated by citations in Panel B. The gray line indicates the 90% confidence interval.
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Table 1: Annual Patent Applications and Post-Alice Rejections By Industry

This table reports annual statistics from USPTO patent applications and the corresponding percentage that were rejected in
parentheses based on the Supreme Court’s Alice decision for the top 12 industries with patent rejections. The rejection data
provided by Lu et al. (2017) extends until 2016; therefore ratio of rejection is assigned NA for 2017. Change reports the
percentage change from the number of patent applications in 2013 to the average number of patent applications for the
2015-2017 period. Corresponding CPCs for each industry are provided in Table 2.

Patent Applications and USPTO Alice Rejections - Top 12 industries

Number of Patent Applications & Rejection Percentage

Industry 2008-2009 2010-2011 2012 2013 2014 2015 2016 2017 Change (2013 to
2015-2017)

Commerce 6582 7675 5033 5563 5223 4246 3405 3240 -34.7%
(Data Processing Methods) (11.7%) (17.9%) (29.8%) (36.2%) (23.2%) (6.6%) (1.5%) (NA)

Administration 6681 6250 3658 2958 2970 2500 2527 2568 -14.4%
(Data Processing Methods) (6.7%) (11.1%) (20.8%) (31.3%) (16.7%) (3.6%) (0.6%) (NA)

Finance 2297 2662 1545 1752 1512 1035 775 711 -52.0%
(Data Processing Methods) (9.4%) (13.2%) (22.5%) (42.1%) (37.8%) (8.7%) (1.9%) (NA)

Payment Systems 1603 2043 1673 1946 2182 2157 2029 1895 4.2%
(Data Processing Methods) (9.9%) (12.9%) (26.6%) (36.7%) (24.4%) (5.8%) (1.9%) (NA)

Coin-freed Facilities or Services 2385 1665 1221 1407 1134 980 939 937 -32.3%
(Coin-freed or Like Apparatus) (3.9%) (6.8%) (17.0%) (34.3%) (31.2%) (14.9%) (6.7%) (NA)

Information Retrieval 7981 8451 5850 6566 6650 6339 6196 5816 -6.8%
(Digital Data Processing) (0.5%) (1.2%) (2.4%) (4.1%) (5.1%) (2.0%) (1.0%) (NA)

Video Games 1414 1504 919 1045 1010 781 847 929 -18.4%
(Games) (4.5%) (7.0%) (12.5%) (27.4%) (19.6%) (7.8%) (3.4%) (NA)

Specialized For Sectors 515 918 753 845 881 669 848 806 -8.4%
(Data Processing Methods) (4.9%) (10.9%) (15.5%) (32.1%) (19.3%) (4.5%) (0.6%) (NA)

Computer Security 3886 3926 2617 2684 2641 2604 2675 2872 1.2%
(Digital Data Processing) (1.6%) (1.5%) (2.6%) (5.0%) (5.2%) (4.0%) (0.7%) (NA)

Network Security 3522 3208 2206 2864 3433 4042 4124 3817 39.5%
(Transmission of Digital Information) (0.8%) (0.8%) (1.9%) (4.3%) (5.5%) (3.4%) (0.8%) (NA)

Network Specific Applications 3389 3441 2282 2891 3174 3172 3098 2414 0.1%
(Transmission of Digital Information) (0.8%) (1.5%) (3.2%) (6.0%) (4.7%) (2.2%) (0.6%) (NA)

Measuring or Testing Processes 3759 4311 2237 2356 2336 2105 2099 2082 -11.1%
(Microbiology & Enzymology) (1.3%) (2.5%) (4.3%) (4.9%) (3.2%) (2.6%) (0.6%) (NA)
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Table 2: CPC Descriptions by CPC group and Industry

This table provides descriptions for largest CPC patent subgroups for which we run the Longformer patent rejection models.
We also give the larger industry correspondence for the main CPC groups impacted by the Alice decision.
Panel A: CPC Main/Sub Group Descriptions

CPC Main/Sub Group Description
G06Q10/06 Administration; Management-Resources, workfSmalls, human or project management, e.g. organising, planning, scheduling or allocating time,

human or machine resources; Enterprise planning; Organisational models
G06Q10/10 Administration; Management-Office automation, e.g. computer aided management of electronic mail or groupware ; Time management, e.g.

calendars, reminders, meetings or time accounting
G06Q30/02 Commerce, e.g. shopping or e-commerce-Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling,

customer management or rewards; Price estimation or determination
G06Q30/06 Commerce, shopping or e-commerce-Buying, selling or leasing transactions
G06Q30/0631 Commerce, shopping or e-commerce-Buying, selling or leasing transactions-Electronic shopping-Item recommendations
G06Q30/08 Commerce, shopping or e-commerce-Buying, selling or leasing transactions Auctions; matching or brokerage
G06Q40/00 Finance; Insurance; Tax strategies; Processing of corporate or income taxes
G06Q40/02 Finance; Insurance; Tax strategies; Processing of corporate or income taxes-Banking, e.g. interest calculation, credit approval, mortgages,

home banking or on-line banking
G06Q40/04 Finance; Insurance; Tax strategies; Processing of corporate or income taxes-Exchange, e.g. stocks, commodities, derivatives or currency
G06Q40/06 Finance; Insurance; Tax strategies; Processing of corporate or income taxes-Investment, e.g. financial instruments, portfolio management or

fund management
G06Q40/08 Finance; Insurance; Tax strategies; Processing of corporate or income taxes-Insurance, e.g. risk analysis or pensions
G07F17/32 Coin-freed apparatus for hiring articles; Coin-freed facilities or games, toys, sports or amusements, casino games, online gambling

Panel B: Industries and Corresponding CPC Groups

Industry CPC Group
Chemical & Physical Properties (Analyzing Materials) G01N33
Coin-freed or Like Apparatus (Coin-freed Facilities or Services) G07F17
Data Processing Methods (Administration) G06Q10
Data Processing Methods (Commerce) G06Q30
Data Processing Methods (Finance) G06Q40
Data Processing Methods (Payment Systems) G06Q20
Data Processing Methods (Specialized For Sectors) G06Q50
Diagnosis, Surgery, Identification (Measuring for Diagnostic Purpose) A61B5
Digital Data Processing (Arrangements for Program Control) G06F9
Digital Data Processing (Computer Aided Design) G06F30
Digital Data Processing (Computer Security) G06F21
Digital Data Processing (I/O Arrangements for Data Transfer) G06F3
Digital Data Processing (Information Retrieval) G06F16
Digital Data Processing (Natural Language Processing) G06F40
Games (Video Games) A63F13
Graphical Data Reading (Recognizing Patterns) G06K9
Microbiology & Enzymology (Measuring or Testing Processes) C12Q1
Photogrammetry or Videogrammetry (Navigation) G01C21
Pictorial Communication (Selective Content Distribution) H04N21
Transmission of Digital Information (Network Security) H04L63
Transmission of Digital Information (Network Specific Applications) H04L67
Transmission of Digital Information (User-to-user Messaging) H04L51

Source: https://patentsview.org/download/data-download-tables
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Table 3: Comparison of Predictions For Longformer vs. Other Models

This table compares predictions of Longformer (Beltagy et al. (2020)), SciBERT (Beltagy et al. (2019)), BERT (Devlin et al.
(2019)), RoBERTa (Liu et al. (2019)), TF-IDF (Robertson (2004)) and Word2Vec models (Mikolov et al. (2013)) based on F1

Score and Accuracy. F1 Score is the harmonic mean of recall and precision, which are defined in Equation (1). Accuracy is the
ratio of correctly predicted observations to the total observations. For all models, we conduct four experiments in which the
only difference is the way we create the training samples. In experiment A, for each of the 23,734 positives (rejected patent
applications), we find a matching negative (a patent application that is granted) that is in the same CPC Group. In sample B,
C, and D, without replacement, we keep adding 23,734 more matching granted patents to the negatives pool based on CPC
Subclass, Class, and Section respectively. Therefore, from A to D, each sample has 23,734 more negatives but the newly added
ones are selected from a broader CPC. In the last column of the table, we use an ensemble of the two models that have the
highest F1 Score and Accuracy by taking the average of their prediction scores. The use of this ensemble is motivated by the
fact that A typically has the highest F1 Score and D has the highest Accuracy. For the testing, we only use applications and
granted patents not used in the training. In the testing, we have 10,000 positives in the sample of applications and for each
positive, we choose two negatives. This 1:2 positives to negatives ratio is consistent with with the expected rejection ratio
having more negatives than positives, while not overestimating accuracy for models that do not learn but only predict
negative outcomes. From the negatives pool, we thus sample 20,000 negatives 1,000 times and boot-strap performance of the
models. The table below then reports the average F1 Score and Accuracy for each model.

A B C D
A+D

2

Model Name F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy

Longformer Finetune 0.647 0.745 0.624 0.765 0.618 0.785 0.639 0.800 0.672 0.804
SciBERT Finetune 0.651 0.735 0.634 0.749 0.632 0.767 0.638 0.777 0.669 0.778
BERT Finetune 0.623 0.733 0.598 0.739 0.614 0.764 0.624 0.774 0.642 0.775
RoBERTa Finetune 0.600 0.716 0.555 0.740 0.540 0.756 0.515 0.758 0.592 0.765

TF-IDF + Logistic Regression 0.547 0.643 0.599 0.634 0.613 0.670 0.550 0.719 0.559 0.679
TF-IDF + Decision Tree 0.503 0.602 0.554 0.552 0.558 0.584 0.491 0.690 0.409 0.697
TF-IDF + Random Forest 0.628 0.743 0.368 0.717 0.263 0.696 0.209 0.689 0.387 0.723

Word2Vec + Logistic Regression 0.606 0.731 0.418 0.732 0.377 0.732 0.358 0.730 0.497 0.755
Word2Vec + Decision Tree 0.492 0.607 0.456 0.645 0.461 0.687 0.461 0.702 0.365 0.707
Word2Vec + Random Forest 0.619 0.747 0.439 0.746 0.387 0.739 0.365 0.735 0.500 0.766
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Table 4: Summary of Longformer Prediction Statistics

This table reports statistics from Longformer model predictions for the set of patents that are examined for lost protection. A
patent is included in the examination set if it is granted between 06/19/1994 and 06/19/2014 and shares the same primary
CPC with at least one of the applications that were rejected by the USPTO based on the Alice decision. Panel A reports the
frequency statistics from different thresholds for the 642,678 patents that fit to the examination criteria. In the default model,
the threshold of 0.5 is used. The Panel B documents the most frequent primary CPCs for patent applications rejected by the
USPTO, and for patents that have Larger than 0.5 as the Longformer score. In our sample, 111,420 patents that have Larger
than Longformer Score of 0.5 have 114,885 primary CPCs. Panel C provides short descriptions for the most frequent CPCs.

Panel A: Longformer Predictions For Different Thresholds

Threshold Percentage of Patents Number of Patents Number of Unique CPCs
≥ Threshold (%) ≥ Threshold

0.5 17.34 111,420 4,979
0.6 11.50 73,934 4,591
0.7 8.87 57,001 4,316
0.8 6.72 43,200 3,980
0.9 4.32 27,786 3,407

Panel B: Summary of CPCs For Alice Rejections and Longformer Predictions by CPC group

Alice Rejections (For Patent Applications) Longformer Predictions (For Granted Patents)

Most Frequent CPCs Count Percentage(%) Most Frequent CPCs Count Percentage(%)

G06Q30/02 1185 3.49 G06Q30/02 2898 2.52
G06Q40/04 675 1.99 G06Q10/10 2133 1.86
G06Q10/06 486 1.43 G06Q10/06 1992 1.73
G06Q40/08 397 1.17 G06Q30/06 1638 1.43
G06Q40/06 383 1.13 G06Q40/04 1563 1.36
G06Q10/10 370 1.09 G06Q40/02 1381 1.20
G06Q30/06 343 1.01 G06Q40/06 865 0.75
G06Q40/02 293 0.86 G07F17/32 841 0.73
G06Q30/0631 248 0.73 G06Q40/00 753 0.66
G06Q30/08 247 0.73 G06Q40/08 717 0.62
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Table 5: Patent Grants and Predicted Longformer Rejection Statistics By Industry

This table displays the total number of patents granted in each industry that have a high percentage of patents predicted to be rejected by our Longformer model. The years in the table start from 19th
of June and end on 18th of June. The numbers in parentheses show the percentage of patents in that industry and period with a Longformer score of 0.5 or larger. Corresponding CPCs for each
industry are provided in Table 2.

Patent Grants and Predicted Longformer Rejections

Number of Patent Grants & Ratio of Longformer Cases (≥ 0.5)

Industry 1994-1999 1999-2004 2004-2009 2009-2014

Commerce 355 1460 3536 10389
(Data Processing Methods) (52.7%) (53.2%) (52.3%) (50.5%)

Administration 665 2001 4447 11467
(Data Processing Methods) (50.1%) (45.1%) (42.2%) (40.1%)

Finance 204 473 1253 6387
(Data Processing Methods) (68.1%) (66.8%) (65.1%) (66.2%)

Payment Systems 263 565 1175 3411
(Data Processing Methods) (37.3%) (37.7%) (35.0%) (43.8%)

Coin-freed Facilities or Services 445 1126 1483 4486
(Coin-freed or Like Apparatus) (32.6%) (37.7%) (36.9%) (38.4%)

Information Retrieval 1238 3823 5894 15811
(Digital Data Processing) (20.1%) (17.1%) (14.3%) (15.2%)

Video Games 336 912 708 2598
(Games) (25.6%) (33.6%) (29.5%) (31.6%)

Specialized For Sectors 21 72 220 936
(Data Processing Methods) (61.9%) (44.4%) (33.6%) (38.0%)

Computer Security 509 1176 2965 8659
(Digital Data Processing) (27.5%) (24.7%) (22.0%) (22.0%)

Network Security 242 1109 3742 9003
(Transmission of Digital Information) (26.4%) (23.2%) (20.5%) (22.7%)

Network Specific Applications 98 950 2943 7565
(Transmission of Digital Information) (28.6%) (17.9%) (14.5%) (18.8%)

Measuring or Testing Processes 1369 2107 1887 3749
(Microbiology & Enzymology) (9.2%) (13.4%) (16.1%) (24.2%)
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Table 6: Most Frequently Used Words in Longformer Predictions

The table lists words that are used mostly frequently in patents with high Longformer scores (≥ 0.5) compared to those with
low Longformer scores (<0.5). We first label patents with a Longformer score ≥ 0.5 as “high” and the remaining patents as
“low”. We remove non-alphabetic characters from patent texts, apply lemmatizing to each word, and calculate the number of
high and low patents that each word appears in. We then filter out words that do not appear in at least 1% of the high
patents. For each word w, we first assign it to the CPC Group with the Largest ratio of the number high patents in the CPC
that contain the word to the total number of low patents in that CPC. Finally, we sort the words selected into each CPC

according to their appearance ratio, defined as
CountHw

1 + CountLw
, where CountHw and CountLw are high and low number of patents

a word w appears in, respectively. The table reports the top 15 words sorted according to their appearance ratio.

Industry Top Fifteen Words

Commerce rebate, bidder, bidding, seller, auction, discounted,
(Digital Data Processing) sponsor, referral, incentive, purchaser, solicitation, pur-

chasing, solicit

Administration interview, consultant, procurement, forecasting,
(Digital Data Processing) accountability, contractor, consultation, planner, dead-

line, strategic, forecast, audit, objectively, finalized, lo-
gistics

Finance underwriting, liquidity, lender, financing, equity,
(Digital Data Processing) investor, treasury, debt, hedge, earnings, earning, owed,

investing, insurer, mortgage

Payment Systems settlement, refund, debited, credited, clearinghouse,
(Digital Data Processing) transacting, approving, dispute, crediting, enroll, de-

ducted, debiting, ach, paying, approves

Coin-freed Facilities or Services rewarded, earn, payouts, payoff, redeem, earned,
(Coin-freed or Like Apparatus) redeemed, redemption, awarding, betting, dealer, prof-

itability, payout, wagered, wager

Information Retrieval vowel,phoneme, docket, adjective, ranked, spelling, noun,
(Digital Data Processing) categorizing, categorization, linguistic, verb, vocabulary,

alphabetical, sentence, utterance, searchable

Video Games opponent, contest, fun, participated, team, him, town,
(Games) vote, himself, herself, war, personality, story, thinking,

arena

Specialized For Sectors hire, attorney, affiliate, reputation, qualification,
(Digital Data Processing) prospective, pursue, teacher, education, affiliation, court,

posting, historic, invited, submitting

Computer Security netlist, royalty, licensing, confidential, licensed, license,
(Digital Data Processing) denied, verilog, denies, creator, vhdl, unlimited, privilege,

enforcing, granting

Network Security certification, certified, certificate, confidentiality, signing,
(Transmission of Digital Information) logon, expire, password, signed, violation, username, pri-

vacy, violate, someone, denial

Network Specific Applications publish, subscription, cookie, subscribing, uploaded,
(Transmission of Digital Information) uploads, publishes, apache, wap, subscribe, downloading,

downloads, movie, activex, url

Measuring or Testing Processes institutional, enrolled, lifestyle, consent, smoking,
(Microbiology & Enzymology) logistic, percentile, multivariate, gender, emotional, exam,

younger, college, whom, disability
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Table 7: Comparison of Patent Grants Alice Longformer Scores in the Pre- and Post-Period

This table shows the distributional density of the Longformer Score before the Alice shock (2011 to 2013)
and after the shock (2017) for the Top 20 technological areas impacted by Alice. To compute the density in
a given year, we first identify, the set of patents granted in that year in the Top 20 technological areas. The
number of granted patents in 2011, 2012, and 2013 are 21,404; 26,607; and 31,249, respectively. In 2017, we
only consider the patents applied for after the Alice decision, and there are 17,643 granted patents that fit
to this description. We sort all patents in each year into 10 bins based on each patent’s Longformer Score.
Bins are defined as the ten equal segments in the interval (0,1), which is the range of the Longformer Score.
For each bin, the density is the number of patents in the given bin in the given year divided by the total
number of patents in the given year. Finally, to illustrate the impact of Alice on these density
distributions, we compute the Ratio in the final column as the density in 2017 divided by the average
pre-Alice density from years 2011 to 2013. A ratio below unity indicates that the rate of patenting in the
given bin declined post-Alice.

Longformer Score 2011 2012 2013 2011- 2013 2017 Ratio

(LFS) (1) (2) (3) (4) (5) (6)

0.0 ≤ LFS < 0.1 0.3627 0.3619 0.3775 0.3683 0.4595 1.2476

0.1 ≤ LFS < 0.2 0.1032 0.1017 0.1017 0.1021 0.1152 1.1283

0.2 ≤ LFS < 0.3 0.0749 0.0742 0.0715 0.0733 0.0740 1.0095

0.3 ≤ LFS < 0.4 0.0734 0.0714 0.0688 0.0709 0.0672 0.9478

0.4 ≤ LFS < 0.5 0.1048 0.1080 0.1062 0.1064 0.1105 1.0385

0.5 ≤ LFS < 0.6 0.0751 0.0757 0.0763 0.0758 0.0689 0.9090

0.6 ≤ LFS < 0.7 0.0413 0.0426 0.0406 0.0414 0.0303 0.7319

0.7 ≤ LFS < 0.8 0.0361 0.0374 0.0364 0.0367 0.0224 0.6104

0.8 ≤ LFS < 0.9 0.0434 0.0427 0.0421 0.0427 0.0209 0.4895

0.9 ≤ LFS < 1.0 0.0850 0.0843 0.0789 0.0824 0.0310 0.3762
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Table 8: Firm Summary Statistics

This table provides summary statistics for our sample of public firms based on annual firm observations from 2011 to 2017
(excluding 2014, the treatment year). All variables are described in detail in the variable list in Appendix A and in Section 3
of the paper. In Panel D, firm characteristics are based on the values in 2013. Small Treatment and Large Treatment firms
are the ones which have treatment scores that are below and above the median, respectively. *, **, and *** denote significant
difference of the mean post-Alice vs. pre-Alice at the 10%, 5% and 1% level.

Pre-Alice Post-Alice

Variable N # of Median Mean Std. Median Mean Std. Diff (Post-Pre)
Firms Error Error

Panel A: Firm Characteristics

Assets (in mil.) 19372 3444 949.376 5351.245 214.347 1294.420 6842.200 268.894 ***
Sales (in mil. ) 19372 3444 443.011 2857.082 119.404 564.108 3012.597 115.613
OI/Sales 18518 3296 0.144 -0.042 0.018 0.142 -0.143 0.027 ***
Tobin’s Q 19254 3436 1.120 1.536 0.023 1.163 1.520 0.021
Sales Growth 19251 3403 0.065 0.088 0.003 0.038 0.034 0.003 ***
Age 19372 3444 18.000 21.577 0.276 22.000 25.371 0.278 ***

Panel B: Innovation, Acquisition & Lawsuit Characteristics

R&D/Sales 19372 3444 0.000 0.118 0.007 0.000 0.158 0.012 ***
Log(# of Patents) 19372 3444 0.000 0.585 0.020 0.000 0.518 0.019 **
Patents/Sales 19372 3444 0.000 0.014 0.001 0.000 0.008 0.000 ***
Acquisitions/Sales 19372 3444 0.000 0.056 0.002 0.000 0.055 0.002
PatTargets/Sales 19372 3444 0.000 0.002 0.000 0.000 0.001 0.000 ***
Log(Amt. of Acq.) 19372 3444 0.000 0.788 0.022 0.000 0.762 0.023
# Alleged 19372 3444 0.000 0.279 0.013 0.000 0.226 0.010 ***
# NPE Alleged 19372 3444 0.000 0.163 0.008 0.000 0.154 0.007
# OC Alleged 19372 3444 0.000 0.101 0.005 0.000 0.048 0.003 ***
# Accuser 19372 3444 0.000 0.035 0.002 0.000 0.031 0.002
IPrisk (10-K) 19289 3444 0.614 2.931 0.070 1.247 3.456 0.078 ***
Patinfringe (10-K) 19289 3444 0.000 1.357 0.043 0.000 1.311 0.040

Panel C: Competition Measures (Text-based measures from 10-Ks)

VCF/Sales 19286 3444 0.014 0.135 0.006 0.012 0.225 0.014 ***
TSIMM 19268 3442 2.231 9.405 0.268 2.134 9.619 0.262
Complaints 19289 3444 13.521 14.583 0.116 13.622 14.729 0.115
Noncompete 19289 3444 0.000 0.595 0.022 0.000 0.555 0.021
Nondisclose 19289 3444 0.000 0.489 0.031 0.000 0.610 0.041 **
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Table 9:
Patents and R&D (Longformer)

The table displays panel data regressions in which innovation and R&D measures are dependent

variables. In columns (1)-(2), the dependent variable is the number of patent applications in that

year divided by sales; and in columns (3) and (4), it is one plus log of the number of patent

applications in the respective year. In columns (5)-(6), the dependent variable is R&D expenses

scaled by sales. Treatment is the relative impact of the Alice decision on the firm’s patent portfolio

measured using KPSS dollar values or citations scaled by sales (see equation (3) for the formula).

In the odd and even numbered columns, respectively, we use the KPSS and the number of citations

approach to compute the Patent Value treatment. Small is a binary variable equal to one if a

firm’s total assets are smaller than the median total asset of its TNIC peers in 2013, and it is zero

otherwise. Large is 1-Small. Post is a dummy variable that equals one if the year is after the Alice

decision and zero otherwise. All variables are described in detail in the variable list in Appendix

A. All regressions include firm and year fixed effects. Standard errors are clustered at the firm

level. T-statistics are reported in parentheses; *, **, and *** denote significance at the 10%, 5%

and 1% level.

Dependent Variable:
# ofPatents

Sales
Log(# of Patents)

R&D

Sales

(1) (2) (3) (4) (5) (6)

Small × Post × Treatment -0.499*** -0.151*** -2.108*** -0.835*** 6.646*** 1.373***
(-8.90) (-7.70) (-3.19) (-3.36) (4.51) (3.69)

Large × Post × Treatment -0.138*** -0.102*** -2.796*** -1.463*** -0.198 -0.233
(-4.23) (-3.94) (-3.50) (-2.83) (-0.91) (-1.19)

Log(Sales) -0.010*** -0.010*** 0.036*** 0.036*** -0.092*** -0.095***
(-7.75) (-7.67) (3.58) (3.47) (-6.25) (-6.32)

Log(Age) -0.000 -0.001 0.000 -0.002 0.140*** 0.161***
(-0.05) (-0.50) (0.00) (-0.05) (3.67) (4.10)

Observations 19372 19372 19372 19372 19372 19372
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.101 0.098 0.049 0.048 0.078 0.050
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Table 10:
Competition and Patent Protection (Longformer)

The table displays panel data regressions in which competition variables are the dependent
variables. In columns (1)-(2), the dependent variable, VCF/Sales, is the a measure of VC entry in
a given firm’s product market and is the total first-round dollars raised by the 25 startups from
Venture Expert whose Venture Expert business description most closely matches the 10-K business
description of the focal firm (using cosine similarities), scaled by focal firm sales. TSIMM is the
firm’s TNIC text-based total similarity of the firm to public firm competitors. Complaints is the
number of paragraphs in the firm’s 10-K that complain about competition divided by the total
number of paragraphs in the firm’s 10-K. Treatment is the relative impact of the Alice decision
on the firm’s patent portfolio measured using KPSS dollar values or citations scaled by sales (see
equation (3) for the formula). In the odd and even numbered columns, respectively, we use the
KPSS and the number of citations approach to compute the Patent Value treatment. Small is a
binary variable equal to one if a firm’s total assets are smaller than the median total asset of its
TNIC peers in 2013, and it is zero otherwise. Large is 1-Small. Post is a dummy variable that
equals one if the year is after the Alice decision and zero otherwise. All variables are described
in detail in the variable list in Appendix A. All regressions include firm and year fixed effects.
Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *, **, and
*** denote significance at the 10%, 5% and 1% level.

Dependent Variable:
V CF

Sales
TSIMM Complaints

(1) (2) (3) (4) (5) (6)

Small × Post × Treatment 10.635*** 2.173*** 102.649*** 21.852*** 13.780*** 3.840***
(7.72) (5.40) (9.40) (6.68) (3.09) (2.64)

Large × Post × Treatment 0.326* 0.152 8.951** 2.158 -7.025* -2.102
(1.89) (1.48) (2.19) (0.93) (-1.76) (-0.90)

Log(Sales) -0.451*** -0.455*** 0.893*** 0.854*** 0.123 0.118
(-15.17) (-15.26) (5.32) (4.84) (1.35) (1.29)

Log(Age) 0.387*** 0.420*** -0.147 0.160 -0.258 -0.217
(6.43) (6.89) (-0.32) (0.33) (-0.81) (-0.69)

Observations 19286 19286 19268 19268 19289 19289
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.265 0.232 0.096 0.057 0.008 0.007
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Table 11:
Firm Level Competition and Encroachment (Longformer)

The table displays firm-pair-year panel data regressions in which pairwise product market en-
croachment (Delta TNIC Score) is the dependent variable. Delta TNIC Score is computed the
change in pairwise TNIC similarity (see Hoberg and Phillips 2016) from year t-1 to year t. A
large value indicates increased similarity and product market encroachment. To compute the RHS
variables, we first sort firms into above and below median sales (relative to TNIC-2 peers) in 2013.
We denote the two firms associated with each pairwise observation as 1 and 2. The variable Treat1
(Treat2) is the Alice Score for firm 1 (2). Analogously, Big1 is an indicator if firm 1’s total assets
are larger than the median total asset of its TNIC peers in 2013, and is zero otherwise. Small1
indicates firm 1 has assets that are below the median value. Relative size indicators are similarly
defined for firm 2. Please note that all level effects and Smaller-order interactions are subsumed by
the fixed effects and thus are not reported. All regressions include firm-pair and year fixed effects
and standard errors are clustered at the firm-pair level. T-statistics are reported in parentheses;
*, **, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable: Delta TNIC Score
(1) (2) (3)

Treat1 × Post 0.477***
(13.57)

Treat2 × Post 0.477***
(13.57)

Big1 × Treat1 × Post -0.439***
(-9.56)

Small1 × Treat1 × Post 1.673***
(34.04)

Big2 × Treat2 × Post -0.439***
(-9.56)

Small2 × Treat2 × Post 1.673***
(34.04)

Big1 × Big2 × Treat1 × Post -0.382***
(-6.07)

Big1 × Small2 × Treat1 × Post -0.534***
(-8.31)

Small1 × Big2 × Treat1 × Post 1.776***
(27.81)

Small1 × Small2 × Treat1 × Post 1.592***
(21.66)

Big1 × Big2 × Treat2 × Post -0.382***
(-6.07)

Small1 × Big2 × Treat2 × Post -0.534***
(-8.31)

Big1 × Small2 × Treat2 × Post 1.776***
(27.81)

Small1 × Small2 × Treat2 × Post 1.592***
(21.66)

Observations 13,448,224 13,448,224 13,448,224
Pair Fixed Effects YES YES YES
Year Fixed Effects YES YES YES
R2 0.92 0.092 0.092
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Table 12:
Profitability (Longformer)

The table displays panel data regressions that examine whether the profitability of large and small

firms were differently affected by the Alice decision. In columns (1)-(2), the dependent variable is

sales growth, calculated as the natural logarithm of total sales in the current year t divided by

total sales in the previous year t-1.; and in columns (3) and (4), it is operating income scaled by

sales. In columns (5)-(6), the dependent variable is Tobin’s Q, calculated as the market to book

ratio (market value of equity plus book debt and preferred stock, all divided by book assets).

Treatment is the relative impact of the Alice decision on the firm’s patent portfolio measured using

KPSS dollar values or citations scaled by sales (see equation (3) for the formula). In the odd and

even numbered columns, respectively, we use the KPSS and the number of citations approach to

compute the Patent Value treatment. Small is a binary variable equal to one if a firm’s total assets

are smaller than the median total asset of its TNIC peers in 2013, and it is zero otherwise. Large

is 1-Small. Post is a dummy variable that equals one if the year is after the Alice decision and zero

otherwise. All variables are described in detail in the variable list in Appendix A. All regressions

include firm and year fixed effects. Standard errors are clustered at the firm level. T-statistics are

reported in parentheses; *, **, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable: Sales Growth
Operating Income

Sales
Tobin’s Q

(1) (2) (3) (4) (5) (6)

Small × Post × Treatment 0.513 0.041 -11.361*** -2.386*** -8.987*** -2.461***
(1.20) (0.38) (-3.73) (-3.10) (-2.87) (-2.83)

Large × Post × Treatment 0.475*** 0.325*** 0.655 0.602 0.957 1.229
(3.02) (3.07) (1.26) (1.27) (0.77) (1.48)

Log(Sales) -0.208*** -0.208*** 0.360*** 0.365*** -0.344*** -0.342***
(-27.33) (-27.35) (7.82) (7.92) (-6.57) (-6.53)

Log(Age) -0.017 -0.015 -0.538*** -0.577*** -1.093*** -1.116***
(-0.81) (-0.72) (-5.10) (-5.43) (-7.01) (-7.13)

Observations 19251 19251 18518 18518 18874 18874
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.172 0.172 0.067 0.055 0.074 0.073
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Table 13:
Firm IP Risk and Legal Protections (Longformer)

The table displays panel data regressions examining the impact of Alice on intellectual property
and noncompete and disclosure clauses. In columns (1)-(2), IP Risk, is the total number of
paragraphs mentioning “intellectual property” in the risk factor section in the 10-K documents,
scaled by the total number paragraphs in the 10-Ks. Noncompete is the total number of 10K
paragraphs mentioning “non-compete” agreements, all scaled by the total paragraphs in the
10-K. Nondisclosure is the total number of 10-K paragraphs mentioning “non-disclose” or “NDA”
agreements, all scaled by the total paragraphs in the 10-K. Treatment is the relative impact of the
Alice decision on the firm’s patent portfolio measured using KPSS dollar values or citations scaled
by sales (see equation (3) for the formula). In the odd and even numbered columns, respectively,
we use the KPSS and the number of citations approach to compute the Patent Value treatment.
Small is a binary variable equal to one if a firm’s total assets are smaller than the median total
asset of its TNIC peers in 2013, and it is zero otherwise. Large is 1-Small. Post is a dummy
variable that equals one if the year is after the Alice decision and zero otherwise. All variables are
described in detail in the variable list in Appendix A. All regressions include firm and year fixed
effects. Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *,
**, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable: IP Risk Noncompete Nondisclosure

(1) (2) (3) (4) (5) (6)

Small × Post × Treatment 11.675*** 3.532*** 1.083 0.398 14.783*** 2.356***
(4.07) (4.21) (1.57) (1.30) (4.73) (3.38)

Large × Post × Treatment 2.611 1.161 -0.858 -0.307 -0.357 -0.537
(1.02) (0.70) (-1.32) (-0.98) (-0.55) (-1.22)

Log(Sales) 0.028 0.027 0.044** 0.044** 0.004 -0.004
(0.55) (0.53) (2.21) (2.19) (0.09) (-0.10)

Log(Age) -0.282* -0.257 -0.091 -0.088 0.188** 0.240**
(-1.80) (-1.64) (-1.11) (-1.08) (2.01) (2.46)

Observations 19289 19289 19289 19289 19289 19289
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.069 0.068 0.002 0.002 0.054 0.025
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Table 14:
Lawsuits and Legal Protection (Longformer)

The table displays panel data regressions examining whether lawsuit metrics of large and small firms were differently affected by the
Alice decision. In columns (1)-(2), the dependent variable, # Alleged, is the number of lawsuits that a firm was alleged in that year.
In columns (3) to (4), # NPE Alleged is the total number of lawsuits that the firm was alleged by a non-practicing entity in that
year. In columns (5) to (6), # OC Alleged is the number of lawsuits that the firm was alleged by a operating company in that year.
In columns (7)-(8), Patinfringe refers to the total number of paragraphs containing both the word root “patent*” and “infringe*” in
10-K documents, scaled by the total number of paragraphs in the 10-Ks. In columns (9)-(10), # Accuser is the number of lawsuits
that the firm accused any party in a patent lawsuit in that year. Treatment is the relative impact of the Alice decision on the firm’s
patent portfolio measured using KPSS dollar values or citations scaled by sales (see equation (3) for the formula). In the odd and even
numbered columns, respectively, we use the KPSS and the number of citations approach to compute the Patent Value treatment. Small
is a binary variable equal to one if a firm’s total assets are smaller than the median total asset of its TNIC peers in 2013, and it is zero
otherwise. Large is 1-Small. Post is a dummy variable that equals one if the year is after the Alice decision and zero otherwise. All
variables are described in detail in the variable list in Appendix A. All regressions include firm and year fixed effects. Standard errors
are clustered at the firm level. T-statistics are reported in parentheses; *, **, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable: # Alleged # NPE Alleged # OC Alleged Patinfringe # Accuser

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Small × Post × Treatment 0.555** 0.034 0.371** 0.022 0.123 -0.012 -0.470 -0.683 0.276 0.184*
(2.10) (0.29) (2.31) (0.27) (0.75) (-0.19) (-0.20) (-0.93) (0.75) (1.71)

Large × Post × Treatment -4.396*** -1.903*** -1.960*** -1.023** -2.430*** -0.842*** -4.070*** -3.109*** -0.408 -0.368**
(-4.56) (-3.22) (-2.95) (-2.56) (-5.09) (-2.82) (-2.81) (-3.29) (-1.49) (-2.27)

Log(Sales) 0.038*** 0.037*** 0.023*** 0.022*** 0.011*** 0.011** 0.033 0.031 -0.016*** -0.016***
(4.66) (4.51) (3.99) (3.87) (2.72) (2.54) (1.01) (0.94) (-2.67) (-2.65)

Log(Age) 0.148*** 0.153*** 0.067*** 0.070*** 0.068*** 0.071*** -0.138 -0.134 -0.388*** -0.388***
(3.85) (3.97) (2.59) (2.69) (3.41) (3.53) (-1.34) (-1.30) (-15.53) (-15.62)

Observations 19372 19372 19372 19372 19372 19372 19289 19289 19372 19372
Firm Fixed Effects YES YES YES YES YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.021 0.017 0.015 0.014 0.028 0.022 0.004 0.006 0.056 0.057
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Table 15:
Acquisitions and Legal Protection (Longformer)

The table displays panel data regressions in which acquisition variables are the dependent variables.
In columns (1)-(2), the dependent variables are dollar value spent on acquisition scaled by sales.
In columns (3)-(4), the dependent variables are dollar value spent on acquisition of targets that
have at least patent scaled by sales. In columns (5)-(6), the dependent variables are log of one
plus total value spent on acquisitions in that year. Treatment is the relative impact of the Alice
decision on the firm’s patent portfolio measured using KPSS dollar values or citations scaled by
sales (see equation (3) for the formula). In the odd and even numbered columns, respectively,
we use the KPSS and the number of citations approach to compute the Patent Value treatment.
Small is a binary variable equal to one if a firm’s total assets are smaller than the median total
asset of its TNIC peers in 2013, and it is zero otherwise. Large is 1-Small. Post is a dummy
variable that equals one if the year is after the Alice decision and zero otherwise. All regressions
include firm and year fixed effects. Standard errors are clustered at the firm level. T-statistics are
reported in parentheses; *, **, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable:
Acquisitions

Sales

Targets With Patents

Sales
Log(Acquisitions)

(1) (2) (3) (4) (5) (6)

Small × Post × Treatment 0.186 0.019 0.003 -0.001 0.758 0.009
(1.56) (0.54) (0.70) (-0.64) (1.03) (0.04)

Large × Post × Treatment 0.012 -0.027 -0.019* -0.015** -4.275*** -2.739***
(0.09) (-0.32) (-1.96) (-2.18) (-2.63) (-2.96)

1/Sales -0.036*** -0.036*** -0.001*** -0.001*** -0.126*** -0.127***
(-6.61) (-6.63) (-3.75) (-3.81) (-3.71) (-3.76)

Log(Age) 0.007 0.008 0.001** 0.001** 0.208* 0.213*
(0.49) (0.54) (2.21) (2.25) (1.66) (1.70)

Observations 19372 19372 19372 19372 19372 19372
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.008 0.008 0.006 0.006 0.004 0.004
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Appendix A. Variable definitions

Table 16: Variable definitions Table 16

Variable Definition

Panel A: Financial Characteristics

Assets Compustat item AT.

Sales Compustat item SALE

OI/Sales Compustat OIBDP divided by total sales.

Tobin’s Q Compustat sum of market equity (CSHO * PRCCF ), DLC, DLTT, PSTKL, all

scaled by book assets.

Sales Growth Natural logarithm of total sales in the current year t divided by total sales in

the previous year t-1.

Log(Age) Natural logarithm of one plus the current year of observation minus the first

year the firm appears in the Compustat database.

Panel B: Innovation, Acquisition & Lawsuit Characteristics

Treatment Effect Treatment is a weighted average of a firm’s patent values multiplied by the Alice

Score and scaled by sales. For a firm’s patent portfolio, we gather all patents

that are valid by the third quarter of 2014. Firm’s patent value is calculated

in two ways: i) dollar amount provided by KPSS; ii) citations that the patent

received. The mathematical notation is provided in equation (3).

R&D/Sales Compustat XRD divided by total sales. This variable is set to zero if XRD is

missing

Log(# of Patents) Log of one plus number of patent applications.

Patents/Sales The number of patent applications scaled by firm sales.

Acquisitions/Sales The total amount of acquisitions divided by firm sales.

PatTargets/Sales The dollar value of acquisitions where target has a patent scaled by sales.

Log(Acq. Amt.) Log of one plus total amount of acquisitions.

# Alleged It is the number of lawsuits that the firm was alleged for infringing a patent.

# NPE Alleged It is the number of lawsuits that the firm was alleged by an NPE for infringing

a patent.

# OC Alleged It is the number of lawsuits that the firm was alleged by an OC for infringing a

patent.

# of Accuser It is the number of lawsuits that the firm alleged another party for infringing

its patent..

IPrisk The total number of paragraphs mentioning “intellectual property” in the risk

factor section in the 10-K documents, scaled by the total number paragraphs in

the 10-Ks.

Patinfringe The total number of paragraphs containing both the word root “patent*” and

“infringe*” in 10-K documents, scaled by the total number of paragraphs in the

10-Ks.

Panel C: Competition Measures

VCF/Sales A measure of VC entry in a given firm’s product market computed as the total

first-round dollars raised by the 25 startups from Venture Expert whose Venture

Expert business description is most similar to the 10-K business description of

the focal firm (using cosine similarities), scaled by focal firm sales.

TSIMM Total similarity, sum of pairwise textual similarities between rivals as indicated

by the TNIC-3 classification of Hoberg and Phillips (2016).

Complaints The number of paragraphs in the firm’s 10-K that mention competition divided

by the total number of paragraphs in the firm’s 10-K.

Continued on next page
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Table 16 – Continued from previous page

Variable Definition

Noncompete #10K paragraphs mentioning “non-compete” agreements, all scaled by the total

paragraphs in the 10-K.

Nondisclose #10K paragraphs mentioning “non-disclose” or “NDA” agreements, all scaled

by the total paragraphs in the 10-K.
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Online Appendix B: Not for publication

1 Technical Comparison of Models

Among the transformer-based language models, the main differences are sourced from the

attention mechanism, tokenization, pre-training task, and pre-training data. Table 17 docu-

ments these characteristics for BERT (Devlin et al. (2019)), SciBERT (Beltagy et al. (2019)),

RoBERTa (Liu et al. (2019)), and Longformer (Beltagy et al. (2020)) models. In the text

below, we explain the attention mechanisms, tokenization, and the pre-training procedure

in detail.

BERT, SciBERT, and, RoBERTa process all words in a single iteration rather than one-

by-one or in a fixed-sized sliding window approach. In these models, the context of a word

depends not only on the words that come before it, but depends on the relative position

to each other word in the text. The amount of attention given to each word is decided by

the internal dynamics of these models. The mechanism where all words in the text have to

be paid attention to is referred as the full-attention mechanism. In this mechanism, since

there is a pairwise attention between words, memory usage is quadratic with respect to the

number of words in the text, limiting the usage to 512 tokens (roughly 400 words).

In contrast, the Longformer model uses a sparse-attention mechanism. In this mechanism,

for each word, the model does not use pairwise attention between each words in the text.

Instead, for each token, the model pays attention only to the 256 tokens that come before and

after it, and to a few special tokens. Therefore, memory usage is close to linear with respect

to the number of words in a text. Overall, there is a trade-off between full-attention vs.

sparse-attention models: the BERT, SciBERT, and, RoBERTa models have more precision

for gathering context while the Longformer model can incorporate more tokens.

What is the relation between a word and a token and how the tokenization is different

between the four models? While most of the words are converted to a single token, some

words can be converted to more than one token. For instance, the word “embodiment” can

be converted to the tokens “emb”,“-od”, and “-iment”, while the word “transistor” can be

converted to the tokens “trans” and “-istor”. The way the words will be tokenized depends

on the model. The BERT and SciBERT models use WordPiece algorithm and the RoBERTa

and Longformer models use the byte-level BPE algorithm for tokenization. It is worth noting

that the resulting token of the same word may not be exactly the same even when the same

algorithm is used since the pre-training data used for each model is different. Despite the

differences in the tokenization algorithm and pre-training data, in general terms, 512 tokens

correspond to 400-430 words.
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Models Attention Mechanism Tokenization Algorithm Pre-training Tasks Pre-training Data

BERT Full-attention WordPiece MLM, NSP Wikipedia, Book Corpus

SciBERT Full-attention WordPiece MLM, NSP Scientific Articles

RoBERTa Full-attention Byte-level BPE MLM Wikipedia, Book Corpus,
CC-News, Open Web Text, Stories

Longformer Sparse-attention Byte-level BPE MLM Wikipedia, Book Corpus,
CC-News, Open Web Text,

Stories, Realnews

Table 17: Comparison of the models

The pre-training procedure of BERT and SciBERT consists of two different tasks: Masked

Language Modelling (MLM) and Next Sequence Prediction (NSP). In the Masked Language

Modelling task, some randomly selected tokens are masked, and the models try to predict

them. In the Next Sequence Prediction task, two sequences are given to the model, and the

model predicts whether these two sentences follow each other. The pre-training procedure

of RoBERTa and Longformer only use the Masked Language Modelling task. However, they

are trained on a much larger dataset than the ones for BERT and SciBERT.

While the BERT is trained on a dataset that contains text from Wikipedia and Book

Corpus (Zhu et al. (2015)), SciBERT is trained on a dataset that contains research articles

obtained from Semantic Scholar (Ammar et al. (2018)). RoBERTa is trained on a dataset

that contains the text used in the pre-training of BERT and some additional text, which is

sourced from newsletters (Nagel (2016)), texts crawled from the URLs that are shared on

Reddit and have at least three upvotes (Gokaslan and Cohen (2019)), and Stories dataset

(Trinh and Le (2018)) in which every entry forms a story.

The Longformer model begins its pre-training from the already pre-trained RoBERTa

model, and it is further pre-trained so that it can learn the new sparse-attention mechanism.

The second-phase of the pre-training data incorporates additional text from Realnews dataset

(Zellers et al. (2019))

As a separate note, the fine-tuning procedure is not dependent on the model, but it is

dependent on the task. Therefore, in our paper, we use the same fine-tuning procedure for

all of the models.
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2 Longformer Model (Firms Categorized by Market

Shares)
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Table IA1:
Patents and R&D (Firms Categorized By Market Share) Longformer

The table displays panel data regressions in which innovation and R&D measures are dependent

variables. In columns (1)-(2), the dependent variable is the number of patent applications in that

year divided by sales; and in columns (3) and (4), it is one plus log of the number of patent

applications in the respective year. In columns (5)-(6), the dependent variable is R&D expenses

scaled by sales. Treatment is the relative impact of the Alice decision on the firm’s patent

portfolio measured using KPSS dollar values or citations scaled by sales (see equation (3) for the

formula). In the odd and even numbered columns, respectively, we use the KPSS and the number

of citations approach to compute the Patent Value treatment. Low is a binary variable equals

one if a firm’s TNIC market share is lower than the median industry-year market share in 2013

and zero otherwise. High is 1-Low. Post is a dummy variable that equals one if the year is after

the Alice decision and zero otherwise. All variables are described in detail in the variable list in

Appendix A. All regressions include firm and year fixed effects. Standard errors are clustered at

the firm level. T-statistics are reported in parentheses; *, **, and *** denote significance at the

10%, 5% and 1% level.

Dependent Variable:
# ofPatents

Sales
Log(# of Patents)

R&D

Sales

(1) (2) (3) (4) (5) (6)

Low X Post X Treatment -0.463*** -0.160*** -2.743*** -0.961*** 5.467*** 1.282***
(-8.29) (-8.13) (-3.63) (-3.68) (4.10) (3.42)

High X Post X Treatment -0.113*** -0.076*** -2.273*** -1.095** -0.030 -0.037
(-4.42) (-3.36) (-2.95) (-2.33) (-0.27) (-0.54)

1/Sales -0.010*** -0.010*** 0.035*** 0.034*** -0.094*** -0.096***
(-7.67) (-7.68) (3.50) (3.36) (-6.48) (-6.48)

Log(Age) -0.001 -0.002 0.005 0.002 0.144*** 0.160***
(-0.29) (-0.66) (0.14) (0.06) (3.77) (4.10)

Observations 19504 19504 19504 19504 19504 19504
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.098 0.099 0.049 0.048 0.067 0.048
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Table IA2:
Profitability (Firms Categorized By Market Share) Longformer

The table displays panel data regressions that examine whether the profitability of high and

low market share firms were differently affected by the Alice decision. In columns (1)-(2), the

dependent variable is sales growth, calculated as the natural logarithm of total sales in the current

year t divided by total sales in the previous year t-1; and in columns (3) and (4), it is Operating

Income scaled by sales. In columns (5)-(6), the dependent variable is Tobin’s Q, calculated as

the market to book ratio (market value of equity plus book debt and preferred stock, all divided

by book assets). Treatment is the relative impact of the Alice decision on the firm’s patent

portfolio measured using KPSS dollar values or citations scaled by sales (see equation (3) for the

formula). In the odd and even numbered columns, respectively, we use the KPSS and the number

of citations approach to compute the Patent Value treatment. Low is a binary variable equals

one if a firm’s TNIC market share is lower than the median industry-year market share in 2013

and zero otherwise. High is 1-Low. Post is a dummy variable that equals one if the year is after

the Alice decision and zero otherwise. All variables are described in detail in the variable list in

Appendix A. All regressions include firm and year fixed effects. Standard errors are clustered at

the firm level. T-statistics are reported in parentheses; *, **, and *** denote significance at the

10%, 5% and 1% level.

Dependent Variable: Sales Growth
OperatingIncome

Sales
Market-to-Book

(1) (2) (3) (4) (5) (6)

Low X Post X Treatment 0.587 0.095 -8.991*** -2.138*** -9.194*** -2.869***
(1.56) (0.88) (-3.26) (-2.74) (-3.40) (-3.43)

High X Post X Treatment 0.361** 0.119 0.056 0.076 2.953** 2.706***
(2.36) (1.45) (0.36) (0.66) (2.21) (2.89)

1/Sales -0.208*** -0.208*** 0.366*** 0.368*** -0.344*** -0.342***
(-27.88) (-27.87) (8.07) (8.12) (-6.65) (-6.63)

Log(Age) -0.027 -0.025 -0.544*** -0.572*** -1.061*** -1.089***
(-1.25) (-1.19) (-5.19) (-5.43) (-6.72) (-6.88)

Observations 19381 19381 18647 18647 18992 18992
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.173 0.172 0.061 0.054 0.076 0.076
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Table IA3:
Competition and Patent Protection (Firms Categorized By Market Share) Long-
former

The table displays panel data regressions in which competition variables are the dependent

variables. In columns (1)-(2), the dependent variable, VCF/Sales, is the a measure of VC entry

in a given firm’s product market and is the total first-round dollars raised by the ten startups

from Venture Expert whose Venture Expert business description most closely matches the 10-K

business description of the focal firm (using cosine similarities), scaled by focal firm sales. TSIMM

is the firm’s TNIC text-based total similarity of the firm to public firm competitors. Complaints is

the number of paragraphs in the firm’s 10-K that complain about competition divided by the total

number of paragraphs in the firm’s 10-K. Treatment is the relative impact of the Alice decision

on the firm’s patent portfolio measured using KPSS dollar values or citations scaled by sales (see

equation (3) for the formula). In the odd and even numbered columns, respectively, we use the

KPSS and the number of citations approach to compute the Patent Value treatment. Low is a

binary variable equals one if a firm’s TNIC market share is lower than the median industry-year

market share in 2013 and zero otherwise. High is 1-Low. Post is a dummy variable that equals

one if the year is after the Alice decision and zero otherwise. All variables are described in detail

in the variable list in Appendix A. All regressions include firm and year fixed effects. Standard

errors are clustered at the firm level. T-statistics are reported in parentheses; *, **, and ***

denote significance at the 10%, 5% and 1% level.

Dependent Variable:
V CF

Sales
TSIMM Complaints

(1) (2) (3) (4) (5) (6)

Low X Post X Treatment 9.116*** 2.181*** 83.836*** 21.793*** 8.928** 2.906**
(7.18) (5.54) (7.86) (6.57) (2.18) (2.06)

High X Post X Treatment 0.208 0.002 12.265*** 3.971** -5.356 0.002
(1.27) (0.02) (2.70) (2.03) (-1.22) (0.00)

Log(Sales) -0.459*** -0.461*** 0.803*** 0.791*** 0.113 0.111
(-15.52) (-15.53) (4.68) (4.47) (1.25) (1.22)

Log(Age) 0.385*** 0.411*** 0.334 0.548 -0.285 -0.253
(6.41) (6.79) (0.71) (1.13) (-0.90) (-0.80)

Observations 19379 19379 19362 19362 19388 19388
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.258 0.234 0.070 0.047 0.006 0.006
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Table IA4:
Firm IP Risk and Legal Protections (Firms Categorized By Market Share) Long-
former

The table displays panel data regressions examining the impact of Alice on intellectual property

and noncompete and disclosure clauses. In columns (1)-(2), IP Risk, is the total number of

paragraphs mentioning “intellectual property” in the risk factor section in the 10-K documents,

scaled by the total number paragraphs in the 10-Ks. Noncompete is the total number of 10K

paragraphs mentioning “non-compete” agreements, all scaled by the total paragraphs in the

10-K. Nondisclosure is the total number of 10-K paragraphs mentioning “non-disclose” or “NDA”

agreements, all scaled by the total paragraphs in the 10-K. Treatment is the relative impact of

the Alice decision on the firm’s patent portfolio measured using KPSS dollar values or citations

scaled by sales (see equation (3) for the formula). In the odd and even numbered columns,

respectively, we use the KPSS and the number of citations approach to compute the Patent Value

treatment. Low is a binary variable equals one if a firm’s TNIC market share is lower than the

median industry-year market share in 2013 and zero otherwise. High is 1-Low. Post is a dummy

variable that equals one if the year is after the Alice decision and zero otherwise. All variables are

described in detail in the variable list in Appendix A. All regressions include firm and year fixed

effects. Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *,

**, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable: IP Risk Noncompete Nondisclosure

(1) (2) (3) (4) (5) (6)

Low X Post X Treatment 9.167*** 3.445*** 0.627 0.465 11.612*** 2.254***
(2.93) (3.84) (0.85) (1.55) (4.16) (3.23)

High X Post X Treatment 3.311 1.820 -0.675 -0.440 0.461 -0.311
(1.44) (1.36) (-1.09) (-1.38) (0.57) (-0.84)

1/Sales 0.012 0.014 0.042** 0.042** -0.006 -0.010
(0.22) (0.28) (2.11) (2.14) (-0.14) (-0.24)

Log(Age) -0.201 -0.186 -0.070 -0.069 0.207** 0.242**
(-1.26) (-1.17) (-0.87) (-0.85) (2.21) (2.49)

Observations 19388 19388 19388 19388 19388 19388
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.064 0.065 0.002 0.002 0.042 0.023
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Table IA5:
Lawsuits and Legal Protection (Firms Categorized By Market Share) Longformer

The table displays panel data regressions examining whether lawsuit metrics of high and low market share firms were differently affected
by the Alice decision. In columns (1)-(2), the dependent variable, is Alleged, is a dummy variable that equals one if a firm was alleged in
a patent lawsuit at least once in that year, and zero otherwise. In columns (3) to (4), Alleged by NPE is a dummy variable that equals
one if a firm was alleged by a non-practicing entity in a patent lawsuit at least once in that year, and zero otherwise. In columns (5) to
(6), Alleged by OC is a dummy variable that equals one if a firm was alleged by a operating company in a patent lawsuit at least once in
that year, and zero otherwise. In columns (7)-(8), Patinfringe refers to the total number of paragraphs containing both the word root
“patent*” and “infringe*” in 10-K documents, scaled by the total number of paragraphs in the 10-Ks. In columns (9)-(10), Is Accuser
is a binary variable equals one if a firm accused any party in a patent lawsuit at least once in that year, and zero otherwise. Treatment
is the relative impact of the Alice decision on the firm’s patent portfolio measured using KPSS dollar values or citations scaled by sales
(see equation (3) for the formula). In the odd and even numbered columns, respectively, we use the KPSS and the number of citations
approach to compute the Patent Value treatment. Low is a binary variable equals one if a firm’s TNIC market share is lower than the
median industry-year market share in 2013 and zero otherwise. High is 1-Low. Post is a dummy variable that equals one if the year
is after the Alice decision and zero otherwise. All variables are described in detail in the variable list in Appendix A. All regressions
include firm and year fixed effects. Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *, **, and
*** denote significance at the 10%, 5% and 1% level.

Dependent Variable: Alleged # Alleged # by NPE Alleged # by OC Patinfringe # of Sueing

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Low X Post X Treatment 0.883* 0.079 0.815** 0.097 -0.092 -0.064 -3.309 -1.408** 0.094 0.119
(1.79) (0.55) (2.20) (0.92) (-0.41) (-0.80) (-1.60) (-2.01) (0.27) (1.07)

High X Post X Treatment -5.484*** -2.140*** -2.728*** -1.341*** -2.652*** -0.704** -1.773 -0.936 -0.284 -0.153
(-5.66) (-3.99) (-4.25) (-4.09) (-5.11) (-2.52) (-1.07) (-0.80) (-1.00) (-0.96)

1/Sales 0.037*** 0.034*** 0.023*** 0.022*** 0.009** 0.008* 0.028 0.026 -0.017*** -0.017***
(4.55) (4.20) (4.16) (3.88) (2.18) (1.87) (0.85) (0.80) (-2.82) (-2.80)

Log(Age) 0.145*** 0.158*** 0.059** 0.066** 0.072*** 0.076*** -0.105 -0.108 -0.398*** -0.397***
(3.80) (4.09) (2.24) (2.51) (3.56) (3.76) (-1.02) (-1.05) (-15.75) (-15.76)

Observations 19504 19504 19504 19504 19504 19504 19388 19388 19504 19504
Firm Fixed Effects YES YES YES YES YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.024 0.018 0.018 0.016 0.028 0.020 0.004 0.004 0.059 0.059
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Table IA6:
Acquisitions and Legal Protection (Firms Categorized By Market Share) Long-
former

The table displays panel data regressions in which acquisition variables are the dependent variables.
In columns (1)-(2) and (3)-(4), the dependent variables are dollar value spent on acquisition scaled
by sales and log of one plus total value spent on acquisitions in that year. Treatment is the relative
impact of the Alice decision on the firm’s patent portfolio measured using KPSS dollar values or
citations scaled by sales (see equation (3) for the formula). In the odd and even numbered columns,
respectively, we use the KPSS and the number of citations approach to compute the Patent Value
treatment. Low is a binary variable equals one if a firm’s TNIC market share is lower than the
median industry-year market share in 2013 and zero otherwise. High is 1-Low. Post is a dummy
variable that equals one if the year is after the Alice decision and zero otherwise. All regressions
include firm and year fixed effects. Standard errors are clustered at the firm level. T-statistics are
reported in parentheses; *, **, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable:
Acquisitions

Sales

Targets With Patents

Sales
Log(Acquisitions)

(1) (2) (3) (4) (5) (6)

Low X Post X Treatment 0.220 0.057 -0.001 -0.002 1.070 0.376
(1.55) (1.36) (-0.09) (-0.83) (1.13) (1.38)

High X Post X Treatment -0.068 -0.078 -0.019** -0.011** -5.638*** -3.398***
(-0.65) (-1.32) (-2.01) (-2.01) (-3.32) (-3.79)

1/Sales -0.037*** -0.037*** -0.001*** -0.001*** -0.140*** -0.143***
(-6.84) (-6.86) (-4.01) (-4.10) (-4.14) (-4.21)

Log(Age) 0.019 0.019 0.002*** 0.002*** 0.299** 0.311**
(1.29) (1.35) (2.72) (2.79) (2.36) (2.45)

Observations 19504 19504 19504 19504 19504 19504
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.008 0.008 0.006 0.006 0.003 0.003
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3 TF-IDF and CPC Models Instead Of Longformer
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Table IA7:
Patents and R&D (Alice Scores Calculated by TF-IDF Instead of Longformer
Model)

The table displays the robustness tests for the results in Table 9. In this table, in the calculation

of the treatment variable depicted in equation (3), we use TF-IDF Instead of Longformer Model

technique. In columns (1)-(2), the dependent variable is the number of patent applications in

that year divided by sales; and in columns (3) and (4), it is one plus log of the number of patent

applications in the respective year. In columns (5)-(6), the dependent variable is R&D expenses

scaled by sales. In the odd and even numbered columns, KPSS and the number of citations that a

patent received are used for Patent Value in calculation of the treatment, respectively. Small is a

binary variable equal to one if a firm’s total assets are smaller than the median total asset of its

TNIC peers in 2013, and it is zero otherwise. Large is 1-Small. Post is a dummy variable that

equals one if the year is after the Alice decision and zero otherwise. All variables are described

in detail in the variable list in Appendix A. All regressions include firm and year fixed effects.

Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *, **, and

*** denote significance at the 10%, 5% and 1% level.

Dependent Variable:
# ofPatents

Sales
Log(# of Patents)

R&D

Sales

(1) (2) (3) (4) (5) (6)

Small X Post X Treatment -0.603*** -0.139*** -2.284 -0.579 6.173*** 1.526***
(-5.48) (-4.40) (-1.55) (-1.38) (2.90) (2.73)

Large X Post X Treatment -0.172*** -0.118*** -4.314*** -2.111*** 0.019 -0.054
(-4.34) (-3.79) (-3.54) (-3.09) (0.14) (-0.54)

Log(Sales) -0.009*** -0.010*** 0.039*** 0.037*** -0.098*** -0.097***
(-7.42) (-7.39) (3.80) (3.63) (-6.45) (-6.40)

Log(Age) -0.001 -0.002 -0.006 -0.008 0.158*** 0.166***
(-0.43) (-0.77) (-0.18) (-0.22) (4.02) (4.19)

Observations 19372 19372 19372 19372 19372 19372
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.081 0.074 0.047 0.044 0.044 0.039
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Table IA8:
Patents and R&D (CPC Dummy Variable Instead of Alice Score)

The table displays the robustness tests for the results in Table 9. In this table, in the calculation

of the treatment variable depicted in equation (3), we use CPC dummy instead of Alice Score.

CPC dummy equals one if a patent’s primary CPC belongs to one of the top-20 CPCs that have

the most frequent Alice rejections and zero otherwise. In columns (1)-(2), the dependent variable

is the number of patent applications in that year divided by sales; and in columns (3) and (4), it

is one plus log of the number of patent applications in the respective year. In columns (5)-(6),

the dependent variable is R&D expenses scaled by sales. Treatment is the relative impact of the

Alice decision on the firm’s patent portfolio measured using KPSS dollar values or citations scaled

by sales (see equation (3) for the formula). In the odd and even numbered columns, respectively,

we use the KPSS and the number of citations approach to compute the Patent Value treatment.

Small is a binary variable equal to one if a firm’s total assets are smaller than the median total

asset of its TNIC peers in 2013, and it is zero otherwise. Large is 1-Small. Post is a dummy

variable that equals one if the year is after the Alice decision and zero otherwise. All variables are

described in detail in the variable list in Appendix A. All regressions include firm and year fixed

effects. Standard errors are clustered at the firm level. T-statistics are reported in parentheses; *,

**, and *** denote significance at the 10%, 5% and 1% level.

Dependent Variable:
# ofPatents

Sales
Log(# of Patents)

R&D

Sales

(1) (2) (3) (4) (5) (6)

Small X Post X Treatment -0.323*** -0.081*** -1.731*** -0.456** 1.485* 0.196
(-7.93) (-6.12) (-2.96) (-2.52) (1.68) (1.06)

Large X Post X Treatment -0.077*** -0.047*** -1.433*** -0.679** -0.130 -0.102
(-3.59) (-3.39) (-2.58) (-2.29) (-0.82) (-0.94)

Log(Sales) -0.009*** -0.010*** 0.038*** 0.037*** -0.098*** -0.098***
(-7.32) (-7.39) (3.63) (3.60) (-6.40) (-6.35)

Log(Age) -0.001 -0.002 0.001 -0.006 0.166*** 0.173***
(-0.35) (-0.89) (0.02) (-0.17) (4.10) (4.28)

Observations 19372 19372 19372 19372 19372 19372
Firm Fixed Effects YES YES YES YES YES YES
Year Fixed Effects YES YES YES YES YES YES
Treatment Calculation KPSS Citation KPSS Citation KPSS Citation
Adj. R2 0.090 0.084 0.046 0.045 0.035 0.032
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4 FuzzyDID
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Table IA9:
Fuzzy DID (Panel A) With Longformer Model

This table presents local average treatment effect (LATE) and t-statistics from the Fuzzy DID
model developed by de Chaisemartin and D’Haultfoeuille (2018). In columns (1) and (2), the
results are displayed for the subsample of Small Firms; and in (3) and (4), they are displayed for
Large Firms. A firm is classified as small if its total assets are below the median of its peers in the
TNIC database, and it is classified as large otherwise.

Small Large

(1) (2) (3) (4)

# ofPatents

Sales
-1.313** -0.512* -1.574*** -1.056***

(-2.369) (-1.952) (-4.759) (-4.195)

Log(# of Patents) -16.105** -6.822* -106.991*** -74.504***
(-2.294) (-1.909) (-4.644) (-5.108)

R&D

Sales
36.040*** 14.985** 3.230 2.139

(2.892) (2.186) (1.465) (1.593)

V CF

Sales
241.150* 87.239* -23.073** -14.828**

(1.930) (1.701) (-2.158) (-2.401)

TSIMM 743.933*** 299.036*** 205.197 143.202
(4.144) (2.629) (1.369) (1.578)

Complaints 143.088** 62.305* 30.320 2.341
(2.264) (1.658) (0.250) (0.032)

Sales Growth 6.592* 2.871 1.058 1.179
(1.830) (1.601) (0.209) (0.402)

OperatingIncome

Sales
-48.714*** -20.011*** 7.701 5.225

(-3.114) (-3.167) (1.419) (1.635)

Tobin’s Q 30.234 16.927 80.842** 50.022**
(1.127) (1.477) (2.319) (2.509)

Treatment Calculation KPSS Citation KPSS Citation

74



Table IA10:
Fuzzy DID Continued (Panel B) With Longformer Model

This table presents local average treatment effect (LATE) and t-statistics from the Fuzzy DID
model developed by de Chaisemartin and D’Haultfoeuille (2018). In columns (1) and (2), the
results are displayed for the subsample of Small Firms; and in (3) and (4), they are displayed for
Large Firms. A firm is classified as small if its total assets are below the median of its peers in the
TNIC database, and it is classified as large otherwise.

Small Large

(1) (2) (3) (4)

# Alleged -3.080 -1.124 -54.070** -39.214**
(-0.526) (-0.405) (-2.436) (-2.461)

# NPE Alleged 0.685 0.478 -3.984 -4.652
(0.180) (0.290) (-0.324) (-0.526)

# OC Alleged -5.515** -2.351 -46.407*** -32.195***
(-2.099) (-1.611) (-3.876) (-3.475)

Patinfringe -4.478 -2.879 -44.874 -29.742
(-0.183) (-0.248) (-1.416) (-1.359)

# Accuser 11.622*** 4.737** -9.026 -5.666
(3.415) (2.498) (-1.316) (-1.390)

IP Risk 237.524*** 94.853*** 230.483*** 148.853***
(4.441) (2.835) (3.557) (2.895)

Noncompete 2.063 0.447 10.688 8.401
(0.192) (0.082) (0.808) (0.959)

Nondisclosure 106.698*** 45.111*** 22.638* 14.963*
(3.726) (2.606) (1.722) (1.707)

Acquisitions

Sales
-0.068 0.051 -2.148 -0.867

(-0.073) (0.094) (-0.682) (-0.422)

Targets With Patents

Sales
-0.075 -0.027 -0.651** -0.445**

(-1.126) (-0.856) (-2.107) (-2.137)

Log(Acquisitions) 0.286 1.491 -47.417 -32.151
(0.028) (0.299) (-1.140) (-1.175)

Treatment Calculation KPSS Citation KPSS Citation
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