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Abstract

We develop a property-rights model of the firm in which production entails a continuum

of uniquely sequenced stages. In each stage, a final-good producer contracts with a distinct

supplier for the procurement of a customized stage-specific component. Our model yields a sharp

characterization for the optimal allocation of ownership rights along the value chain. We show

that the incentive to integrate suppliers varies systematically with the relative position (upstream

versus downstream) at which the supplier enters the production line. Furthermore, the nature of

the relationship between integration and “downstreamness” depends crucially on the elasticity

of demand faced by the final-good producer. Our model readily accommodates various sources

of asymmetry across final-good producers and across suppliers within a production line, and we

show how it can be taken to the data with international trade statistics. Combining data from

the U.S. Census Bureau’s Related Party Trade database and estimates of U.S. import demand

elasticities from Broda and Weinstein (2006), we find empirical evidence broadly supportive of

our key predictions. In the process, we develop two novel measures of the average position of

an industry in the value chain, which we construct using U.S. Input-Output Tables.
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1 Introduction

Most production processes are sequential in nature. At a broad level, the process of manufacturing

cannot commence until the efforts of R&D centers in the development or improvement of products

have proven to be successful, while the sales and distribution of manufactured goods cannot be car-

ried out until their production has taken place. Even within manufacturing processes, there is often

a natural sequencing of stages. First, raw materials are converted into basic components, which

are next combined with other components to produce more complicated inputs, before themselves

being assembled into final goods. This process very much resembles Henry Ford’s original Model

T production assembly line, but recent revolutionary advances in information and communication

technology, coupled with a gradual reduction in natural and man-made trade barriers, now allow

such value chains to be ‘sliced up’ into geographically separated steps.

The implications of such sequential production for the workings of open-economy general equi-

librium models have been widely explored in the literature. Several papers, most notably Findlay

(1978), Dixit and Grossman (1982), Sanyal (1983), Kremer (1993), Kohler (2004), and Costinot,

Vogel and Wang (2013), have emphasized that the pattern of specialization along the value chain

has implications for the world income distribution and for how shocks spread across countries.

Others, including Yi (2003), Harms, Lorz, and Urban (2009), and Baldwin and Venables (2010)

have unveiled interesting nonlinearities in the response of trade flows to changes in trade frictions

in models of production where value is added sequentially along locations around the globe.

The focus of our paper is different. Our aim is to understand how the sequentiality of production

shapes the contractual relationships between final-good producers and their various suppliers, and

how the allocation of control rights along the value chain can be designed in a way that elicits

(constrained) optimal effort on the part of suppliers. An obvious premise of our work is that,

although absent from most general equilibrium models, contractual frictions are relevant for the

efficiency with which production is carried out, and also for the way in which production processes

are organized across borders. We find this to be a natural premise particularly in international trade

environments, in which determining which country’s laws are applicable to particular contractual

disputes is often difficult. The detrimental effects of imperfect contract enforcement on international

trade flows are particularly acute in transactions involving intermediate inputs, as these tend to

be associated with longer lags between the time an order is placed (and the contract is signed)

and the time the goods or services are delivered (and the contract is executed). Such transactions

moreover often entail significant relationship-specific investments and other sources of lock-in on

the part of both buyers and suppliers.1 The relevance of contracting frictions for the organization

of production also now rests on solid empirical underpinnings.2

1Suppliers often customize their output to the needs of particular buyers and would find it hard to sell those goods

to alternative buyers, should the intended buyer decide not to abide by the terms of the contract. Similarly, buyers

often undertake significant investments whose return can be severely diminished by incompatibilities, production line

delays or quality debasements associated with suppliers not going through with their contractual obligations.
2A recent literature (see, for instance, Nunn, 2007, and Levchenko, 2007) has convincingly documented that

contracting institutions are an important determinant of international specialization. Another branch of the trade
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In this paper, we develop a property-rights model of firm boundaries that permits an analysis of

the optimal allocation of ownership rights in a setting where production is sequential in nature and

contracts are incomplete. Our model builds on Acemoglu, Antràs and Helpman (2007). Produc-

tion of final-goods entails a large number (formally, a continuum) of production stages. Each stage

is performed by a different supplier, who needs to undertake a relationship-specific investment in

order to produce components that will be compatible with those produced by other suppliers in

the value chain. The services of these components are combined according to a constant-elasticity-

of-substitution (CES) aggregator by a final-good producer that faces an isoelastic demand curve.

Contracts between final-good producers and their suppliers are incomplete in the sense that con-

tracts contingent on whether components are compatible or not cannot be enforced by third parties.

The key innovation relative to Acemoglu, Antràs and Helpman (2007) — and relative to the

previous property-rights models of multinational firm boundaries in Antràs (2003, 2005) and Antràs

and Helpman (2006, 2008) — is that we introduce a natural (or technological) ordering of production

stages, so that production at a stage cannot commence until the inputs or components from all

upstream stages have been delivered. Absent a binding initial (ex-ante) agreement, the firm and

its suppliers are left to sequentially bargain over how the surplus associated with a particular stage

is to be divided between the firm and the particular stage supplier. As in Grossman and Hart

(1986), in this incomplete-contracting environment, owning a supplier is a source of power for the

firm because the residual rights of control associated with ownership allow the firm to take actions

(or make threats) that enhance their bargaining power vis-à-vis the supplier. However, the optimal

allocation of ownership rights does not always entail all production stages being integrated because

by reducing the bargaining power of suppliers, integration reduces the incentives of suppliers to

invest in the relationship.3

We begin in Section 2 by developing a benchmark model of firm behavior that isolates the role of

the degree of “downstreamness” of a supplier in shaping organizational decisions. A key feature of

our analysis is that the relationship-specific investments made by suppliers in upstream stages affect

the incentives to invest of suppliers in downstream stages. The nature of this dependence is shaped

in turn by whether suppliers’ investments are sequential complements or sequential substitutes,

according to whether higher investment levels by prior suppliers increase or decrease the value of

the marginal product of a particular supplier’s investment. Even though, from a strict technological

point of view (i.e., in light of the CES aggregator of inputs), inputs are always complements,

suppliers’ investments can still prove to be sequential substitutes when the price elasticity of demand

faced by the final-good producer is sufficiently low, since in such cases, the value of the marginal

product of supplier investments falls particularly quickly along the value chain. Whether inputs are

literature, to which our paper will contribute, has also shown that the ownership decisions of multinational firms

exhibit various patterns that are consistent with Grossman and Hart’s (1986) incomplete-contracting, property-rights

theory of firm boundaries (see, among others, Antràs, 2003, Nunn and Trefler, 2008, 2012, and Bernard et al., 2010).
3Zhang and Zhang (2008, 2011) introduce sequential elements in a standard Grossman and Hart (1986) model

but focus on one-supplier environments in which either the firm or the supplier has a first-mover advantage. Other

papers that have studied optimal incentive provision in sequential production processes include Winter (2006) and

Kim and Shin (2011).
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sequential complements or sequential substitutes turns out to be determined only by whether the

elasticity of final-good demand is (respectively) higher or lower than the elasticity of substitution

across the services provided by the different suppliers’ investments.

The central result of our model is that the optimal pattern of ownership along the value chain

depends critically on whether production stages are sequential complements or substitutes. When

the demand faced by the final-good producer is sufficiently elastic, then there exists a unique

cutoff production stage such that all stages prior to this cutoff are outsourced, while all stages (if

any) after that threshold are integrated. Intuitively, when inputs are sequential complements, the

firm chooses to forgo control rights over upstream suppliers in order to incentivize their investment

effort, since this generates positive spillovers on the investment decisions to be made by downstream

suppliers. When demand is instead sufficiently inelastic, the converse prediction holds: it is optimal

to integrate relatively upstream stages, and if outsourcing is observed along the value chain, it

necessarily occurs relatively downstream.

In Section 3, we show that these results are robust to alternative contracting and bargaining

assumptions, and stem mainly from the sequential nature of production rather than the sequential

nature of bargaining. Furthermore, we show that our framework can easily accommodate a hybrid

of sequential and modular production processes (or ‘snakes’ and ‘spiders’ in the terminology of

Baldwin and Venables, 2010) as well as several other features which have been built into the recent

models of global sourcing cited earlier. These include (headquarter) investments by the final-good

producer, productivity heterogeneity across final-good producers, productivity and cost differences

across suppliers within a production chain, and partial contractibility. These extensions prove

useful in guiding our empirical analysis.

In Sections 4 and 5, we develop an empirical test of the main predictions of our framework. The

nature and scope of our test is shaped in significant ways by data availability. Although our model

does not explicitly distinguish between domestic and offshore sourcing decisions of firms, data on

domestic sourcing decisions are not publicly available. We therefore follow the bulk of the recent

empirical literature on multinational firm boundaries in using U.S. Census data on intrafirm trade

to measure the relative prevalence of vertical integration in particular industries.4 More specifically,

we correlate the share of U.S. intrafirm imports in total U.S. imports reported during the period

2000-2010 with the average degree of “downstreamness” of that industry, and we study whether this

dependence is qualitatively different for the sequential complements versus sequential substitutes

cases.

We propose two measures of downstreamness, both of which are constructed from the 2002 U.S.

Input-Output Tables. Our first measure is the ratio of the aggregate direct use to the aggregate

total use (_) of a particular industry ’s goods, where the direct use for a pair of

industries ( ) is the value of goods from industry  directly used by firms in industry  to produce

goods for final use, while the total use for ( ) is the value of goods from industry  used either

4See, for example, Nunn and Trefler (2008, 2012), Bernard et al. (2010), and Díez (2010). Antràs (2011) contains a

comprehensive survey of empirical papers using other datasets, including several firm-level studies, that have similarly

used the intrafirm import share to capture the propensity towards integration relative to outsourcing.
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Figure 1: Downstreamness and the Share of Intrafirm Trade

directly or indirectly (via purchases from upstream industries) in producing industry ’s output

for final use. A high value of _ thus suggests that most of the contribution of input 

tends to occur at relatively downstream production stages that are close (one stage removed) from

final demand. Our second measure of downstreamness () is a weighted index of the

average position in the value chain at which an industry’s output is used (i.e., as final consumption,

as direct inputs to other industries, as direct inputs to industries serving as direct inputs to other

industries, and so on), with the weights being given by the ratio of the use of that industry’s output

in that position relative to the total output of that industry. Although constructing such a measure

would appear to require computing an infinite power series, we show that  can be

succinctly expressed as a simple function of the square of the Leontief inverse matrix. As discussed

in Antràs et al. (2012), there is a close connection between  and the measure of

distance to final demand derived independently by Fally (2012).

Our empirical tests also call on us to distinguish between the cases of sequential complements

and substitutes identified in the theory. For that purpose, we use the U.S. import demand elasticities

estimated by Broda and Weinstein (2006) and data on U.S. Input-Output Tables to compute a

weighted average of the demand elasticity faced by the buyers of goods from each particular industry

. The idea is that for sufficiently high (respectively, low) values of this average demand elasticity,

we can be relatively confident that input substitutability is lower (respectively, higher) than the

demand elasticity. Ideally, one would have used direct estimates of cross-input substitutability (and

how they compare to demand elasticities) to distinguish between the two theoretical scenarios, but

unfortunately these estimates are not readily available in the literature.

Figure 1 provides a preliminary illustration of our key empirical findings, which lend broad sup-

port for the theoretical implications of our model. As is apparent from the dark bins, for the subset

of industries with above-median average buyer demand elasticities (labeled as “Complements”), the
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average U.S. intrafirm import share (for the year 2005) rises as we move from the lowest tercile of

 to the highest. In the light bins, this pattern is exactly reversed when considering

those industries facing below-median average buyer demand elasticities (labeled as “Substitutes”),

with the intrafirm trade share steadily falling across terciles of  instead.5

Our regression analysis will confirm that the above patterns hold under more formal testing.

We uncover a positive and statistically significant relationship between each of the measures of

downstreamness and the intrafirm import share in a given sector, with this relationship emerging

only for high values of the demand elasticity faced by buyer industries (i.e., in the complements

case). These findings hold when controlling for other determinants of the intrafirm trade share

raised in the literature, and which our theoretical extensions also indicate are important to ex-

plicitly consider. They are moreover robust in specifications that further exploit the cross-country

dimension of the intrafirm trade data, while controlling for unobserved variation in factor costs

with country-year fixed effects. For a wide range of specifications, we will also report a significant

negative relationship between downstreamness and the intrafirm import share for goods with low

average buyer demand elasticities (i.e., in the substitutes case), as predicted by our model.

The remainder of this paper is organized as follows. In Section 2, we develop our benchmark

model of sequential production with incomplete contracting and study the optimal ownership struc-

ture along the value chain. In Section 3, we develop a few theoretical extensions and discuss how

we attempt to take the model to the data. We describe our data sources and empirical specification

in Section 4, and present the results in Section 5. Section 6 offers some concluding remarks. All

the proofs in the paper are relegated to the Appendix (and an Online Appendix).

2 A Model of Sequential Production with Incomplete Contracts

We begin by developing a benchmark model of firm behavior along the lines of Acemoglu et al.

(2007), but extended to incorporate a deterministic sequencing of production stages. The model is

stylized in order to emphasize the new insights that emerge from considering the sequentiality of

production. We will later incorporate more realistic features and embed the framework in industry

equilibrium to guide the empirical analysis.

2.1 Benchmark Model

Sequential Production. We consider the organizational problem of a firm producing a final

good. Production requires the completion of a measure one of production stages. We index these

5 It is not hard to find examples of large industries that exhibit similar degrees of downstreamness, but face very

different average buyer demand elasticities and also very different integration propensities. For instance, Women’s

apparel (IO 315230) and Automobiles (IO 336111) are among the ten most downstream manufacturing industries,

but buyers tend to be much less price-sensitive in their demand for the former (elasticity=4.90) than for the latter

(elasticity=19.02). These two industries are thus classified under the sequential substitutes and complements cases

respectively, and consistent with our model, the share of intrafirm trade is low in Women’s apparel (0.108) and very

high in Automobiles (0.946). As we shall see later in our econometric analysis, this broad pattern continues to hold

when controlling for other industry characteristics that might also affect the propensity toward intrafirm trade.
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stages by  ∈ [0 1], with a larger  corresponding to stages further downstream (closer to the final

end product), and we let () be the services of compatible intermediate inputs that the supplier of

stage  delivers to the firm. The quality-adjusted volume of final-good production is then given by:

 = 

µZ 1

0

()I () 

¶1
, (1)

where  is a productivity parameter,  ∈ (0 1) is a parameter that captures the (symmetric) degree
of substitutability among the stage inputs, and I () is an indicator function such that:

I () =

⎧⎨⎩ 1 if input  is produced after all inputs 0   have been produced

0 otherwise
.

We normalize () = 0 if an incompatible input is delivered at stage . Although production requires

completion of all stages, note that   0 ensures that output remains positive even when some

stages might be completed with incompatible inputs. In words, although all stages are essential

from an engineering point of view, we allow some substitution in how the characteristics of these

inputs shape the quality-adjusted volume of final output. For example, producing a car requires

four wheels, two headlights, one steering wheel, and so on, but the value of this car for consumers

will typically depend on the services obtained from these different components, with a high quality

in certain parts partly making up for inferior quality in others.

Our production function in (1) resembles a conventional CES function with a continuum of

inputs, but the indicator function I () makes the production technology inherently sequential in

that downstream stages are useless unless the inputs from upstream stages have been delivered. In

fact, the technology in (1) can be expressed in differential form by applying Leibniz’s rule as:

0 () =
1


() ()1− I () ,

where () = 
¡R
0

()()
¢1

. Thus, the marginal increase in output brought about by the

supplier at stage is given by a simple Cobb-Douglas function of this supplier’s (compatible) input

production and the quality-adjusted volume of production generated up to that stage (which can

be viewed as an intermediate input to the stage- production process).

Input Production. There is a large number of profit-maximizing suppliers who can either en-

gage in intermediate input production or in an alternative activity that delivers an outside option

normalized to 0. We assume that each intermediate input must be produced by a different sup-

plier with whom the firm needs to contract. Each supplier must undertake a relationship-specific

investment in order to produce a compatible input. For simplicity, we assume that the input is fully

customized to the final-good producer, so the value of this input for alternative buyers is equal to

0. To highlight the asymmetries that will arise solely from the sequencing of production, we assume
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that production stages are otherwise symmetric: the marginal cost of investment is common for

all suppliers and equal to , and in all stages  ∈ [0 1], one unit of investment generates one unit
of services of the stage  compatible input when combined with the inputs from upstream suppli-

ers. (We will relax these symmetry assumptions later in Section 3.) Incompatible inputs can be

produced by all agents (including the firm) at a negligible marginal cost, but they add no value to

final-good production apart from allowing the continuation of the production process.

Preferences. The final good under study is differentiated in the eyes of consumers. The good

belongs to an industry in which firms produce a continuum of goods and consumers have preferences

that feature a constant elasticity of substitution across these varieties. More specifically, denoting

by  () the quality of a variety and by ̃ () its consumption in physical units, the sub-utility

accruing from this industry is given by:

 =

µZ
∈Ω

( () ̃ ()) 

¶1
, with  ∈ (0 1) , (2)

where Ω denotes the set of varieties. Note that these preferences feature diminishing marginal util-

ity with respect to not only the quantity but also the quality of the goods consumed. As a result, in

our previous car example, further quality improvements on a high-end car would not add as much

satisfaction to consumers as they would in a low-end car. As is well known, when maximizing (2)

subject to the budget constraint
R
∈Ω  () ̃ ()  = , where  denotes expenditure, consumer

demand for a particular variety features a constant price elasticity equal to 1 (1− ). Furthermore,

the implied revenue function of a firm that sells variety  is concave in quality-adjusted output

 () ≡  () ̃ () with a constant elasticity . Combining this feature with the production tech-

nology in (1), the revenue obtained by the final-good producing firm under study can be written

as:

 = 1−
µZ 1

0

 () I () 

¶

, (3)

where   0 is an industry-wide demand shifter that the firm treats as exogenous.

Complete Contracts. Before discussing in detail our contracting assumptions, it is instructive

to consider first the case of complete contracts in which the firm has full control over all investments

and thus over input services at all stages. In such a case, the firm makes a contract offer [ ()   ()]

for every input  ∈ [0 1], under which a supplier is obliged to supply  () of compatible input

services as stipulated in the contract in exchange for the payment  (). It is clear that the firm

will have an incentive to follow the natural sequencing of production, so that I () = 1 for all ,
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and the optimal contract simply solves the following maximization program:

max
{()()}∈[01]

1−
µZ 1

0

 () 

¶

−
Z 1

0

 () 

  ()−  () ≥ 0

Solving this problem delivers a common investment level  =
¡
1−

¢1(1−)
for all intermediate

inputs and associated firm profits equal to  = (1− )()(1−), while leaving suppliers with
a net payoff equal to their outside option of zero (i.e.,  = ).

Incomplete Contracts. For the above contracts to be enforceable, it is important that a court of

law be able to verify the precise value of the input services provided by the suppliers of the different

stages. In practice, however, a court of law will generally not be able to verify whether inputs are

compatible or not, and whether the services provided by compatible inputs are in accordance with

what was stipulated in a written contract. Notice also that the firm might be reluctant to sign

binding contracts that are contingent on the quantity of inputs produced but not on whether inputs

are compatible, because suppliers might then have every incentive to produce incompatible inputs

at a negligible cost and still demand payment. One could envision that contracts contingent on

total revenues could provide investment incentives for suppliers, but in our setting with a continuum

of suppliers, these type of contracts have no value as they would elicit zero investment levels. For

these reasons, it is natural to study situations in which the terms of exchange between the firm and

the suppliers are not disciplined by an ex-ante enforceable contract. In fact, the initial contract

is assumed to specify only whether suppliers are vertically integrated into the firm or remain

independent. In Section 3.4, we will briefly discuss the case of partial contractibility, in which some

aspects of production (such as the quantity produced) are contractible ex-ante.

Given the lack of a binding contract, a familiar holdup problem emerges. The actual payment to

a particular supplier (say for stage) is negotiated bilaterally only after the stage input has been

produced and the firm has had a chance to inspect it. For the time being, we treat this negotiation

independently from the bilateral negotiations that take place at other stages (though we will revisit

this assumption in Section 3.1.) Because the intermediate input is assumed compatible only with

the firm’s output, the supplier’s outside option at the bargaining stage is 0. Hence, the quasi-rents

over which the firm and the supplier negotiate are given by the incremental contribution to total

revenue generated by supplier  at that stage. To compute this incremental contribution, note

that the firm has no incentive to approach suppliers in an order different from that dictated by the

technological sequencing of production and that it can always unilaterally complete a production

stage by producing an incompatible input.6 As a result, we have I () = 1 for all   , and the

6The assumption that the firm is able to complete any production stage with incompatible inputs may seem

strong but it can be relaxed by considering environments with partial contractibility, as in Grossman and Helpman

(2005). For instance, if a fraction of the suppliers’ investments is verifiable and contractible, then the firm could use

a formal contract to ensure the provision of a minimum amount of compatible input services from the supplier and

the production process would never stall.
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value of final-good production secured up to stage  is given by:

() = 1−
∙Z 

0

()

¸ 


. (4)

Applying Leibniz’s integral rule to this expression, we then have that the incremental contribution

of supplier  is given by:

0() =
 ()


=





¡
1−

¢
 ()

−
 (). (5)

Following the property-rights theory of firm boundaries, we let the effective bargaining power

of the firm vis-à-vis a particular supplier depend on whether the firm owns this supplier or not. As

in Grossman and Hart (1986), we assume that ownership of suppliers is a source of power, in the

sense that the firm is able to extract a higher share of surplus from integrated suppliers than from

nonintegrated suppliers. Intuitively, when contracts are incomplete, the fact that an integrating

party controls the physical assets used in production will allow that party to dictate a use of these

assets that tilts the division of surplus in its favor. To keep our model as tractable as possible, we

will not specify in detail the nature of these ex-post negotiations and will simply assume that the

firm will obtain a share  of the incremental contribution in equation (5) when the supplier is

integrated, while only a share    of that surplus when the supplier is a stand-alone entity.

We now summarize the timeline of the game played by the firm and the continuum of suppliers:7

• The firm posts contracts for suppliers for each stage  ∈ [0 1] of the production process. The
contract stipulates the organizational form — integration within the boundaries of the firm or

arm’s-length outsourcing — under which the potential supplier will operate.

• Suppliers apply for each contract and the firm chooses one supplier for each production stage.
• Production takes place sequentially. At the beginning of each stage , the supplier is handed
the final good completed up to that stage. After observing the value of this unfinished product

(i.e.,  () in (4)), the supplier chooses an input level, (). At the end of the stage, the firm

and supplier  bargain over the addition to total revenue that supplier  has contributed at

stage  (i.e., 0 () in (5)), and the firm pays the supplier.

• Output of the final good is realized once the final stage is completed. The total revenue,
1−, from the sale of the final good is collected by the firm.

Before describing the equilibrium of this game, it is worth pausing to briefly discuss our as-

sumptions regarding the sequential nature of contracting and payments. Notice, in particular, that

we have assumed that the firm and the supplier bargain only at stage , that these agents are not

allowed to exchange lump-sum transfers, and that the terms of exchange are not renegotiated at a

7Although we focus throughout on a version of the model with a continuum of production stages, our equilibrium

corresponds to the limit → 0 of a discrete game in which  suppliers each control a measurable range  = 1 of

the continuum of intermediate inputs. See Acemoglu et al. (2007) for an analogous derivation.
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later stage and do not reflect the outcome of subsequent negotiations between the firm and other

suppliers. Although some of these assumptions could be motivated in richer frameworks appealing

to the existence of incomplete information and limited commitment frictions (as in Hart and Moore,

1994, or Thomas and Worrall, 1994), these assumptions may admittedly seem special. For these

reasons, in Section 3.1, we will explore the robustness of our results to alternative contracting and

bargaining assumptions.

2.2 Equilibrium Firm Behavior

A. Supplier Investment in Stage 

We now characterize the subgame perfect equilibrium of the game described above. We start

by solving for the investment level of a particular stage- supplier, taking as given the value of

production up to that stage and the chosen organizational mode for that stage. Denote by  ()

the share of the incremental contribution 0 () that accrues to the firm in its bargaining with

supplier . Our previous discussion implies that:

 () =

⎧⎨⎩  if the firm outsources stage 

   if the firm integrates stage 
.

The stage- supplier obtains the remaining share 1−  () ∈ [0 1] of 0 (), and thus chooses an
investment level () to solve:

max
()

() = (1−  ())




¡
1−

¢
 ()

−
 () − (), (6)

which delivers:

 () =

"
(1−  ())


¡
1−

¢




# 1
1−

 ()
−

(1−) . (7)

The investment made by supplier  is naturally increasing in the demand level, , the productivity

 of the firm, and the supplier’s bargaining share, 1 −  (), while it decreases in the investment

marginal cost, . Hence, other things equal, an outsourcing relationship (corresponding to a lower

 ()) promotes higher investments on the part of supplier. The effect of the value of production

secured up to stage (and thus of all investment decisions in prior stages, {()}=0) is more subtle.
If   , then investment choices are sequential complements in the sense that higher investment

levels by prior suppliers, as summarized in  (), increase the marginal return of supplier ’s own

investment. Conversely, if   , investment choices are sequential substitutes because high values

of upstream investments reduce the marginal return to investing in (). Throughout the paper,

we shall thus refer to    as the complements case and to    as the substitutes case.

Since  ∈ (0 1), it is straightforward to verify that from a purely technological point of view,

supplier investments are always (weakly) complementary. More precisely, in light of equation (1),

 () is necessarily nondecreasing in the investment decisions of other suppliers 0 6= . Why
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is  () then negatively affected by prior investments when   ? The reason is that, when

  1, the firm faces a downward-sloping demand curve for its product and thus prior upstream

investments also affect  () on account of the induced movements along the demand curve. When

 is very small, the firm’s revenue function is highly concave in quality-adjusted output and thus

marginal revenue falls at a relatively fast rate along the value chain. In other words, in industries

where firms enjoy significant market power, large upstream investment levels can significantly reduce

the value of undertaking downstream investments, thus effectively turning supplier investments (in

quality-adjusted terms) into sequential substitutes. Equation (7) illustrates that this effect will

dominate the standard physical output complementarity effect whenever the elasticity of demand

faced by the firm is lower than the elasticity of substitution across inputs, namely when   .

B. Suppliers’ Investments Along the Value Chain

Equation (7) characterizes supplier ’s investment level as a function of  (), the value of pro-

duction up to stage . We next solve for  () as a function of the primitives of the model and

obtain the equilibrium investment levels of all suppliers along the value chain. To achieve this, first

plug equation (7) into (5) to obtain:

0() =




µ
(1−  ()) 



¶ 
1−


(1−)
(1−) ()

−
(1−) . (8)

This constitutes a differential equation in (), which is easily solved by noting that it is separable

in () and (). Using the initial condition (0) = 0, we have:

() = 

µ
1− 

1− 

¶ (1−)
(1−)

µ




¶ 
1−

∙Z 

0

(1− ())


1−

¸ (1−)
(1−)

 (9)

Equation (9) illustrates how the value of production secured up to stage  depends on all upstream

organizational decisions, namely the () for   . Finally, plugging this solution into (7) yields:

() = 

µ
1− 

1− 

¶ −
(1−) ³



´ 1
1−




1− (1− ())
1

1−

∙Z 

0

(1− ())


1− 

¸ −
(1−)

. (10)

From this expression, it is clear that the outsourcing of stage (i.e., choosing () =    )

enhances investment by that stage’s supplier, while the dependence of () on the prior (upstream)

organizational choices of the firm crucially depends on whether investment decisions are sequential

complements (  ) or sequential substitutes (  ). In choosing its optimal organizational

structure, the firm will weigh these considerations together with the fact that outsourcing of any

stage is associated with capturing a lower share of surplus and thus extracting less quasi-rents from

suppliers. We next turn to study this optimal organizational structure formally.
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C. Optimal Organizational Structure

The firm seeks to maximize the amount of revenue it obtains when the good is sold net of all

payments made to suppliers along the value chain. The firm’s profits can thus be evaluated as

 =
R 1
0
()0(), which after substituting in the expressions from (8) and (9) is given by:

 = 




µ
1− 

1− 

¶ −
(1−)

µ




¶ 
1−

Z 1

0

()(1− ())


1−

∙Z 

0

(1− ())


1−

¸ −
(1−)

 (11)

It is in turn easily verified that the payoff () obtained by suppliers (see equation (6)) is always

positive, so their participation constraint can be ignored. The firm’s decision problem is then:

max
{()}∈[01]



  () ∈ {  } 

namely to choose the organizational mode for each stage  in order to maximize its profits  as

given in (11).

In order to determine if integration or outsourcing is optimal at a given stage , it proves

useful to follow the approach in Antràs and Helpman (2004, 2008) and consider first the relaxed

problem in which the firm could freely choose the function () from the whole set of piecewise

continuously differentiable real-valued functions rather than from those that only take on values in

the set {  }. Defining:
 () ≡

Z 

0

(1− ())


1−, (12)

we can write this problem as that of choosing the real-value function  that maximizes the functional:

 () = 

Z 1

0

³
1− 0 ()

1−


´
0 ()  ()

−
(1−)  (13)

where  ≡  


³
1−
1−

´ −
(1−) ¡



¢ 
1− is a positive constant.8 The profit-maximizing function  must

then satisfy the Euler-Lagrange condition, which in light of (13) is given by:


−

(1−) (0)
1−

−1
∙
00 +

− 

1− 

(0)2



¸
= 0, (14)

provided that 0 is at least piecewise differentiable. In the Appendix, we show that the profit-

maximizing function  must set the term in the square brackets in (14) to 0. Imposing the initial

condition  (0) = 0 and the transversality condition 0 (1)
1−
 = , and using (12), we can then

conclude that the optimal division of surplus at stage , which we denote by ∗ (), is simply
given by:

∗ () = 1− 
−
 . (15)

8We thank an anonymous referee for suggesting this approach.
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It then follows that:

Lemma 1 The (unconstrained) optimal bargaining share ∗ () is an increasing function of  in

the complements case (  ), while it is a decreasing function of  in the substitutes case (  ).

Before describing the implications of this Lemma, it is worth pausing to briefly discuss two

technical issues on which we further elaborate in the Online Appendix. First, equation (15) was

derived appealing to the Euler-Lagrange condition, which is a necessary condition for optimality.

In the Online Appendix, we also solve the Hamilton-Jacobi-Bellman equation associated with our

problem and use it to demonstrate that our optimality condition is also sufficient for a maximum.

Second, we have not constrained the optimal bargaining share ∗ () to be nonnegative, consistent
with the notion that the firm might find it optimal to compensate certain suppliers with a payoff that

exceeds their marginal contribution. In the Online Appendix, we show how imposing ∗ () ≥ 0
affects the solution for the optimal bargaining share. Crucially, however, the statement in Lemma

1 remains valid except for the fact that, in this constrained case, ∗ () is only weakly increasing
in  when   .

The key implication of Lemma 1 is that the relative size of the parameters  and  will govern

whether the incentive for the firm to retain a larger surplus share increases or decreases along the

value chain. Intuitively, when  is high relative to , investments are sequential complements, and

integrating early stages of production is particularly costly because this reduces the incentives to

invest not only of these early suppliers but also of all suppliers downstream. Furthermore, although

integration allows the firm to capture some rents, the incremental surplus over which the firm and

the supplier negotiate is particularly small in these early stages of production. Conversely, when 

is small relative to , investments are sequential substitutes, and outsourcing is particularly costly

in upstream stages because high investments early in the value chain lead to reduced incentives

to invest for downstream suppliers, whereas the firm would capture a disproportionate amount of

surplus by integrating these early stages.

Another way to convey this intuition is by comparing the supplier’s investment levels in the

complete versus incomplete contracting environments. As we have seen earlier, in the former case,

the firm would choose quality-contingent contracts to elicit a common value of input services for

all suppliers in the value chain. Instead, with incomplete contracting, if the bargaining weight

 () was common for all stages, investment levels would be increasing along the value chain for

   and decreasing along the value chain for    (see equation (7)). The optimal choice of

 () in (15) can thus be understood as a second-best instrument that attenuates the distortions

arising from incomplete contracting, by rebalancing investment levels towards those that would be

chosen in the absence of contracting frictions. In the complements case, this involves eliciting more

supplier investment in the early stages through outsourcing, and (possibly) integrating the most

downstream suppliers to dampen the relative overinvestment in these latter stages; an analogous

logic applies in the substitutes case.

Evaluating the function ∗ () in (15) at its extremes, we obtain that lim→0 ∗ () = −∞when

   and ∗ (0) = 1 when   , while ∗ (1) = 1 −  regardless of the relative magnitude of 
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Figure 2: Profit-Maximizing Division of Surplus for Stage 

and  . This implies that when the firm is constrained to choose  () from the pair of values 

and , the decision of whether or not to integrate the most upstream stages depends solely on the

relative size of  and . In the complements case, the firm would select the minimum possible value

of  () at  = 0, which corresponds to choosing outsourcing in this initial stage and, by continu-

ity, in a measurable set of the most upstream stages. Conversely, in the substitutes case, the firm

necessarily chooses to integrate these initial stages. As for the most downstream stages, the decision

is less clear-cut. In both cases, if   1−  = ∗ (1), then it is clear that that last stage will be
integrated, while it will necessarily be outsourced if   1−. When   1−  , whether

stages in the immediate neighborhood of  = 1 are integrated or not depends on other parameter

restrictions (see the Appendix). Figure 2 depicts the function ∗ ()whenever   1−   ,

in which case there is the potential for integrated and outsourced stages to coexist along the value

chain in both the sequential complements and substitutes cases.

Our discussion so far has focused on the optimal organizational mode for stages at both ends of

the value chain. In the Appendix, we show that the set of stages under a common organizational

form (integration or outsourcing) is necessarily a connected interval in [0 1], thus implying:

Proposition 2 In the complements case (  ), there exists a unique ∗ ∈ (0 1], such that: (i)
all production stages  ∈ [0∗) are outsourced; and (ii) all stages  ∈ [∗  1] are integrated
within firm boundaries. In the substitutes case (  ), there exists a unique ∗ ∈ (0 1], such
that: (i) all production stages  ∈ [0∗) are integrated within firm boundaries; and (ii) all stages
 ∈ [∗  1] are outsourced.

Given that  () takes on at most two values along the value chain, one can in fact derive a

closed-form solution for the cutoff stages, ∗ and ∗ , in terms of the parameters ,  ,  and

14



 (see Appendix for details):

∗ = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣1 +µ1− 

1− 

¶ 
1−

⎡⎢⎢⎣
⎛⎜⎝ 1− 



1−
³
1−
1−

´− 
1−

⎞⎟⎠
(1−)
−

− 1

⎤⎥⎥⎦
⎤⎥⎥⎦
−1

 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (16)

and

∗ = min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣1 +

µ
1− 
1− 

¶ 
1−

⎡⎢⎢⎢⎣
⎛⎜⎝
³
1−
1−

´− 
1− − 1



− 1

⎞⎟⎠
(1−)
−

− 1

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦
−1

 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (17)

where remember that    .
9 With these expressions, we can then establish:

Proposition 3 Whenever integration and outsourcing coexist along the value chain (i.e., ∗ ∈
(0 1) when   , or ∗ ∈ (0 1) when   ), a decrease in  will necessarily expand the range of

stages that are vertically integrated.

The negative effect of  on integration is explained by the fact that when the firm has relatively

high market power (low ), it will tend to place a relatively high weight on the rent-extraction

motive for integration and will thus be less concerned with the investment inefficiencies caused by

such integration.

3 Extensions and Empirical Implementation

Our Benchmark Model is stylized along several directions and omits many factors that have been

shown to be important for the organizational decisions of firms in the global economy. In this

section, we develop a few extensions that help us gauge the robustness of our results and also allow

us to connect our Benchmark Model to the global sourcing framework in Antràs and Helpman

(2004, 2008). These extensions will also serve to justify the regression specification and several

control variables that we will adopt later in our empirical analysis. For simplicity, we develop these

extensions one at a time, although they could readily be incorporated in a unified framework.

3.1 Alternative Contracting Assumptions

A. Ex-Ante Transfers

We begin by exploring the robustness of our results to alternative contracting assumptions. (To

conserve space, we focus on outlining the main results and relegate most mathematical details to

9Using (16) and (17), it is straightforward to derive the parameter restrictions that characterize when the cutoff

lies strictly in the interior of (0 1). In the complements case, ∗ ∈ (0 1) if  (1− )
(1−)  (1−)

(1−),
while ∗ = 1 otherwise. In the substitutes case, ∗ ∈ (0 1) if  (1 −  )

(1−)  (1 − )
(1−), while

∗ = 1 otherwise (see the Appendix).

15



the Online Appendix.) We first consider the implications of allowing for ex-ante transfers between

the firm and suppliers, which naturally affect the ex-ante division of surplus between agents. In our

Benchmark Model, the optimal choice of ownership structure was partly shaped by the desire of the

firm to extract rents from its suppliers. If ex-ante transfers were allowed, the choice of ownership

structure would now seek to maximize the joint surplus created along the value chain:

 = 1−
µZ 1

0

 () 

¶

−
Z 1

0

 () , (18)

rather than just the ex-post surplus obtained by the firm, as in equation (11).

Importantly, the presence of ex-ante transfers has no effect on suppliers’ investment levels,

which are still given by (10) and thus feature the same distortions as in our Benchmark Model.

In particular, supposing that bargaining weights were constant (i.e., () = ), investment levels

would continue to increase along the value chain in the complements case (  ), while they

would continue to decrease along the value chain in the substitutes case (  ). As a result, when

studying the hypothetical case in which the firm could freely choose () from the continuum of

values in [0 1] to maximize (18), we find that the marginal return to raising () is once again

increasing in  for    and decreasing in  for   . In words, even in the presence of lump-

sum transfers, the central result of our paper remains intact: the incentive to integrate suppliers is

highest for downstream suppliers in the complements case, while it is highest for upstream suppliers

in the substitutes case.

There is however one key difference that emerges relative to the Benchmark Model. With

ex-ante transfers, we find that integration and outsourcing coexist along the value chain only

when   , in which case the firm integrates the most upstream stages and outsources the most

downstream ones.10 On the other hand, when   , although the incentive to integrate suppliers

is highest for downstream suppliers, the firm nevertheless finds it optimal to outsource all stages

of production (including the most downstream ones), regardless of the values of  and  (see

the Online Appendix for details). The intuition is simple: given that the firm can extract surplus

from suppliers in a nondistortionary manner via ex-ante transfers, the use of integration for rent

extraction purposes is now inefficient. When   , the firm will also use ex-ante transfers to

extract surplus from suppliers, but integration of upstream suppliers continues to be attractive

because it serves a different role in providing incentives to invest for downstream suppliers, as in

our Benchmark Model.

B. Linkages Across Bargaining Rounds

In our Benchmark Model, we have assumed that the firm and the supplier in each stage  bargain

only over the marginal addition of that supplier to production value, as captured by 0 () in (5),
independently of the bilateral negotiations that take place at other stages. This seems a sensible

10The cutoff stage separating the upstream integrated stages from the downstream outsourced stages can in fact

be shown to be unique and to lie strictly in the interior of (0 1). (See the Online Appendix.)
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assumption to make in environments in which suppliers might not have precise information over

what other suppliers in the value chain do, but formally introducing incomplete information into

our model would greatly complicate the analysis. Instead, in this section, we will stick to our

assumption that all players have common knowledge of the structure and payoffs of the game, but

we will briefly characterize the subgame perfect equilibrium of a more complicated game in which

suppliers internalize the effect of their investment levels and their negotiations with the firm on the

subsequent negotiations between the firm and downstream suppliers.

In order to do so, it becomes important to specify precisely the implications of an (off-the-

equilibrium path) decision by a supplier to refuse to deliver its input to the firm. Remember that

we have assumed that the firm has the ability to costlessly produce any type of incompatible input,

so such a breach of contract would not drive firm revenues to zero. The key issue is: what is

the effect of such a deviation on the productivity of downstream suppliers? In order to consider

spillovers from some bargaining stages to others, the simplest case to study is one in which once

the production process incorporates an incompatible input (say because a supplier refused to trade

with the firm), all downstream inputs are necessarily incompatible as well, and thus their marginal

product is zero and firm revenue remains at () if the deviation happened at stage . (In the

Online Appendix, we outline the complications that arise from studying less extreme environments.)

With these assumptions, the supplier at stage  realizes that by not delivering its input, the

firm will not only lose an amount of revenue equal to 0 (), but will also lose its share of the value
from all subsequent additions of compatible inputs by suppliers positioned downstream of . This

problem clearly takes on a recursive nature, since the negotiations between the firm and supplier at

any given stage will be shaped by all negotiations that take place further downstream. To formally

characterize the subgame perfect equilibrium of this game, we first develop a discrete-player version

of the game in which each of   0 suppliers controls a measure 1 of the production stages,

and then study its behavior in the limit as  → ∞. In the Online Appendix, we show that the
profits obtained by the -th supplier ( = 1    ) are given by:

 () = (1−  ())

−X
=0

 ( ) (( + )− ( + − 1))− 1


(), (19)

where:

 ( ) =

⎧⎪⎪⎨⎪⎪⎩
1 if  = 0

+Y
=+1

 () if  ≥ 1 , (20)

and the discrete-player analogue of the revenue function is () = 1−
hP

=1
1

()

i 

. Note

that from a Taylor approximation, we have that the marginal contribution of supplier + is given
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by:

( + )− ( + − 1) ≈ 1−




"
+−1X
=1

1


()

# −


1


 ( + ) for all  ≥ 0. (21)

The key difference relative to our Benchmark Model is that the payoff to a given supplier in

equation (19) is now not only a fraction 1 −  () of the supplier’s own direct contribution to

production value, ()− (− 1), but also incorporates a share  ( ) of the direct contribution

of each supplier located  ≥ 1 positions downstream from , namely (+ )− (+ −1). Note,
however, that the share of supplier  + ’s direct contribution captured by  quickly falls in the

distance between  and  +  (see equation (20)).

At first glance, it may appear that the introduction of linkages across bargaining stages greatly

complicates the choice of investment levels along the value chain. This is for at least two rea-

sons. First, the choice of investment  () will now be shaped not just by the marginal return

of those investments on supplier ’s own direct contribution, but also by the marginal return to

those investments made in subsequent stages. Second, this will in turn lead upstream suppliers

to internalize the effect of their investments on the investment decisions of suppliers downstream.

These two effects are apparent from inspection of equations (19) and (21).

In the Online Appendix, we show, however, that when considering the limiting case of a con-

tinuum of suppliers ( → ∞), these effects become negligible, and remarkably, the investment
choices that maximize  () in equation (19) end up being identical to those in the Benchmark

Model. This is despite the fact that the actual ex-post payoffs obtained by suppliers are distinct

and necessarily higher than those in the Benchmark Model. The intuition behind this result is that

the effect of a supplier’s investment on its own direct contribution is of a different order of magni-

tude from its effects on other suppliers’ direct contributions, as illustrated by equation (21), and

only the former remains non-negligible as  → ∞.11 In sum, investment levels are only relevant
insofar as they affect a supplier’s own direct contribution, and thus this variant of the model ends

up delivering the exact same levels of supplier investments as in the Benchmark Model.

Since investment levels are identical to those in the Benchmark Model, the total surplus gener-

ated along the value chain will also remain unaltered. Provided that the firm and its suppliers have

access to ex-ante transfers in the initial contract, this variant of the model will generate the exact

same predictions as our Benchmark Model extended to include lump-sum transfers, as outlined in

subsection 3.1.A above. In the absence of such ex-ante transfers, however, the choice of ownership

structure becomes significantly more complicated due to the fact that the ex-post rents obtained

by the firm in a given stage are now lower than in the Benchmark Model, and more so the more

upstream the stage in question. Other things equal, this generates an additional incentive for the

firm to integrate relatively upstream suppliers, regardless of the relative size of  and . Unfortu-

nately, an explicit formula for  and  cannot be obtained in the limiting case  → ∞, thus
11Notice that as  → ∞, the direct effect 1


 ( + )


goes to zero at the same rate 1 as the cost term in

(19). Conversely, the indirect effect goes to zero at rate 12.

18



precluding an analytical characterization of the ownership structure choice along the value chain.

C. On the Sequentiality of Bargaining and Production

We have so far considered environments in which both production and bargaining occur sequentially.

How would our results differ if instead the firm were to bargain with all suppliers simultaneously

after the entire sequence of production stages has been completed? The answer to this depends

naturally on the details of the ex-post bargaining. Consider first the approach in Acemoglu et al.

(2007), who use the Shapley value to determine the division of ex-post surplus between the firm and

its suppliers, while specifying a symmetric threat point associated with a deviation (e.g., withhold-

ing of noncontractible services) on the part any given supplier. In such a case, all suppliers would

derive the same payoff and the optimal organizational form would be independent of the position

of an input in the value chain (see Acemoglu et al., 2007), a prediction that would be starkly at

odds with our empirical findings below. We would argue, however, that this symmetric multilateral

solution is not a natural one to consider in environments where production is inherently sequential.

In particular, this symmetric solution inherently assumes that despite recognizing that their invest-

ments have asymmetric effects on profits depending on the stage at which they enter production

(i.e., 0 () varies with ), suppliers are nevertheless able to figure out that, in an equilibrium

in which the continuum of all other suppliers cooperates, threatening to withhold her individual

noncontractible investments would have the same effect for any supplier. The bargaining solution

that would arguably be more natural is one where suppliers perceive their marginal contribution to

be given by the increase in production value at the time their investment takes place, regardless of

whether negotiations occur sequentially or simultaneously at the end of production.12 Our results,

we would then argue, hinge in a more fundamental way on the sequential nature of production than

on the sequentiality of bargaining.

That said, we have explored several extensions of our framework to allow for richer production

structures that feature not just sequential but also modular features. First, we have developed a

variant of our model where production resembles a “spider”, following the terminology of Baldwin

and Venables (2010). Specifically, the final good combines a continuum of modules or parts, which

are put together simultaneously according to a technology featuring a constant elasticity of substi-

tution, 1 (1− )  1, across the services of the different modules. Prior to final-good assembly,

each of these modules is in turn produced by sequentially combining a unit measure of intermedi-

ate inputs under the same technology and contracting assumptions as in our Benchmark Model,

and where each module producer decides which of its module-specific inputs to integrate. As we

demonstrate in the Online Appendix, as long as the negotiations between the final-good producer

and the module producers are separate from those between each module producer and its suppliers,

12Put differently, remember that the (symmetric) Shapley value of a player is the average of her contributions to

all coalitions that consist of players ordered below her in all feasible permutations. When production is simultaneous,

one would take an average over all possible permutations. But when production is sequential, the order in which

suppliers are arranged in any given permutation should matter, with profits accruing only insofar as the coalition

players are ordered in the same sequence as production would require.
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the incentives to integrate suppliers will be shaped by the same forces as in our Benchmark Model.

In particular, the pattern of integration along each module’s chain will now depend crucially on the

relative magnitude of the parameter  governing the substitutability of inputs within modules and

the parameter  which turns out to govern the concavity of each module producer’s revenues with

respect to the quality of the module she delivers (as  did in our Benchmark Model). If   , then

module inputs will be sequential complements and the propensity to integrate will once again be

increasing with the downstreamness of module inputs; the converse statement applies when   .

This modification has some bearing for the empirical interpretation of our results, so we will briefly

return to it in Section 5.3.

In the Online Appendix, we also study an alternative hybrid model that resembles more a

“snake”: Production is sequential as in our Benchmark Model, but each stage input  is now itself

composed of a large number (formally, a unit measure) of components produced simultaneously, each

by a different supplier, under a symmetric technology featuring a constant elasticity of substitution,

1 (1− )  1, across components. When  → 1, this captures situations in which firms might

contract with multiple suppliers to provide essentially the same intermediate input. We model the

negotiations between the final-good producer and the set of stage- suppliers using the Shapley

value, as in Acemoglu et al. (2007). As it turns out, in this extension, the incentives to integrate

the suppliers of the stage- components are shaped by downstreamness (i.e., the index ) in

qualitatively the same manner as in our Benchmark Model, independently of the value of .

3.2 Headquarter Intensity

We next consider the introduction of investment decisions on the part of the firm. As first discussed

by Antràs (2003), to the extent that final-good producers or ‘headquarters’ undertake significant

noncontractible, relationship-specific investments in production, their willingness to give up bar-

gaining power via outsourcing will be tampered by the negative effect of those decisions on the

provision of headquarter services. The relative intensity of headquarter services in production thus

emerges as a crucial determinant of the integration decision (see also Antràs and Helpman, 2004,

2008).

It is straightforward to incorporate these considerations into our framework. In particular,

consider the case in which the production function from (1) is modified to:

 = 

µ




¶ µZ 1

0

µ
()

1− 

¶

I () 

¶1−


,  ∈ (0 1), (22)

where recall that () is an indicator function equal to 1 if and only if input  is produced after all

inputs upstream of  have been procured. Suppose also that the provision of headquarter services,

, by the firm is undertaken at marginal cost  after suppliers have been hired, but before they

have undertaken any stage investments. For instance, one could think of these headquarter services

as R&D or managerial inputs that need to be performed before the sourcing of inputs along the

supply chain can commence. As in the case of the investments by suppliers, we assume that ex-ante
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contracts on headquarter services are not enforceable and we rule out ex-ante transfers to facilitate

comparison with our Benchmark Model.

Because the investment in  is sunk by the time suppliers take any actions, the introduction

of headquarter services does not alter the above analysis too much. In particular, the value of

production generated up to stage  when all inputs are compatible is now given by:

() = 1−
µ




¶

(1− )−̃
∙Z 

0

()

¸ ̃


,

where ̃ ≡ (1− ) . It is then immediate that one can follow the same steps as in previous sections

to conclude that the dependence of the integration decision on the index of a production stage 

crucially depends on the relative magnitude of ̃ ≡ (1− )  and . As before, a high value of 

relative to  leads to a higher desirability of integrating relatively downstream production stages,

while the converse is true when  is low relative to . What this extension illustrates is that these

effects of  need to be conditioned on the headquarter intensity of the industry. In particular, we

should see a greater propensity towards integrating downstream stages when  is high and  is low,

with the converse being true when  is low and  is high.

Beyond this effect, our model also predicts that a higher headquarter intensity (higher ) will

also have a positive “level” effect (across all stages) in the integration decision, for reasons analogous

to those laid out in previous contributions to the property-rights theory. To see this formally, notice

that Propositions 2 and 3 will continue to hold with ̃ ≡ (1− )  replacing  both in the statements

of the Propositions as well as in the formulas for ∗ and ∗ in (16) and (17). Hence, whenever
our model predicts a coexistence of integration and outsourcing along the value chain, an increase

in  will necessarily expand the range of stages that are vertically integrated.13

We summarize these results as follows (see Appendix for a formal proof):

Proposition 4 In the presence of headquarter services provided by the firm, the results in Propo-

sitions 2 and 3 continue to hold except for the fact that: (i) the complements and substitutes cases

are now defined by ̃ ≡ (1− )    and ̃ ≡ (1− )   , respectively, and (ii) the range of

stages that are vertically integrated is now also (weakly) increasing in .

3.3 Firm Heterogeneity and Prevalence of Integration

Up to now, we have considered the problem of a single firm in isolation. We now show that our

model can be readily embedded in an industry equilibrium, in which firms produce a continuum of

differentiated final-good varieties that consumers value according to the utility function in (2).

On the technology side, each firm within the industry produces one final-good variety under

the same technology and sequencing of production stages in (1). Following Melitz (2003), we let

firms differ in their productivity parameter . As is commonly done, we assume that  is drawn

13The counterpart of this result is that that the unconstrained optimal bargaining share ∗() spelled out in (15)
is decreasing in ̃ in both the complements and substitutes cases, which implies a greater propensity to integrate each

stage  the higher is .
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independently for each firm from an underlying Pareto distribution with shape parameter  and

minimum threshold , namely:

 () = 1− () for  ≥   0, (23)

where  is inversely related to the variance of  and is assumed high enough to ensure a finite

variance of the size distribution of firms. We further introduce a fixed organizational cost  ()

associated with each production stage  ∈ [0 1]. For simplicity, we let the firm pay these fixed

costs (or a large enough fraction of them to ensure that no supplier’s participation constraint is

violated). The values that these fixed costs can take are symmetric for all stages, varying only

with the organizational structure chosen by the firm for each given stage. More specifically, and

following the arguments in Antràs and Helpman (2004), we assume that:

  

reflecting the higher managerial overload associated with running an integrated relationship ( )

relative to maintaining an arms-length arrangement with an input supplier ().

The introduction of productivity heterogeneity and fixed costs of production enriches the choice

of ownership structure relative to our Benchmark Model. We relegate most mathematical details to

the Appendix and focus here on describing the main results. Consider first the complements case

(  ). As in the Benchmark Model, the incentive for the firm to integrate a given production

stage is larger the more downstream the stage, and again there exists a cutoff  ∈ (0 1] such that
all stages before  are outsourced and all stages after  (if any) are integrated. The presence

of fixed costs means however that when   1, this threshold is now implicitly defined by:

()
−

(1−)

⎡⎣µ1− 


¶
−
Ã
1−

µ
1− 
1− 

¶ 
1−

!"
1 +

µ
1− 
1− 

¶ 
1−

µ
1−



¶# −
(1−)

⎤⎦ =  − 

Ψ


1−
,

(24)

where Ψ ≡ 
(1−)
(1−) (1− )


1− is a constant,  being the same constant from equation (13) in

the Benchmark Model.

It can be shown that the left-hand side of (24) is increasing in  whenever we have an

interior solution, and thus the threshold  is now a decreasing function of the level of firm

productivity . Intuitively, relatively more productive firms will find it easier to amortize the extra

fixed cost associated with integrating stages, and thus will tend to integrate a larger number of

stages. Furthermore, when  → ∞, the effect of fixed costs on firm profits becomes negligible

and the threshold  converges to the one in the Benchmark Model (i.e., 
∗
 in equation (16)).

Following analogous steps, it is straightforward to verify that in the substitutes case (  ),

there exists again a threshold  ∈ (0 1] such that all stages upstream from  are integrated

and all stages downstream from  (if any) are outsourced. Furthermore,  is increasing in

firm productivity , so again relatively more profitable firms tend to integrate a larger interval of
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Figure 3: Firm Heterogeneity and the Integration Decision

production stages.

Figure 3 illustrates these results. In both panels of the Figure, it is assumed that the firms with

the lowest values of productivity (in the neighborhood of ) do not find it profitable to integrate any

production stage .14 As productivity increases, more and more stages become integrated, with

these stages being the most downstream ones in the complements case, but the most upstream ones

in the substitutes case. Furthermore, both panels illustrate that even when productivity becomes

arbitrarily large, the firm might want to keep some production stages (the most upstream ones in

the complements case, and the most downstream ones in the substitutes case) under an outsourcing

contract.

A key implication of firm heterogeneity is that it generates smooth predictions for the preva-

lence of integration in production stages with different indices , a feature that will facilitate our

transition to the empirical analysis in the next section. More specifically, notice that in the comple-

ments case (  ), we have that input   ∗ will be integrated by all firms with productivity
higher than the threshold  (), where  () is the productivity value for which equation (24)

holds; the input  will in turn be outsourced by all firms with    (). (Inputs with an index

  ∗ will not be integrated by any firms.) Appealing to the Pareto distribution in (23), we

thus have that the share of firms integrating stage  is given by:

 () =

⎧⎨⎩ 0 if  ≤ ∗

( ())
 if   ∗

 (25)

From our previous discussion, it is clear that  () is a decreasing function of , and thus the

14We assume that  is low to ensure that the firms with the lowest productivity level  will outsource all stages.
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share of firms integrating stage  is weakly increasing in the downstreamness of that stage. Notice

also that because    (), the share of integrating firms is decreasing in  and thus increasing

in the dispersion of the productivity distribution, a result that very much resonates with those

derived by Helpman et al. (2004) and Antràs and Helpman (2004).

Following analogous steps for the substitutes case, we can conclude that:

Proposition 5 The share of firms integrating a particular stage  is weakly increasing in the

downstreamness of that stage in the complements case (  ), while it is decreasing in the

downstreamness of the stage in the substitutes case (  ). Furthermore, the share of firms

integrating a particular stage  is weakly increasing in the dispersion of productivity within the

industry.

Proposition 5 converts our previous results on the within-firm variation in the propensity to

integrate different stages into predictions regarding the relative prevalence of integration of an

input when aggregating over the decisions of all firms within an industry. This is an important step

because our empirical application will use industry-level data on intrafirm trade. It is moreover

worth stressing that the modeling of final-good producer heterogeneity highlights that, to the

extent that fixed costs of integration are relatively high, the set of stages that will be integrated by

final-good producers will be relatively small. In such a case, our model would predict that in the

sequential complements case, only a few very downstream stages will be integrated, while in the

sequential substitutes case, only a few very upstream stages will be integrated. We will come back

to this observation in our empirical section.

3.4 Input and Supplier Heterogeneity

So far, we have assumed that the only source of asymmetry across production stages is their

level of downstreamness. In particular, we have assumed that all inputs enter symmetrically into

production and that their production entails a common marginal cost . In the real world, however,

different production stages have different effects on output, suppliers differ in their productivity

levels, and the widespread process of offshoring also implies that firms undertake different stages of

production in various countries where prevailing local factor costs might differ. For these reasons, it

is important to assess the robustness of our results to the existence of asymmetries across suppliers.

To that end, we next consider a situation in which the volume of quality-adjusted final-good

production is now given by:

 = 

µZ 1

0

( ()()) ()

¶1
, (26)

where  () captures asymmetries in the marginal product of each input’s investments. Further-

more, let the marginal cost of production of input  be given now by (), which can vary across

inputs due to supplier-specific productivity differences or the heterogeneity in factor costs across

the country locations in which inputs are produced.
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Following the same steps as in our Benchmark Model, we find that the profits the firm obtains

are given more generally by:

 = 




µ
1− 

1− 

¶ −
(1−)

()


1−
Z 1

0

()
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 ()  ()

¶ 
1−

"Z 

0
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 ()  ()

¶ 
1−



# −
(1−)

,

(27)

This is clearly analogous to equation (11), except for the inclusion of input asymmetries as cap-

tured by the term  ()  () for input . How do these asymmetries affect the firm’s choice of

ownership structure () ∈ {  } for each stage  ∈ [0 1]? To build intuition, it is useful once
again to consider first the relaxed problem in which the firm could freely choose () from the

set of piecewise continuously differentiable real-valued functions rather than from {  }. After
similar derivations to those performed in the Benchmark Model (see the Appendix), we find that

the optimal division of surplus must satisfy:

∗()


=
(− ) (1− )

(1− )
(1− ())

³
1−()

()()

´ 
1−

R
0

³
1−()
()()

´ 
1−



 (28)

It then follows that despite the presence of heterogenous marginal products and marginal costs

along the value chain, Lemma 1 continues to apply in this richer framework and the sign of the

derivative of ∗ () with respect to  is again given by the sign of −. The intuition for how the
optimal allocation of bargaining power varies with the stage of production  remains the same as

in the Benchmark Model. Furthermore, Proposition 2 continues to apply, though one can no longer

solve for the thresholds ∗ and ∗ in closed form. When embedding the model in the industry
equilibrium structure described in Section 3.3, Proposition 5 continues to apply even when firms

face heterogenous costs for their inputs. We can thus state:

Proposition 6 Suppose that technology allows for input heterogeneity as in (26), and that mar-

ginal costs of production of inputs are also heterogeneous and given by  () for  ∈ [0 1]. Then the
share of firms integrating a particular stage  is weakly increasing in the downstreamness of that

stage in the complements case (  ), while it is decreasing in the downstreamness of that stage

in the substitutes case (  ). Furthermore, the share of firms integrating a particular stage  is

weakly increasing in the dispersion of productivity within the industry.

The result above treats the marginal cost parameters  () as exogenous, while in reality they

are partly shaped by the endogenous location decisions of firms. One might worry that, to the

extent that these location decisions are also shaped by downstreamness in a systematic way, the

comparative static results regarding the effect of  on the integration decision might become more

complex. Although this is not the focus of this paper, an analysis of the optimal location of each

stage of production and how it varies with the position of that stage in the value chain can be

carried out in a similar manner. Straightforward calculations indicate that although the marginal
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incentives for the firm to reduce the marginal cost of a given stage are indeed generally affected by

the index of the production stage , the optimal division of surplus must continue to satisfy the

differential equation in (28) and thus the results in Proposition 6 are robust to the endogeneity of

cost parameters.

Proposition 6 appears to justify an empirical specification in which the propensity to integrate

a particular input is correlated with the degree of downstreamness of that input regardless of where

that input is produced. From the point of view of U.S. firms importing inputs from abroad, this

suggests that one can aggregate or pool observations from several origin countries of these inputs

without worrying about variation in country characteristics that might shape the marginal costs

faced by producers in those countries. A caveat of this approach, however, is that it ignores the

possibility of the existence of heterogeneity in other determinants of integration across locations of

input production. In our empirical analysis, we propose two ways to address this caveat. First, we

will run specifications that exploit both cross-sectoral and cross-country variation in the prevalence

of integration, while introducing country fixed effects to ensure that the effect of downstreamness

we identify is not estimated off cross-country variation in unrelated parameters. Still, this does not

address a potential selection bias related to the fact that certain inputs might not be sourced at all

from certain destinations precisely due to their level of downstreamness. To deal with this concern,

we will also experiment with a two-stage Heckman correction specification.

Before we turn to our empirical investigation, we briefly discuss another implication of the result

in Proposition 6. In our Benchmark Model, we have assumed that the only enforceable aspect of

an ex-ante contract is whether suppliers are vertically integrated or not. Suppose instead that the

quantity of intermediate inputs produced by a supplier is also contractible and that the services

provided by intermediate input  are given by  ()() as in equation (26), with  () denoting

the (contractible) number of units and () denoting the (noncontractible) services per unit (or

quality). Our previous discussion of endogenous location decisions suggests that even in situations

in which the initial contract specifies heterogeneous quantities  () for different intermediate

input stages (perhaps in an effort to partly correct the inefficient ex-post asymmetries arising from

incomplete contracting), our key result in equation (28) characterizing the differential incentives

to integrate suppliers along the value chain will continue to hold. Intuitively, as long as quantity

and quality are not perfect substitutes in generating value, partial contracting will not be sufficient

to restore efficiency, and the second-best role for vertical integration identified in our Benchmark

Model will continue to be active.

4 Implementing an Empirical Test

The Benchmark Model that we have developed focuses on firm organizational decisions, and thus

firm-level data would appear to be the ideal laboratory for testing it. Nevertheless, firm-level data

on integration decisions is not readily available, and while a small number of such datasets have

been used to test theories of multinational firm boundaries, these do not provide a sufficiently
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rich picture of the heterogeneous sourcing decisions of firms over a large number of inputs.15 Our

approach will instead exploit industry-level variation in the extent to which goods are transacted

across borders within or outside of firm boundaries. Although our framework has implications as

well for domestic sourcing decisions, data on international transactions are particularly accessible

due to the existence of official records of goods crossing borders.

We describe in this section our empirical strategy based on detailed data on U.S. intrafirm im-

ports. Specifically, we will test the prediction in Proposition 6, namely that the relative prevalence

of vertical integration of an input when aggregated across the decisions of all final-good producers

purchasing that input (see equation (25)), should be a function of the average position of that

input’s use in the value chain. Needless to say, implementing such a test requires that we propose

appropriate measures for the downstreamness of an input’s use and that we provide a means to

distinguish between the sequential complements (  ) and substitutes (  ) cases. We care-

fully describe below the construction of these key variables. (Additional details on the industry

concordances used and other control variables are documented in the Data Appendix.)

4.1 Intrafirm Import Share

For our dependent variable, we follow the recent literature in using information on intrafirm trade

to capture the propensity to transact a particular input within firm boundaries. We draw this

data from the U.S. Census Bureau’s Related Party Trade Database, which reports U.S. trade

volumes at the detailed country-industry level, and more importantly, breaks down the value of

trade according to whether it was conducted with related versus non-related parties. We focus our

analysis on the U.S. import data for manufacturing industries, given the U.S.’ position as a large

user of intermediates and consumer of finished goods from the rest of the world. For imports, a

related party is defined as a foreign counterpart in which the U.S. importer has at least a 6% equity

interest.16 We work with an extensive amount of data for the years 2000-2010.

For each industry, we use the share of related party imports in total U.S. imports, or (Related

Trade)/(Related Trade + Non-Related Trade), to capture the propensity of U.S. firms to integrate

foreign suppliers of that particular industrial good. We will refer to this measure as simply the

share of intrafirm imports, and we can calculate this both at the industry-year and at the exporting

country-industry-year levels. The publicly available Census Bureau data is reported at the North

American Industry Classification System (NAICS) six-digit level. To facilitate the merging with

other industry variables (especially our measures of downstreamness), we converted the related

party trade data from NAICS to 2002 Input-Output industry codes (IO2002) using the concordance

provided by the Bureau of Economics Analysis (BEA), before calculating the intrafirm import

15See Antràs (2011) for a discussion of three firm-level datasets (from Japan, France, and Germany) that have been

used to test the property-rights theory of the boundaries of multinational firms.
16While this is lower than the conventional 10% cutoff used by the IMF to determine whether a foreign ownership

stake qualifies as FDI, extracts from the confidential direct investment dataset collected by the BEA nevertheless

suggest that related party trade is generally associated with one of the entities having a controlling stake in the other

entity; see Nunn and Trefler (2008).
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share. As illustrated by Antràs (2011), there is rich variation in this U.S. intrafirm import share: it

varies widely across products and origin countries, and there also exists significant variation across

products within exporting countries, as well as across exporting countries within narrowly-defined

products. In all, there were 253 IO2002 manufacturing industries for which we had data on intrafirm

imports, and that therefore made it into our eventual regression sample.17

It is further useful to point out that some trade values in the Census Bureau data are recorded

under a third category (“unreported”). These are instances where the nature of the transactions

— whether it was between related or non-related parties — could not be precisely determined. This

constitutes a very small share of total trade flows (less than 0.2% of U.S. manufacturing imports in

each year of our sample), which we drop from our analysis when constructing the intrafirm import

share. This may nevertheless be a source of concern for observations with small trade volumes

where “unreported” flows might contribute to measurement error in the intrafirm trade shares that

we calculate.18 We will return to this point later below when discussing our empirical findings.

4.2 Downstreamness

Our model emphasizes a novel explanatory variable, namely the relative location of an industry

along the value chain. We propose two alternative measures to capture the “downstreamness” of

an industry in production processes. As we do not have information on the sequencing of stages

for individual technologies, we instead turn to the 2002 Input-Output Tables to obtain average

measures of the relative position of each industry in U.S. production processes.

To build intuition on these measures, recall the basic input-output identity:

 =  + ,

where  is total output in industry ,  is the output of  that goes toward final consumption and

investment (“final use”), and  is the use of ’s output as inputs to other industries (or its “total

use” as an input). In a world with  industries, this identity can be expanded as follows:

 =  +

X
=1

| {z }
direct use of  as input

+

X
=1

X
=1

 +

X
=1

X
=1

X
=1

 + | {z }
indirect use of  as input

, (29)

where  for a pair of industries ( ), 1 ≤   ≤  , is the amount of  used as an input in

producing one dollar worth of industry ’s output. Note that the second term on the right-hand

side of (29) captures the value of ’s “direct use” as an input, namely the total value of  purchased

by industry  to produce output that immediately goes to final use. The remaining terms that

17This is out of a maximum possible of 279. Several industries dropped out due to the absence of trade data in

the original Census Bureau dataset. A handful of industries were also merged in the process of the mapping from

NAICS; see the Data Appendix for more details.
18Using the industry-year observations, we find a raw negative correlation of −0.20 between the log of the share of

“unreported” trade and the log of total imports across the IO2002 manufacturing industries.
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involve higher-order summations reflect the “indirect use” of  as an input, as these enter further

upstream in the value chain, at least two production stages away from final use. The above can be

written in compact matrix form by stacking the identity for all industries :

 =  + +2 +3 +    = [ −]−1  , (30)

where  and  are the  × 1 vectors whose -th entries are respectively  and , while  is the

 × direct requirements matrix whose ( )-th entry is  . Note that [ −]−1 is often called
the Leontief inverse matrix.19

Our first measure of downstreamness, _, is the ratio of aggregate direct use to

aggregate total use of  as an input.20 Specifically, this is calculated by dividing the -th element of

the column vector  (i.e., the value of ’s direct use as an input for final-use production, summed

over all buyer industries ) by the -th element of  −  (which equals the total use value of  as

an input, summed over all buyer industries ). The higher is _ for a given industry ,

the more intensive is its use as a direct input for final-use production, so that the bulk of ’s value

enters into production relatively far downstream. Conversely, a low value of _ would

indicate that most of the contribution of input  to production processes occurs indirectly, namely

in more upstream stages.

In terms of implementation, we draw on the detailed Use Table issued by the BEA in the 2002

U.S. Input-Output Tables to construct the direct requirements matrix, . We also constructed

the final-use vector,  , by summing over the value of each industry ’s output purchased for

consumption and investment by private or government entities (IO2002 codes starting with “F”),

but excluding net changes in inventories (F03000), exports (F04000), and imports (F05000). Lastly,

the output vector,  , was obtained by taking the sum of all entries in row  in the Use Table (this

being equal to gross output ). We applied an open-economy and inventories adjustment to the

entries of  and  , to account for the fact that inter-industry flows across borders (as well as in

and out of inventories) are not directly observed.21 (For a detailed discussion of this adjustment,

see Antràs et al. (2012).)

We supplement our analysis with a second measure of downstreamness, , which

seeks to make fuller use of the information on indirect input use further upstream. To motivate

this, consider the example of IO 331411 (Primary smelting and refining of copper). This is the

manufacturing industry with the third lowest value of_ (about 0.07), indicating that the

19This inverse exists so long as


=1
  1 for all , a natural assumption given the economic interpretation of

the  ’s as input requirement coefficients.
20See Alfaro and Charlton (2009) and di Giovanni and Levchenko (2010) for measures of production line position

that have a similar flavor.
21This entailed: (i) multiplying the ( )-th entry of  by ( − + − ), and (ii) multiplying the -th

entry of  by 1(−+−), where ,  and  denote respectively the value of exports, imports and net

changes in inventories reported for industry  in the Use Table. These are the adjustment terms implied by a natural

set of proportionality assumptions, namely that the shares of ’s output purchased by other industries  or for final

use in domestic transactions are respectively equal to the corresponding shares of ’s various uses both in net exports

and net changes in inventories.
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vast majority of its use is indirect to final-use production. That said, it is easy to trace production

chains of varying lengths which begin with 331411. An example of a short chain with just three

stages is: 331411 → 336500 (Railroad rolling stock) → F02000 (Private fixed investment), while a

much longer example with seven stages is: 331411 → 331420 (Copper rolling, drawing, extruding

and alloying) → 332720 (Turned product and screw, nut, and bolt) → 33291A (Valve and fittings

other than plumbing)→ 336300 (Motor vehicle parts)→ 336112 (Automobile)→ F01000 (Personal

consumption).22 To shed light on whether 331411’s use as an input is characterized by short as

opposed to long chains, we require a measure that distinguishes the indirect use value according to

the number of stages from final-use production at which that input use enters the value chain.

More specifically, referring back to the identity (29), let output for final use (the first term on

the right-hand side) be weighted by 1, let the input value used directly in final-use production (the

second term on the right-hand side) be weighted by 2, let the third term on the right-hand side be

weighted by 3, and so on. In matrix form, this boils down to calculating:

 + 2 + 32 + 43 +    = [ −]−2  . (31)

Although evaluating the left-hand side of (31) would appear to require computing an infinite power

series, it turns out that this sum is a simple function of the square of the Leontief inverse matrix.

For each industry , we then take the -th entry of [ −]−2  and normalize it by . Since larger

weights are applied the further upstream the input enters the production chain, this provides us

with a measure of upstreamness, which by construction is greater than or equal to 1. (The value

exactly equals 1 if and only if all the output of that industry goes to final use, and it is never used

as an input by other industries.) We therefore take the reciprocal to obtain  for

each industry , where  now lies in the interval [0 1].

This second variable has several desirable properties that provide reassurance for its use as a

measure of production line position. In Antràs et al. (2012), we established that the upstreamness

version of the variable is in fact equivalent to a recursively-defined measure of an industry’s distance

to final demand proposed independently by Fally (2012), where Fally’s construction hinges on the

idea that industries that purchase a lot of inputs from other upstream industries should themselves

be relatively upstream. The upstreamness variable can moreover be interpreted as a measure of

cost-push effects or forward linkages — how much the output of all industries in the economy would

expand following a one dollar increase in value-added in the industry in question — highlighted

in the so-called supply-side branch of the input-output literature (for e.g., see Ghosh (1958), and

Miller and Blair (2009)).

We report in Table 1 the ten highest and lowest values of _ and 

across the IO2002 manufacturing industries. Not surprisingly, the industries that feature low down-

streamness values tend to be in the processing of fuel, chemicals or metals, while industries with

high values appear to be goods that are near the retail end of the value chain. There is a reassuring

22 In identifying these production chains from the U.S. Input-Output Tables, we selected buying industries at each

stage which were among the top ten users by value of the input at that stage.
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degree of agreement, with the two measures sharing seven out of the ten bottom industries and

six out of the top ten industries. While the correlation between _ and 

is clearly positive (with a Pearson coefficient of 0.60), there are nevertheless useful distinctions

between the two measures. For example, Fertilizer (325310) ranks as the 35th least downstream

manufacturing industry according to _ (with a value of 03086), but is actually among

the ten least downstream industries according to , indicating that a lot of its input

value tends to enter early in long production chains. On the other hand, Plastics and rubber indus-

try machinery (333220) is among the ten least downstream industries based on _, but

only ranks as the 183rd least downstream according to  (with a value of 06785),

consistent with the bulk of its use occurring relatively close to final-good production.23

4.3 Empirical Specification

We now describe our empirical specifications for uncovering the effect of production line position

on the share of intrafirm trade. As a baseline, we work with cross-industry regressions of the form:

 = 1 × 1(  ) + 2 × 1(  ) + 31(  ) +  +  + , (32)

The dependent variable, , is the U.S. intrafirm import share in industry  in a given year

. We seek to explain this as a function of the downstreamness  of the industry in question,

as captured either by _ or . Importantly, taking guidance from our

model, we seek to distinguish between the effects of downstreamness in the sequential complements

and substitutes cases. We do this by interacting  with indicator variables, 1(  ) and

1(  ), that equal one when the average demand elasticity faced by industries that purchase

 as an input is below (respectively above) the cross-industry median value of this variable.

Our theory in fact predicts that the sequential complements and substitutes cases would be

delineated by the conditions    and    respectively. While it would thus be ideal to

empirically capture the degree of technological substitutability across inputs within each industry

too, we are unfortunately constrained by the fact that estimates of cross-input substitutability are

not readily available in the literature, nor is it clear that these can be obtained from current data

sources.24 To make some progress, we therefore take the agnostic view that any existing cross-

sectoral variation in  is largely uncorrelated with the elasticity of demand, , faced by the average

buyer of an industry’s output, so that we can associate the sequential complements case with high

values of  and the substitutes case with low values of .

We construct this average buyer demand elasticity as follows. We used the U.S. import demand

23We have further experimented with two other measures of downstreamness: (i) the final plus direct use value

divided by total output for that industry; and (ii) the final use value divided by total output for an industry. Our

results are reassuringly similar with both of these measures (reported in Online Appendix Tables 3 and 4).
24For example, one might envision estimating  by exploiting time-series variation in the direct requirements

coefficients, but comprehensive Input-Output Tables for the U.S. are constructed only every five years. Consequently,

it would be challenging to separately identify input substitutability from biased changes in production techniques

that might occur over extended periods of time.
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elasticities estimated by Broda and Weinstein (2006) from disaggregate ten-digit Harmonized Sys-

tem (HS) product-level trade data. For each IO2002 industry, we then computed a demand elasticity

equal to the trade-weighted average elasticity of its constituent HS10 products, using data on U.S.

imports as weights. (Details on how this crosswalk between industry codes was implemented are

documented in the Data Appendix.) Next, we took a weighted average elasticity across industries

that purchase  as an input, with weights proportional to the value of input  used from the 2002

U.S. Input-Output Tables. We included the final-use value of  in this last calculation by assigning

it the import demand elasticity of industry  itself. The average buyer demand elasticity that re-

sults from these calculations is our empirical proxy for 1(1− ). In our baseline analysis, we split

the sample into industries with  above the industry median (sequential complements case) and

below the median (sequential substitutes case), with our model’s predictions leading us to expect

that 1  0 and 2  0 in the estimating equation (32). We will later also report estimates using

a finer cut of this proxy for  by quintiles.

Equation (32) further includes an indicator variable to control for the level effect of the se-

quential complements case, a control vector of additional industry characteristics,  (including

a constant term), and year fixed effects, . We cluster the standard errors by industry, since the

key explanatory variables related to downstreamness and the average buyer demand elasticity vary

only at the industry level, and these are being used to explain multiple observations of the intrafirm

trade share across years.

The vector  comprises a set of variables that have been identified previously as systematic

determinants of the propensity to transact within (multinational) firm boundaries, and which our

extensions in Section 3 suggest are important to incorporate as additional controls. First, we verify

whether measures of headquarter intensity are positively associated with the share of intrafirm

trade. This would be consistent with part (ii) of our statement of Proposition 4, but notice further

that part (i) of the Proposition also highlights that headquarter intensity can be expected to

affect the condition that distinguishes the sequential complements and substitutes case, with 

being replaced by (1 − ). With that in mind, we will also experiment with specifications that

include triple interactions between downstreamness, the average buyer demand elasticity proxy, and

measures of headquarter intensity, as explained in more detail in the next section. As controls for

headquarter intensity, we include industry measures of physical capital per worker (as first suggested

by Antràs, 2003) and skill intensity (nonproduction employees over total employment) derived from

the NBER-CES Database, as well as a measure of R&D intensity (R&D expenditures divided by

sales) computed by Nunn and Trefler (2012) from the Orbis database. In most specifications, we

further break down physical capital intensity into equipment capital intensity and plant capital

intensity. As pointed out by Nunn and Trefler (2012), capital equipment is much more likely to

be relationship-specific than plant structures, and thus we would expect the former to provide a

cleaner proxy for headquarter intensity. (We also follow Nunn and Trefler (2012) in including a

materials intensity variable, namely materials purchases per worker.) Last but not least, we control

for a measure of the within-industry size dispersion from Nunn and Trefler (2008). In light of
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Proposition 5, we expect this dispersion variable to have a positive effect on the intrafirm import

share. (See the Data Appendix for more details on the construction of these control variables.)

We construct the above factor intensity and dispersion variables in a slightly different way from

past papers. The standard practice to date has been to assign to industry  the value of the factor

intensity or size dispersion of  itself, namely the industry selling the good in question. A more

satisfactory approach that maps more directly into our present model would be to control for the

average value over industries that purchase good . We thus construct “average buyer” industry

versions of these variables by taking a weighted average of the characteristic values of industries

that purchase good  as an input, using weights derived from the 2002 U.S. Input-Output Tables,

in a manner analogous to our construction of the average buyer demand elasticity parameter, .

It turns out that using average buyer rather than seller industry variables makes little qualitative

difference to our results, but we adopt this approach because it is closer in spirit to the model.

(Summary statistics for all the variables can be found in Table 1 in the Online Appendix, while

their correlations with our two downstreamness measures are reported there in Table 2.)

As argued in Section 3.4, our model suggests that cross-country variation in the prevalence

of integration can be useful for addressing biases that might arise from the endogenous location

decisions of firms regarding different stages of production. We will thus also explore specifications

that exploit the full country-industry variation in our intrafirm import share data, as follows:

 = 1 × 1(  ) + 2 × 1(  ) + 31(  ) +  +  + , (33)

In words, this seeks to explain the intrafirm import share, , at the exporting country-industry-

year level as a function of a similar set of industry variables, while controlling for country-year fixed

effects, , and (conservatively) clustering the standard errors by industry. Later on, we will build

on equation (33) to discuss tests that make use of this cross-country variation to address concerns

related to the bias that might arise as a result of selection into exporting.

Before we turn to our results, it is worth acknowledging and discussing several caveats that

apply to our empirical strategy. To understand how the make-or-buy decision over an input is

related to that input’s location in a particular industry’s production line, one would ideally like to

observe the breakdown of intermediate input imports by the identity of the purchasing industry.

Unfortunately, such a level of detail is not available in the U.S. related party trade data. For

example, while we observe the share of U.S. intrafirm imports of rubber tires, we do not observe

a breakdown vis-à-vis the intrafirm trade shares of rubber tires purchased by automobile versus

aircraft makers. We have instead pursued what is arguably the next best possible strategy, which

is to correlate the intrafirm trade share of industry  with measures of how far downstream  tends

to be used on average in production processes. The lack of detailed information at the level of the

purchasing industry also constrains our ability to empirically distinguish between the sequential

complements and substitutes cases, so that we have to rely instead on identifying sectors that sell

on average to industries that feature high versus low demand elasticities. In sum, while we are

unable to perform a structural test of our model, we instead work with the data at the level of
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aggregation that is available to us to test the implications of our propositions.

The U.S. Census Bureau trade data itself also comes with its limitations, as discussed at length

in Antràs (2011). For example, the data do not report which party is owned by whom, namely

whether integration is backward or forward, in related party transactions. U.S. intrafirm imports

also generally underrepresent the true extent of U.S. multinational firms’ involvement in global

sourcing strategies, as we do not get to observe the cross-border shipment of parts and components

that takes place before goods are shipped back to the U.S. That said, it is less clear how (if at all) this

might systematically bias the empirical results we are about to discuss. On the plus side, it should

be emphasized that the U.S. Census Bureau subjects its related party trade data to several quality

assurance procedures. The data do offer a complete picture of the sourcing strategies related to

transactions that cross U.S. customs, thus making it easier to spot fundamental factors that appear

to shape the internalization decisions over these transactions at the cross-industry level.

5 Empirical Results

5.1 Core Findings

We begin our empirical analysis in Table 2, by running shorter versions of the industry-year regres-

sions in (32) to replicate and refine some of the key findings from prior studies of the determinants

of intrafirm trade (for e.g., Antràs, 2003, Nunn and Trefler, 2008, 2012, and Bernard et al., 2010).

Toward this end, columns 1-3 serve to verify whether the characteristics of the “seller” industry

systematically explain the propensity to import the good within firm boundaries. In column 1, we

indeed find that two commonly-used measures of headquarter intensity — skill intensity (log())

and physical capital intensity (log()) — are both positively and significantly correlated with the

intrafirm import share. A third such proxy for the importance of headquarter services — R&D

intensity (log(0001 +&)) — displays a similarly strong positive association when added

in column 2.25 Another measure based on factor use — the materials intensity — that one would

typically not associate with firm headquarters turns out indeed not to have predictive power for

the share of intrafirm trade. The last control added in column 2 is the measure of industry size

dispersion, which does have a positive and significant effect on the propensity to trade within firm

boundaries, as found previously in Nunn and Trefler (2008). Column 3 further highlights the use-

fulness of distinguishing between equipment capital and plant structures (c.f., Nunn and Trefler

2012). The former is more likely to involve noncontractible, relationship-specific investments by

firm headquarters, and thus it is not surprising that the plant capital intensity variable is weakly

correlated (actually, with a negative sign) with the share of intrafirm trade.

We repeat these regressions in columns 4-6, but now using the average buyer industry values of

the respective industry characteristics, in place of the typically-used “seller” industry values. As

we have argued earlier, it would be more consistent with our model of input sourcing to consider

25We add 0.001 to the R&D expenditures over total sales ratio, in order to avoid dropping the industries with zero

reported R&D expenditures in the Orbis dataset.
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industry characteristics that pertain to the input-purchasing industries. This has some effects

on the estimates, although it is reassuring that the role of headquarter intensity still broadly

stands. Physical equipment capital and R&D intensity, in particular, continue to have positive and

statistically significant effects on the intrafirm trade share. Note however that the effects of skill

intensity and the size dispersion are now less significant than in columns 2 and 3.

The novel predictions from our model regarding the role of downstreamness are tested in Table

3 using the _ measure of production line position. In column 1, this is introduced

directly as an additional explanatory variable in the industry-year regressions.26 When included

on its own, the effect of _ on the share of intrafirm trade turns out to be statistically

insignificant. Following the guidance of our theoretical model, we run our benchmark specification

from equation (32) in column 2, which includes the interactions of _ with our proxies

for the sequential substitutes (  ) and complements (  ) cases, as well

as a dummy variable for the sequential complements case.27 The empirical results here are indeed

strongly supportive of our model’s central prediction: The effect of downstreamness is positive and

significant at the 5% level when the average buyer demand elasticity is above the median for this

variable (2  0), consistent with a greater propensity toward the integration of input suppliers

that enter further downstream in the value chain. Conversely, the negative and significant 1

coefficient confirms a greater propensity toward integrating upstream production stages in the

sequential substitutes case. As indicated in the table, we can comfortably reject the null hypothesis

that 1 = 2 = 0 (the F-test for joint significance yields a small p-value of 0.0008), while 2−1 is
also significantly different from zero at the 1% level of significance. On a separate note, the effect of

the (  ) dummy variable turns out to be negative and statistically significant, which

resonates with our comparative static result in Proposition 3 on the effect of .

It is particularly reassuring that these new findings stand even while including the same set of

controls for average buyer headquarter intensity and dispersion that were used earlier in Table 2.

When we break the physical capital intensity variable down in column 3 into its equipment and

plant capital components, we in fact find that equipment intensity and R&D intensity (two natural

proxies for headquarter intensity) are positively and significantly correlated with the intrafirm trade

share, consistent with part (ii) of Proposition 4. In Figure 4 below, we provide further reassurance

that our findings are not unduly driven by possible influential observations. After partialing out

the effects of all the control variables used in the column 3 regression, the intrafirm import share

displays a clear upward-sloping relationship with _ in the complements case (right

panel), with a converse slope in the substitutes case (left panel).28

26All our core results reported in Tables 3 and 4 remain very similar if the regressions are instead run year-by-year,

namely with the intrafirm trade share of industries in a particular year as the dependent variable, with Huber-White

robust standard errors; see Online Appendix Tables 5 and 6.
27Note that there is no need to include the dummy variable for the sequential substitutes case, as the regressions

include a constant term.
28The slope in both of these scatterplots is significantly different from zero at the 1% level (robust standard errors

used). The Online Appendix provides similar figures that illustrate these partial correlations for , as

well as for our weighted regression specifications.
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Notes:  The residuals plotted on the vertical axis are predicted from an unweighted OLS regression of the intrafirm trade share on: (i) the buyer 
industry control variables, namely: 1(Elas > Median), Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l), Log (0.001+ R&D/Sales), 
Dispersion, and (ii) year fixed effects. These are plotted against DUse_TUse on the horizontal axis, for industry-year observations corresponding 
to the substitutes case (Elas < Median) on the left panel, and for observations from the complements case (Elas > Median) on the right panel.  
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Figure 4: Partial Scatterplot Relationship between the Intrafirm Trade Share and _

The next two columns of Table 3 verify that the effects we have found in the pooled sample are

also present when we run our regressions separately on the subsets of industries where the average

buyer demand elasticity is below (respectively above) its median value. The effect of _

is negative in the substitutes case (column 4) and positive in the complements case (column 5),

with both coefficients of interest being significant at the 1% level. In column 6, we return to the

specification in (32) for the full sample of industries, though we now weight each data point by the

value of total imports for that industry-year. This is motivated by our earlier discussion in Section

4.1 on the possible measurement error introduced into the intrafirm trade share by the presence

of trade flows whose related party status was not reported to the U.S. Census Bureau, where we

also noted that this was likely to pose a greater concern for observations with small trade volumes

(see footnote 18 for some evidence). The weighting in column 6 thus attaches more weight to data

points that are likely associated with less measurement error. The results clearly reinforce our main

findings: The 2 coefficient increases in magnitude, while remaining highly statistically significant.

Based on this point estimate, a one standard deviation increase in _ would correspond

to an increase in the intrafirm trade share in high  industries of 0482 × 0228 = 0110, which

is over one-half of a standard deviation in the dependent variable, a fairly sizeable effect. While

the 1 coefficient for the substitutes case is now smaller, it remains negative and significant at the

10% level. A similar one standard deviation increase in _ in this low  case would be

associated with a decrease in the intrafirm trade share of about one-fifth of a standard deviation.

Note too that the fit of the regression in terms of its 2 also improves markedly under weighted

least squares.29

29One might be concerned that the largest manufacturing industry by import value, IO 336311 (Automobile), is

also the most downstream according to both _ and , and that this might be driving the
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We exploit the additional variation in the intrafirm import share across source countries in the

final two columns of Table 3. Following the specification in (33), column 7 includes country-year

fixed effects and clusters the standard errors by industry. Column 8 in turn weights each observation

by the total import value for that country-industry-year, for reasons analogous to those discussed

above. The unweighted results in column 7 are relatively noisy, while also delivering a low 2. The

negative effect of downstreamness on integration remains evident in the substitutes case, but that in

the complements case is now imprecisely estimated (with a sign opposite to that expected from our

model).30 When working with the full country variation though, there is arguably a stronger case

for the weighted specification, as there are many more small import flow observations and hence a

greater scope for measurement error in the intrafirm trade share to matter. These results in column

8 in fact look very similar to the purely cross-industry findings, with the 2 coefficient positive and

significant at the 1% level, while 1 remains negative (although not statistically significant). The

remaining coefficients are also consistent with the theory, with positive effects for our preferred

headquarter intensity measures (equipment capital and R&D intensities), and a negative effect of

the dummy variable for the sequential complements case.

In Table 4, we repeat the exercise from Table 3 using our second downstreamness variable,

, in place of _. This reassuringly corroborates our earlier findings on

how production line position influences integration outcomes, particularly in the complements case.

We consistently find a positive and significant effect of  on the propensity to import

goods within firm boundaries in the high  case, both in the specifications that pool all industries

(columns 2, 3, 6) and when we focus on the subset of industries with above-median average buyer

demand elasticities (column 5). This effect is especially strong when we weight observations by

import volumes: based on column 6, a one standard deviation increase in  would

imply a rise in the intrafirm import share of 0526 × 0222 = 0117, which is once again just over
half a standard deviation for our dependent variable. We likewise obtain a similar set of results

in column 8, which uses the country-industry-year data with weighted least squares. Admittedly,

the evidence in Table 4 is more mixed with regard to the role of  for industries that

fall under the substitutes case. The overall results do point toward a negative effect, although the

point estimates are much smaller and not statistically distinguishable from zero. Still, the difference

between 1 and 2 remains statistically significant at conventional levels.

5.2 Alternative Specifications

We turn next to address potential criticisms regarding the use of a median cutoff value for the

 proxy to distinguish between the sequential substitutes and complements cases. Given that

technological substitutability ( in our model) might well vary across sectors, it would be reasonable

significant findings in the weighted regressions. Our results remain qualitatively similar and significant when dropping

this industry, in both the cross-industry and the cross-industry, cross-country specifications (available on request).
30Note nevertheless that these point estimates are still consistent with the weaker prediction that downstreamness

should have a more negative effect on integration in the substitutes than in the complements case. Formally, we can

reject the null hypothesis that the two coefficients are equal (1 = 2) at the 10% level of significance.
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to expect that the positive effects of downstreamness would be concentrated in the highest ranges

of the elasticity demand parameter , while the negative effects of downstreamness might only be

evident for particularly low values of . This leads us to consider a more flexible variant of (32)

that breaks down our empirical proxy for  by quintiles:

 =

5X
=1

 × 1( ∈ Ω) +
5X

=2

1( ∈ Ω) +  +  +  (34)

Here, Ω refers to the subset corresponding to the -th quintile of  (for  = 1 2     5), with

1( ∈ Ω) being a dummy variable equal to 1 if industry  falls within this -th quintile.31 We

report three regressions in Table 5 for each of the downstreamness variables, _ and

. For each measure, we estimate (34) both without and with regression weights

in the first and second columns respectively; the third column then runs the analogous weighted

specification with the country-industry-year data, while controlling for country-year fixed effects.

(For all regressions reported in the remainder of this paper, standard errors will be clustered by

industry; the full set of average buyer industry variables used in column 3 in Tables 3 and 4 will

also be included as controls.)

Table 5 confirms that the effect of downstreamness on the intrafirm import share differs qual-

itatively depending on the average buyer demand elasticity. The point estimates obtained on the

downstreamness variables in the lower (first and second) quintiles of the  proxy are negative barring

a few exceptions, even being significant at the 10% level in two of the _ specifications.

These coefficients progressively increase as we move from 1 in the lowest quintile to 5 in the

highest, eventually becoming positive and statistically significant in all columns in the fifth quin-

tile of , precisely for those industries most likely to fall under the sequential complements case.

Collectively, we find that the coefficients of downstreamness over these five quintiles are jointly sig-

nificant, while the difference 5 − 1 is also significantly different from zero at the 1% level except

in one specification (column 4). These results therefore strengthen our confidence in the empirical

relevance of our key theoretical predictions.

We further seek to allay concerns regarding omitted variables bias, specifically those arising

from other industry characteristics that could affect the intrafirm trade share which we have not

explicitly controlled for so far. Toward this end, we revert to our cross-industry specification in

equation (32) and introduce several plausible controls; these results are reported in Table 6 for

_ and in Table 7 for .32 We control for the value-added content of

each industry — the ratio of value-added to total shipments — in column 1. Column 2 examines

whether the importance of a good as an input in production processes might have an effect on the

31We drop the level effect of the first quintile dummy as the regression already includes a constant term.
32We have also run these same robustness checks on the full country-industry-year data, using the specification in

(33). These results are reported in Online Appendix Tables 7 and 8 respectively for _ and ,

for the weighted least squares regressions. We consistently obtain results akin to our baselines: a positive and

significant effect of downstreamness in the complements case, and a negative (albeit insignificant) effect in the

substitutes case.
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propensity to trade that good within firm boundaries. We capture this through a measure equal

to the value of an industry’s total use as an input, divided by the total input purchases made by

all its buyer industries, constructed from the 2002 U.S. Input-Output Tables.33 We incorporate

the intermediation variable from Bernard et al. (2010) in column 3, this being a measure of the

extent to which wholesalers that serve as intermediaries to transactions are observed to be active

in a given industry. Finally, column 4 controls for proxies for industry contractibility, as suggested

by Nunn and Trefler (2008). These are based on the underlying share of products from an industry

that are transacted on organized exchanges or are reference-priced according to Rauch (1999), and

which thus can be regarded as homogeneous and readily contractible goods.34 We control here for

both the own contractibility of the good in question as well as an average contractibility taken over

industries that purchase the good, in order to distinguish between contracting frictions inherent to

the seller and average buyer industries respectively. (Further details on the construction of these

additional variables can be found in the Data Appendix.)

Our central finding on the contrasting effects of downstreamness in the substitutes versus com-

plements case turn out to be remarkably robust. This is true when we introduce the aforemen-

tioned additional industry variables either individually (columns 1-4) or jointly (column 5), as well

as when we run the regressions using total imports as weights (columns 6-10). Throughout Table

6, _ consistently has a negative correlation with the intrafirm trade share in the low

 case, with this coefficient being significant at least at the 10% level except in columns 3 and

8 where we control for the intermediation variable on its own. On the other hand, the positive

correlation for the high  case is always significant at the 5% level. We also obtain results similar

to our baseline regressions when using  instead in Table 7. Once again, we find that

downstreamness is strongly associated with a higher intrafirm trade share in the complements case,

although the coefficients for the substitutes case remain for the most part imprecisely estimated.

Of independent interest, the intermediation variable always shows up with a negative and highly

significant coefficient when included. This is consistent with Bernard et al. (2010), who interpret

the presence of wholesale intermediation as indicative of a reduced need to expand the boundaries

of the firm to secure the input in question. Separately, in the columns that control for the role

of contracting frictions, we generally find that inputs that are more contractible appear to be

transacted more within firm boundaries, while a greater degree of buyer industry contractibility is

associated with a reduced propensity toward integration, with these correlations being particularly

strong in the weighted specifications.35 In the case of , the negative coefficient on

downstreamness in the substitutes case even becomes statistically significant in columns 9-10.36

33The robustness results are very similar if we alternatively divide by the total gross output of buyer industries

when constructing this input “importance” variable (available on request).
34We report results using the liberal classification in Rauch (1999). The findings are very similar when using

his conservative classification, or when excluding reference-priced products from the definition of what constitutes a

contractible good (results available on request).
35 Incidentally, this dovetails with the predictions of the theoretical model in Antràs and Helpman (2008) which

introduced a formulation of partial input contractibility; see in particular their Proposition 5.
36 In regressions that use the additional source country dimension in the intrafirm import share, Nunn and Trefler

(2008) have further interacted the industry contractibility variables with a country index of the rule of law to get
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5.3 Extensions

We round off our empirical analysis by testing several auxiliary implications from the extensions

that we developed in Sections 3.2-3.4, in order to explore how far the patterns in the data are

consistent with these additional predictions of our model of sequential production and sourcing.

Table 8 examines further the role of headquarter intensity. In Section 3.2, we showed that an

increase in  not only expands the range of stages that are vertically integrated, but also affects

the range of parameter values for which downstreamness is predicted to have a positive effect on

the share of intrafirm trade. In particular, recall from Proposition 4 that the complements and

substitutes cases are now defined by ̃ ≡ (1− )    and ̃   respectively, and thus the larger

is , the less likely it is that downstreamness will have a positive effect on the intrafirm trade share,

even for large values of the buyer demand elasticity .

The findings from Table 8 uncover some evidence of this. The key difference relative to the

specifications in (32) and (33) is that we now include triple interactions, between ×1(  )

and  × 1(  ) on the one hand, and a set of five dummy variables corresponding to the

quintiles of a summary measure of headquarter intensity on the other. The latter is computed as

the first principal component of the three main industry measures of headquarter intensity that

we have been using, namely the average buyer skill, equipment capital, and R&D intensities. We

report three specifications in Table 8 for each downstreamness measure, namely an unweighted

cross-industry regression, a weighted cross-industry regression, as well as a weighted cross-country,

cross-industry regression. (Throughout, we also control for the main and double interaction effects

of the terms in our triple interactions.) We find here that the positive effect of  × 1(  )

on the intrafirm trade share is concentrated in the lowest quintile of headquarter intensity, with

few systematic patterns apparent for the other quintiles of our composite proxy for . There is

some evidence too that the negative effect of  × 1(  ) is strongest in a relatively high

(fourth) quintile of ; the coefficients in the fifth quintile are generally negative, though admittedly

not significant.37

We turn in Table 9 to an implication of the model that arises from incorporating firm heterogene-

ity in Section 3.3. As anticipated there, to the extent that the fixed costs of integration are relatively

high, only the most downstream of stages would be integrated in the sequential complements case,

with the converse prediction (integration of the most upstream stages) applying in the substitutes

case. We thus attempt to capture these predictions, by replacing our two main interaction terms in

(32) and (33) with quintiles of  interacted with each of 1(  ) and 1(  ).
38 These

results are presented in Table 9, where the columns correspond to the same estimation procedures

used previously in Table 8 for _ (columns 1-3) and  (columns 4-6). We

a richer proxy for contracting frictions. We have done the same using the most updated version of the rule of law

index from Kaufmann, Kraay and Mastruzzi (2010), and verified that this does not affect our main findings at all

(see column 5 in Online Appendix Tables 7 and 8).
37These qualitative patterns should be taken with a pinch of salt. We are not able to consistently reject across

all the specifications the hypothesis that the coefficients of  × 1(  ) in the highest and lowest headquarter

intensity quintiles are in fact equal; a similar caveat applies to the coefficients for the substitutes case.
38We drop one of these interactions due to the collinearity with the constant term in the regressions.
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indeed find throughout all six columns that the positive effect of downstreamness on the intrafirm

import share is concentrated in the highest quintile of  in the high  case. Moreover, in the low

 case, the propensity towards integration is strongest in the lowest quintile of .
39 Table 9 thus

provides strong evidence consistent with this further prediction from our model.

In Table 10, we seek to correct our cross-country, cross-industry regressions for potential selec-

tion bias. As explained in Section 3.4, controlling for country fixed effects may not be sufficient for

this purpose when the location of input production is itself affected by the level of downstreamness.

For this reason, we carry out a two-stage Heckman selection procedure in Table 10 that seeks to

correct for selection into foreign sourcing. In the context of our dataset, observations for which no

imports were observed entering the U.S. are necessarily dropped from our regression sample, since

the denominator of the intrafirm import share would equal zero in these cases. Any bias that might

arise would moreover be more salient in the specifications that incorporate the full cross-country

variation, since up to 60% of all potential country-industry-year observations are in fact zero im-

port flows, and hence are dropped. To address this, we adopt as selection variables (to be included

only in the first stage) an interaction term between an indicator for whether countries have above

sample-median entry costs (taken from the Doing Business dataset) and the selling industry’s R&D

intensity. This country measure of entry costs is specifically the first principal component of the

number of procedures, number of days, and the cost (as a percentage of income per capita) incurred

to legally start a local business. (Note however that a number of countries have to be dropped due

to the lack of entry cost data.) We in turn view the seller industry R&D variable as a proxy for high

fixed costs particularly at the entry stage.40 Following the logic of Helpman, Melitz and Rubinstein

(2008), the level of such country-industry entry costs can be expected to affect the entry decisions

of firms, and thus to also be positively correlated with the fixed costs that would be associated

with expanding a firm to engage in export activities to the U.S. In contrast, these entry costs are

less likely to directly shape the intensive margin of trade.41

The estimation itself proceeds in two steps. We first run a probit model based on equation (33),

in which the dependent variable is a 0-1 variable indicating the presence of positive imports into

the U.S. for the country-industry-year observation in question. Our proposed interaction variable

indeed turns out to have a negative and significant effect at the 1% level, so that higher entry costs

are ceteris paribus associated with a lower probability of importing to the U.S. (see column 1 for

_ and column 4 for). The second stage involves a weighted least squares

39 In this low  case, the difference between the coefficients of  in the highest and lowest quintiles is marginally

significant at the 10% level in 3 out of the 6 columns. On the other hand, for the high  case, the effect of

downstreamness in its highest quintile is always significantly different from that in its lowest quintile (the latter effect

having been normalized to zero).
40 In unreported results, we have also experimented with measures of industry scale economies calculated as the

employment per establishment, drawn from the U.S. Census Bureau’s County Business Patterns dataset. Our con-

clusions are largely unaffected with such alternative proxies of industry fixed costs.
41 International tax considerations are often seen as another key factor that influences entry decisions by multi-

national firms. We have nevertheless verified that our results from specification (33) remain very similar when we

restrict our sample to countries whose effective corporate tax rates for U.S. multinationals were within a 5% range

of that for these multinationals’ domestic U.S. activities, based on a 2011 PriceWaterhouseCoopers survey canvasing

U.S. firms entitled “Global Effective Tax Rates”. We thank Brent Neiman for bringing this survey to our attention.
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specification (using the total import volume as weights) based on (33) once again, in which the

inverse Mills ratio calculated from the first stage is included as a further regressor (columns 2 and

5). We once again obtain a positive and significant coefficient on  in the sequential complements

case, as well as a negative but insignificant point estimate for the effect in the substitutes case.

Relative to a weighted least squares specification that excludes the inverse Mills ratio (reported in

columns 3 and 6), we find that correcting for selection tends to have relatively little effect on the

coefficients of downstreamness in either the complements or the substitutes cases. This provides

reassurance that any such selection bias is unlikely to be driving our core results on the relationship

between downstreamness and integration decisions in foreign sourcing.

As a final note, we have further considered how our empirical strategy to distinguish the se-

quential complements and substitutes cases could be modified to accommodate the alternative

“spider”-like production setting described in section 3.1.C. As we saw earlier, with symmetric

Shapley bargaining across module producers, the sensitivity of each module-producer’s revenues

with respect to the services of the module delivered would instead depend on the parameter that

governs the cross-module elasticity of substitution (denoted by ). Direct estimates of this elasticity

of substitution are naturally difficult to obtain, but we have nevertheless experimented with using

import demand elasticities that were estimated by Broda and Weinstein (2006) for more aggregate

product categories, namely at the SITC Revision 3, three-digit level. As documented in their paper

(see in particular their footnote 22), these elasticities were estimated in part off the substitution

seen across HS10 product codes that fall under each SITC three-digit heading, and thus would

contain information on the degree of substitution across production modules under the further as-

sumption that the constituent HS10 products in each SITC three-digit category are typically used

together as module inputs in final-good production. We do not present these results in detail in our

main paper given the rough nature of this proxy for , but the patterns we find are qualitatively

similar to our baseline findings, albeit with slightly lower levels of significance.42

6 Conclusion

In this paper, we have developed a model of the organizational decisions of firms in which production

entails a continuum of sequential stages. We have shown that, for each stage, the firm’s make-or-

buy decision depends on that stage’s position in the value chain, and that dependence is crucially

shaped by the relative magnitude of the average buyer demand elasticity faced by the firm and

the degree of complementarity between inputs in production. When the average buyer demand

elasticity is high relative to input substitutability, stage inputs are sequential complements and

the firm finds it optimal to outsource relatively upstream stages and vertically integrate relatively

downstream stages. In the converse case of a low demand elasticity relative to input substitutability,

42The interested reader is directed to Online Appendix Tables 9 and 10, where these results are reported using

_ and  respectively. To construct this proxy for , we associated each SITC three-digit

elasticity to each of its constituent HS10 product codes, before following analogous steps as with our earlier proxy for

 to construct a weighted-average buyer elasticity. A median cutoff was once again used to delineate the complements

case from the substitutes case.
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stage inputs are sequential substitutes and the firm instead finds it optimal to integrate relatively

upstream stages and outsource relatively downstream stages. We have shown that our framework

can be readily embedded into existing theoretical frameworks of global sourcing, which motivates

our use of international trade data to test the model. Using data on U.S. related-party trade shares,

we have shown that the evidence is broadly consistent with the model’s main predictions, as well

as with several auxiliary predictions of our framework.

Although our empirical results are suggestive of the empirical relevance of our theory, we ac-

knowledge the existence of a tension between our “firm-level” theoretical model and our “industry-

level” empirical analysis. We are limited, however, by the data that is currently available to

researchers in our field. It is our hope that in the near future, new firm-level datasets featuring

detailed information on the sourcing decisions of firms for different inputs will become available.
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A Mathematical Appendix

Proof of Lemma 1: The result is immediate given the optimal bargaining share ∗ () in (15), so we
focus here on providing more details on the derivation of this equation. Let  ≡

³
1− (0) 1−

´
0

−
(1−) and

note that:




=

− 

(1− )

³
1− (0) 1−

´
0

−
(1−)−1; and



0
=

µ
1− 1


(0)

1−


¶


−
(1−) .

The Euler-Lagrange condition associated with profit maximization is then:

− 

(1− )

³
1− (0) 1−

´
0

−
(1−)−1 =

µ
1− 1


(0)

1−


¶
− 

(1− )


−
(1−)−10 − 1



1− 


(0)

1−

−100

−
(1−)

where we have assumed (for the time being) that 0 is at least piecewise differentiable. Simplifying the above
yields:


−

(1−) (0)
1−

−1
∙
00 +

− 

1− 

(0)2



¸
= 0.

To rule out discontinuous jumps in 0, we appeal to the Weierstrass-Erdmann condition. Suppose that
0 has a discontinuous jump (and hence  has a corner) at some ̃ ∈ (0 1). In other words, lim→̃− () =

lim→̃+ (), but lim→̃− 
0() 6= lim→̃+ 0(). By the Weierstrass-Erdmann condition, we must have,

however, that lim→̃− 0() = lim→̃+ 0(). Using the above expression for 0 and the fact that

lim→̃− () = lim→̃+ (), this immediately implies that lim→̃− 
0() = lim→̃+ 0(), which contradicts

our assumption of a point of discontinuity for 0 at ̃. In sum, 0 is continuous.
There are three types of solutions to the Euler-Lagrange equation above:

( ())
−

(1−) = 0 for all ;

(0 ())
1−

−1

= 0 for all ;

00 +
− 

1− 

(0)2


= 0 for all  (35)

The first solution would generate a value of the problem equal to 0, while the second one implies 0 () = 0
(() = 1) for   12 and 0 () → +∞ (() → −∞) for   12. In the former case, the functional

attains a value of 0, and in the latter case it goes to −∞, so neither of these can constitute a maximum
for the problem at hand. We will thus focus hereafter on the third case, which generates a strictly positive

profit for the firm.

The second-order differential equation implied by the Euler-Lagrange necessary equation is straightfor-

ward to solve. In particular, define  ≡ 0 and note that we can write (35) as:

− 

1− 

()
2


= −


= −






= −


,

so that:
− 

1− 




=





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It is simple to see that the solution to this first-order differential equation satisfies:

 = 0 = 1
−
1− 

where 1 is a positive constant. This leaves us with a new first-order differential equation, which again is

straightforward to solve and yields:

 () =

µ
(1− )1

1− 
( − 2)

¶ 1−
1−

,

where 2 is a second constant of integration. Now, imposing the initial condition  (0) = 0 and the transver-

sality condition 0 (1)
1−
 =  at the right-boundary of the unit interval, we finally obtain:

 () =

µ
1− 

1− 

¶



1− 

1−
1− 

from which ∗ () can be derived by recalling that  () = 1− 0()
1−
 .

In the Online Appendix we show that this solution also satisfies a sufficient condition for a maximum,

and we also characterize the solution when ∗ () is constrained to take nonnegative values.

Proof of Proposition 2: As discussed in the main text, when   , it is optimal for the firm to choose

 (namely outsourcing) for stages with a small index in the neighborhood of  = 0, since 0     .

Conversely, in the    case, it is optimal for the firm to choose  (namely integration) for stages in a

neighborhood of  = 0.

To fully establish Proposition 2 for the case   , we proceed to show that we cannot have a positive

measure of integrated stages located upstream relative to a positive measure of outsourced stages in the

optimal organizational structure. Since the limit values above indicate that stage 0 will be outsourced, it

follows that if any stages are to be integrated, they have to be downstream relative to all outsourced stages.

In other words, there exists an optimal cutoff ∗ ∈ (0 1] such that all stages in [0∗) are outsourced and
stages in [∗  1] are integrated. (If 

∗
 = 1, then all stages along the production line are outsourced.)

We establish the above claim by contradiction. Suppose that there exists a stage ̃ ∈ (0 1) and a positive
constant   0 such that stages in (̃−  ̃) are integrated, while stages in (̃ ̃+ ) are outsourced. The

width of both of these sub-intervals, , can clearly be chosen to be equal without loss of generality. Let profits

from this mode of organization be Π1. On the other hand, consider an alternative organizational mode which

instead outsources the stages in (̃−  ̃) and integrates the stages in (̃ ̃+ ), while retaining the same

organizational decision for all other stages. Let profits from this alternative be Π2. Using the expression for

the firm’s profits from (11), one can show that up to a positive multiplicative constant:

Π1 −Π2 ∝
Z ̃

̃−
 (1−  )


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
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+
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−
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−
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where we define  ≡ R ̃−
0

(1 − ())


1− . That the difference in profits depends only on profits in the

interval (̃− ̃+) and is not affected by decisions downstream follows from the fact that we have chosen

the width  to be common for both sub-intervals. Evaluating the integrals above with respect to  and

simplifying, we obtain after some tedious algebra:

Π1 −Π2 ∝ ( − )
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¸


Since  −   0, it suffices to show that the expression in square parentheses is negative. To see

this, consider the function () = 
(1−)
(1−) . Simple differentiation will show that for    0 and  ≥ 0,

( + + )− ( + ) is an increasing function in  when   . Hence, (+ + )
(1−)
(1−) − ( + )

(1−)
(1−) 

( + )
(1−)
(1−) − () (1−)(1−) . Setting  = ,  = (1 − )


1− and  = (1 −  )


1− , it follows that the last

term in square brackets is negative and that Π1 − Π2  0. This yields the desired contradiction as profits

can be strictly increased by switching to the organizational mode that yields profits Π2.

The full proof for the    case can be established using an analogous proof by contradiction. The

limit values in this case imply that it is optimal to integrate stage 0. One can then show that if any stages

are to be outsourced, they occur downstream to all the integrated stages, so that there is a unique cutoff

∗ ∈ (0 1] with all stages prior to ∗ being integrated and all stages after ∗ being outsourced.

Proof of Proposition 3: We begin by deriving equations (16) and (17). For each case, this is achieved

by first plugging the optimal values of () ∈ {  } for all  ∈ [0 1] implied by Proposition 2 into the
firm’s maximand in (11), and then solving:

∗ = argmax


½
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¾
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¾
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Let us illustrate the solution for this in the case   . The first-order condition associated with the

optimal choice of  is given by:

(1− )
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which after a few simplifications can be written as:
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from which the formula for ∗ in (16) is obtained. (One can moreover verify that the second-order condition
when evaluated at∗ is indeed negative.) The formula for

∗
 in (17) can be derived in an analogous manner.

Using the expression in (16), one can show that ∗  1 when  (1−  )
(1−)  (1− )

(1−).

When this inequality is satisfied, one can readily check that 1− 


 1−
³
1−
1−

´−(1−)
, which from (16)
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implies that ∗  0, so that the cutoff stage lies strictly in the interior of (0 1). Conversely, using (17) for

the substitutes case, we have that ∗  1 whenever  (1−  )
(1−)  (1− )

(1−), and that this
condition is also sufficient to ensure that ∗  0, so that ∗ ∈ (0 1).

Next, consider the effect of  on these thresholds. For∗ , the exponent
(1−)
− is positive and decreasing

in . Moreover, when the parameter restrictions for ∗ ∈ (0 1) apply, the fraction that is the base of this
exponent is strictly greater than 1. It thus follows that ∗  0, as claimed in the Proposition, namely
that when  falls, ∗ also falls, expanding the range of stages downstream of ∗ that are integrated. An
analogous set of arguments can be applied to show that ∗  0.

Proof of Proposition 4: From the discussion in Section 3.2 and equation (10), we have that investments

by suppliers in this extension with headquarter intensity will be given by:

() =

µ
1−

̃



µ



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−̃
¶ 1
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¶ ̃−
(1−̃)

(1− ())
1
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0
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1− 

¸ ̃−
(1−̃)

,

where remember that ̃ ≡ (1− ) .

It follows from equation (11) that the final good producer will capture revenues given by:

 =

Ã
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(36)

Before suppliers make any investments, the firm will choose  to maximize  − . From equation

(36), it is clear that this optimal choice of  will satisfy:



1− ̃
 = ,

and thus the firm obtains profits equal to  =
³
1−
1−̃

´
 . One can then substitute the optimal value of 

from the above first-order condition back into the expression for  in (36), to solve for  as a function of

the model parameters and the organizational decisions (the ()’s) only. From this, it will be straightforward

to see that the sequence of organizational forms that maximizes profits will be that which maximizes:

Z 1

0

()(1− ())


1−

∙Z 

0

(1− ())


1− 

¸ ̃−
(1−̃)

,

but this is precisely analogous to the objective function in the Benchmark Model, except with  replaced by

̃. This establishes part (i) of Proposition 4.

For part (ii) of the proposition, the cutoff expressions for the two cases, ∗ and ∗ , are now given

by (16) and (17) respectively, with  replaced by ̃. Differentiating (16) and (17) with respect to  (as in

Proposition 3) and bearing in mind that ̃ is decreasing in , yields the desired comparative static results.

Proof of Proposition 5: A firm with productivity parameter  now chooses its organizational structure

along the value chain to maximize:

 = 




µ
1− 

1− 

¶ −
(1−)
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 −
Z 1

0

 () ,
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where (() ()) = (   ) when stage  is integrated and (() ()) = ( ) when it is out-

sourced. It should be clear that the choice of a (hypothetical) unconstrained optimal division of surplus

∗ () for stage  is not affected by the fixed costs terms, since these do not impact the derivative and the

fixed costs are independent of the stage of production being considered.

For the complements case, we thus have:

∗ = argmax

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where recall that  =  
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

¢ 
1− . Solving this in a manner analogous to the proof of Proposition

3 delivers equation (24). The rest of the proof follows from the discussion in Section 3.3.

Proof of Proposition 6: We focus here on deriving equation (28), with the rest of the proof following

from the same steps as the case with homogeneity in input costs and productivity. Notice first that we can

write equation (27) as:
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where:
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 (37)

and  () ≡  ()  (). The Euler-Lagrange equation associated with maximizing  () is given by:
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which after a couple of manipulations can be reduced to:

− 

1− 

[0 ()]2

 ()
+ 0()



1− 

0 ()
 ()

= −00(). (38)

Plugging (37) and its two first derivatives into (38) and simplifying produces (28).
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B Data Appendix

Intrafirm trade: From the U.S. Census Bureau’s Related Party Trade Database, for the years 2000-2010.

The data in NAICS industry codes were mapped to six-digit IO2002 industries using the correspondence

provided by the Bureau Economic Analysis (BEA) as a supplement to the 2002 U.S. Input-Output (I-O)

Tables. This is a straightforward many-to-one mapping for the manufacturing industries (NAICS first digit

= 3). Two industries required a separate treatment as the Census Bureau data was at a coarser level of

aggregation than could be mapped into six-digit IO2002 codes. A synthetic code 31131X was created to

merge IO 311313 (Beet sugar manufacturing) and 31131A (Sugar cane mills and refining), while a separate

code 33641X merged IO 336311, 336412, 336413, 336414, 33641A (all related to the manufacture of aircraft

and related components). All other industry variables described below were also constructed for these two

synthetic IO2002 codes. After converting the related party and non-related party import data to the IO2002

codes, the share of intrafirm imports was calculated for each industry-year or country-industry-year as:

(Related Trade)/(Related Trade + Non-Related Trade).

DUse_TUse: Calculated from the 2002 U.S. I-O Tables, as described in Section 4.2, using the detailed

Supplementary Use Table after redefinitions issued by the BEA. For the synthetic codes 33131X and 33641X,

we took a weighted average of the _ values of the component IO2002 industries, using the output

of these component industries as weights.

DownMeasure: Calculated from the 2002 U.S. I-O Tables, as described in Section 4.2. In particular,

 is the reciprocal of the upstreamness measure discussed in detail in Antràs et al. (2012). A

treatment analogous to that described above for _ was used to obtain  for the

synthetic codes 33131X and 33641X.

Import demand elasticities: U.S. import demand elasticities for HS10 products were from Broda

and Weinstein (2006). This was merged with a comprehensive list of HS10 codes from Pierce and Schott

(2009). For each HS10 code missing an elasticity value, we assigned a value equal to the trade-weighted

average elasticity of the available HS10 codes with which it shared the same first nine digits. This was

done successively up to codes that shared the same first two digits, to fill in as many HS10 elasticities as

possible. Using the IO-HS concordance provided by the BEA with the 2002 U.S. I-O Tables, we then took

the trade-weighted average of the HS10 elasticities within each IO2002 category. At each stage, the weights

used were the total value of U.S. imports by HS10 code from 1989-2006, calculated from Feenstra et al.

(2002). There remained 13 IO2002 industries without elasticity values after the above procedure. For these,

we assigned a value equal to the weighted average elasticity of the IO2002 codes with which the industry

shared the same first four digits, or (if the value was still missing) the same first three digits, using industry

output values as weights. This yielded import elasticities for the industry that sells the input in question.

For the average buyer elasticity, we took a weighted average of the elasticities of industries that purchase

the input in question, with weights equal to these input purchase values as reported in the 2002 U.S. I-O

Tables.

Factor intensities: From the NBER-CES Manufacturing Industry Database (Becker and Gray, 2009).

Skill intensity is the log of the number of non-production workers divided by total employment. Physical

capital intensity is the log of the real capital stock per worker. Equipment capital intensity and plant capital

intensity are respectively the log of the equipment and plant capital stock per worker. Materials intensity

is the log of materials purchases per worker. The NBER-CES data for NAICS industries were mapped to

IO2002 codes using the procedure described above for the related party trade data. For each factor intensity

variable, a simple average of the annual values from 2000-2005 was taken to obtain the seller industry
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measures. The factor intensities for the average buyer were then calculated using the same procedure as

described for the average buyer import demand elasticity.

R&D intensity: From Nunn and Trefler (2012), who calculated R&D expenditures to total sales on

an annual basis for IO1997 industries using the U.S. firms in the Orbis dataset. We constructed a crosswalk

from IO1997 to IO2002 through the NAICS industry codes. The R&D intensity for each IO2002 industry

was then calculated as the weighted average value of log(0001 + &) over that of its constituent

IO1997 industries over the years 2000-2005, using the industry output values in the 1997 U.S. I-O Tables as

weights. A similar procedure to that described above for the import demand elasticity was used to obtain

the R&D intensity for the remaining 13 IO2002 codes. The R&D intensity for the average buyer was then

calculated using the same procedure as described for the average buyer import demand elasticity.

Dispersion: From Nunn and Trefler (2008), who constructed dispersion for each HS6 code as the

standard deviation of log exports for its HS10 sub-codes across U.S. port locations and destination countries

in the year 2000, from U.S. Department of Commerce data. We associated the dispersion value of each HS6

code to each of its HS10 sub-codes. These were mapped into IO2002 industries using the IO-HS concordance,

taking a trade-weighted average of the dispersion value over HS10 constituent codes; the weights used were

the total value of U.S. imports for each HS10 code from 1989-2006, from Feenstra et al. (2002). A similar

procedure to that described above for the import demand elasticity was used to obtain the dispersion measure

for the remaining 13 IO2002 codes. The dispersion for the average buyer was then calculated using the same

procedure described for the average buyer import demand elasticity.

Other industry controls: Value-added over the value of shipments was calculated from the NBER-CES

Manufacturing Industry Database, as described for the factor intensity variables; an average over 2000-2005

was used. Input “importance” was computed from the 2002 U.S. I-O Tables, as the industry’s total use value

as an input divided by the total input purchases made by all of its buyer industries.

Contractibility was computed from the 2002 U.S. I-O Tables, following the methodology of Nunn (2007).

For each IO2002 industry, we first calculated the fraction of HS10 constituent codes classified by Rauch (1999)

as neither reference-priced nor traded on an organized exchange, under Rauch’s “liberal” classification. (The

original Rauch classification was for SITC Rev. 2 products; these were associated with HS10 codes using a

mapping derived from U.S. imports in Feenstra et al. (2002).) We took one minus this value as a measure

of the own contractibility of each IO2002 industry. The average buyer contractibility was then calculated

using the same procedure described for computing the average buyer import demand elasticity.

Intermediation was from Bernard et al. (2010), who calculated this from U.S. establishment-level data

as the weighted average of the wholesale employment share of firms in 1997, using the import share of each

firm as weights. This variable was reported at the HS2 level in the NBER long version of their paper. We

associated the intermediation value for each HS2 code to each of its HS10 sub-codes. These were mapped

into IO2002 industries using the IO-HS concordance, taking a trade-weighted average of the intermediation

value over HS2 constituent codes; the weights used were the total value of U.S. imports for each HS10 code

from 1989-2006, from Feenstra et al. (2002). A similar procedure to that described above for the import

demand elasticity was used to obtain the intermediation measure for the remaining 13 IO2002 codes.

Country variables: Country entry costs were taken from the Doing Business dataset. Data on the

number of procedures, number of days, and cost (as a percentage of income per capita) required to start a

business were used. These were averaged over 2003-2005 for each variable. Country rule of law was from the

Worldwide Governance Indicators (Kaufmann et al., 2010). The annual index was linearly rescaled from its

original range of −25 to 2.5, to lie between 0 and 1.
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IO2002 Industry DUse_TUse IO2002 Industry DownMeasure

331314 Secondary smelting and alloying of aluminum 0.0000 325110 Petrochemical 0.2150

325110 Petrochemical 0.0599 331411 Primary smelting and refining of copper 0.2296

331411 Primary smelting and refining of copper 0.0741 331314 Secondary smelting and alloying of aluminum 0.2461

325211 Plastics material and resin 0.1205 325190 Other basic organic chemical 0.2595

325910 Printing ink 0.1325 33131A Alumina refining and primary aluminum 0.2622

311119 Other animal food 0.1385 325310 Fertilizer 0.2658

333220 Plastics and rubber industry machinery 0.1420 335991 Carbon and graphite product 0.2668

33131A Alumina refining and primary aluminum 0.1447 325181 Alkalies and chlorine 0.2769

335991 Carbon and graphite product 0.1615 331420 Copper rolling, drawing, extruding, and alloying 0.2769

331420 Copper rolling, drawing, extruding, and alloying 0.1804 325211 Plastics material and resin 0.2800

334517 Irradiation apparatus 0.9669 339930 Doll, Toy, and Game 0.9705

339930 Doll, Toy, and Game 0.9686 311111 Dog and cat food 0.9717

337910 Mattress 0.9779 337910 Mattress 0.9720

322291 Sanitary paper product 0.9790 315230 Women's and girl's cut and sew apparel 0.9762

337121 Upholstered household furniture 0.9864 321991 Manufactured home (mobile home) 0.9810

337212 Office furniture and custom woodwork & millwork 0.9868 336212 Truck trailer 0.9837

336213 Motor home 0.9879 336213 Motor home 0.9879

33299A Ammunition 0.9956 316200 Footwear 0.9927

316200 Footwear 0.9967 337121 Upholstered household furniture 0.9928

336111 Automobile 0.9997 336111 Automobile 0.9997

Notes: Tabulated based on the set of 253 IO2002 manufacturing industries for which data on intrafirm import shares was available. 

Highest 10 values

Tail Values of Industry Measures of Production Line Position (Downstreamness)
Table 1

Lowest 10 valuesLowest 10 values

Highest 10 values



(1) (2) (3) (4) (5) (6)

Log (s/l) 0.200*** 0.109*** 0.117*** 0.143*** 0.004 0.019
[0.031] [0.038] [0.037] [0.039] [0.043] [0.043]

Log (k/l) 0.068*** 0.037* 0.096*** 0.047

[0.014] [0.021] [0.018] [0.028]

   Log (equipment k / l) 0.070*** 0.083**

[0.024] [0.033]

   Log (plant k / l) -0.051 -0.063

[0.032] [0.045]

Log (materials/l) 0.018 0.023 0.056 0.063*

[0.026] [0.026] [0.035] [0.035]

Log (0.001+ R&D/Sales) 0.029*** 0.030*** 0.055*** 0.054***

[0.007] [0.006] [0.009] [0.009]
Dispersion 0.130** 0.150** 0.083 0.120

[0.063] [0.061] [0.070] [0.075]

Industry controls for: Seller Seller Seller Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes

Observations 2783 2783 2783 2783 2783 2783
R-squared 0.23 0.30 0.31 0.17 0.27 0.28

Table 2
Baseline Determinants of the Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. All 
columns use industry-year observations controlling for year fixed effects. Estimation is by OLS. Industry factor intensity and dispersion 
variables in Columns 1-3 are that of the seller industry (namely, the industry that sells the input in question), while in Columns 4-6, these 
variables are a weighted average of the characteristics of buyer industries (the industries that buy the input in question), constructed as 
described in Section 4.3 of the main text.

Dependent variable:   Intrafirm Import Share



(1) (2) (3) (4) (5) (6) (7) (8)

Elas < Median Elas >= Median Weighted Weighted

Log (s/l) 0.005 0.039 0.056 0.112* 0.038 -0.098 0.005 -0.068

[0.044] [0.043] [0.042] [0.064] [0.055] [0.079] [0.020] [0.076]

Log (k/l) 0.044 0.034

[0.029] [0.027]

   Log (equipment k / l) 0.085** 0.022 0.153*** 0.188*** 0.026 0.134***

[0.034] [0.047] [0.043] [0.061] [0.016] [0.051]

   Log (plant k / l) -0.077* -0.011 -0.159** -0.151** -0.056*** -0.142***

[0.045] [0.057] [0.064] [0.070] [0.019] [0.050]

Log (materials/l) 0.058* 0.060* 0.065* 0.049 0.072 0.060 0.025* 0.080

[0.035] [0.034] [0.033] [0.049] [0.047] [0.058] [0.014] [0.049]

Log (0.001+ R&D/Sales) 0.055*** 0.054*** 0.053*** 0.050*** 0.054*** 0.090*** 0.031*** 0.073***

[0.009] [0.009] [0.009] [0.013] [0.013] [0.018] [0.004] [0.016]
Dispersion 0.081 0.061 0.103 0.034 0.188* 0.160 0.108*** 0.083

[0.070] [0.070] [0.075] [0.108] [0.100] [0.124] [0.038] [0.108]

DUse_TUse -0.018 -0.216*** 0.225***

[0.054] [0.075] [0.069]
DUse_TUse X 1(Elas < Median),  -0.196*** -0.174** -0.166* -0.115*** -0.075

[0.071] [0.072] [0.089] [0.033] [0.073]
DUse_TUse X 1(Elas > Median),  0.171** 0.198*** 0.482*** -0.035 0.352***

[0.067] [0.068] [0.123] [0.030] [0.118]

1(Elas > Median) -0.191*** -0.191*** -0.410*** -0.049* -0.291***

[0.062] [0.061] [0.085] [0.029] [0.075]

p-value: Joint significance of 1 and 2 [0.0008] [0.0005] [0.0000] [0.0021] [0.0013]

p-value: Test of 2 - 1 = 0 [0.0002] [0.0001] [0.0000] [0.0595] [0.0003]

Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-Year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1375 1408 2783 207991 207991
R-squared 0.27 0.32 0.33 0.37 0.28 0.61 0.18 0.59

Table 3
Downstreamness and the Intrafirm Import Share: DUse_TUse

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1-6 use industry-year observations controlling for 
year fixed effects, while Columns 7-8 use country-industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the industry factor intensity and 
dispersion variables are a weighted average of the characteristics of buyer industries (the industries that buy the input in question), constructed as described in Section 4.3 of the main 
text. Columns 4 and 5 restrict the sample to observations where the buyer industry elasticity is smaller (respectively larger) than the industry median value. "Weighted" columns use the 
value of total imports for the industry-year or country-industry-year respectively as regression weights.

Dependent variable:   Intrafirm Import Share



(1) (2) (3) (4) (5) (6) (7) (8)

Elas < Median Elas >= Median Weighted Weighted

Log (s/l) -0.011 0.019 0.037 0.088 0.032 -0.143** 0.000 -0.097*

[0.045] [0.042] [0.041] [0.067] [0.051] [0.058] [0.020] [0.054]

Log (k/l) 0.062** 0.058**

[0.027] [0.026]

   Log (equipment k / l) 0.125*** 0.061 0.192*** 0.157** 0.039** 0.139***

[0.036] [0.047] [0.048] [0.066] [0.017] [0.047]

   Log (plant k / l) -0.100** -0.027 -0.192*** -0.091 -0.062*** -0.117**

[0.049] [0.061] [0.073] [0.080] [0.020] [0.052]

Log (materials/l) 0.050 0.043 0.049 0.022 0.064 0.032 0.017 0.046

[0.033] [0.033] [0.032] [0.050] [0.043] [0.055] [0.014] [0.043]

Log (0.001+ R&D/Sales) 0.058*** 0.054*** 0.054*** 0.053*** 0.050*** 0.089*** 0.032*** 0.072***

[0.010] [0.009] [0.009] [0.014] [0.014] [0.017] [0.004] [0.014]
Dispersion 0.087 0.092 0.150* 0.082 0.258** 0.249* 0.116*** 0.163

[0.072] [0.076] [0.079] [0.114] [0.105] [0.147] [0.043] [0.114]

DownMeasure 0.101* -0.036 0.342***

[0.055] [0.069] [0.081]
DownMeasure X 1(Elas < Median),  -0.024 0.025 -0.119 -0.002 -0.002

[0.064] [0.065] [0.107] [0.035] [0.091]
DownMeasure X 1(Elas > Median),  0.249*** 0.298*** 0.526*** -0.039 0.440***

[0.085] [0.081] [0.100] [0.033] [0.089]

1(Elas > Median) -0.115* -0.110* -0.386*** 0.022 -0.279***

[0.064] [0.062] [0.081] [0.030] [0.072]

p-value: Joint significance of 1 and 2 [0.0138] [0.0013] [0.0000] [0.4995] [0.0000]

p-value: Test of 2 - 1 = 0 [0.0103] [0.0067] [0.0000] [0.4180] [0.0001]

Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer Buyer Buyer
Year fixed effects? Yes Yes Yes Yes Yes Yes No No
Country-Year fixed effects? No No No No No No Yes Yes

Observations 2783 2783 2783 1375 1408 2783 207991 207991
R-squared 0.28 0.31 0.33 0.33 0.33 0.64 0.18 0.61

Table 4
Downstreamness and the Intrafirm Import Share: DownMeasure

Dependent variable:   Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1-6 use industry-year observations controlling for 
year fixed effects, while Columns 7-8 use country-industry-year observations controlling for country-year fixed effects. Estimation is by OLS. In all columns, the industry factor intensity and 
dispersion variables are a weighted average of the characteristics of buyer industries (the industries that buy the input in question), constructed as described in Section 4.3 of the main 
text. Columns 4 and 5 restrict the sample to observations where the buyer industry elasticity is smaller (respectively larger) than the industry median value. "Weighted" columns use the 
value of total imports for the industry-year or country-industry-year respectively as regression weights.



(1) (2) (3) (4) (5) (6)

Downstreamness: DUse_TUse DUse_TUse DUse_TUse DownMeasure DownMeasure DownMeasure

Weighted Weighted Weighted Weighted

Downstream X 1(Elas Quintile 1),  -0.165* -0.255* -0.138 0.049 -0.283 -0.089
[0.093] [0.149] [0.100] [0.119] [0.202] [0.142]

Downstream X 1(Elas Quintile 2),  -0.173 -0.100 -0.037 -0.042 -0.154 -0.040
[0.108] [0.136] [0.115] [0.099] [0.139] [0.122]

Downstream X 1(Elas Quintile 3),  -0.145 0.007 0.051 0.019 0.114 0.224
[0.130] [0.166] [0.153] [0.124] [0.166] [0.172]

Downstream X 1(Elas Quintile 4),  0.215** 0.156 0.066 0.332*** 0.066 0.073
[0.100] [0.143] [0.119] [0.126] [0.174] [0.120]

Downstream X 1(Elas Quintile 5), 5 0.198* 0.785*** 0.637*** 0.312** 0.736*** 0.621***
[0.103] [0.194] [0.199] [0.130] [0.110] [0.096]

p-value: Joint significance of 1, ,  [0.0104] [0.0010] [0.0317] [0.0338] [0.0000] [0.0000]

p-value: Test of  -  = 0 [0.0092] [0.0000] [0.0006] [0.1344] [0.0000] [0.0001]

Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer
Elas Quintile dummies? Yes Yes Yes Yes Yes Yes
Year fixed effects? Yes Yes No Yes Yes No
Country-Year fixed effects? No No Yes No No Yes

Observations 2783 2783 207991 2783 2783 207991
R-squared 0.34 0.64 0.61 0.34 0.67 0.62

Table 5
Effect of Downstreamness: By Import Elasticity Quintiles

Dependent variable:   Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1-2 
and 4-5 use industry-year observations controlling for year fixed effects, while Columns 3 and 6 use country-industry-year observations 
controlling for country-year fixed effects. Estimation is by OLS. Columns 1-3 use DUse_TUse and Columns 4-6 use DownMeasure as the 
downstreamness variable respectively. All columns include additional control variables whose coefficients are not reported, namely: (i) the main 
effects of the buyer industry elasticity quintile dummies, and (ii) buyer industry factor intensity and dispersion variables, constructed as 
described in Section 4.3 of the main text. "Weighted" columns use the value of total imports for the industry-year or country-industry-year 
respectively as regression weights.

Additional buyer industry controls included:
Main effects of Elasticity Quintile dummies, 

Log (0.001+ R&D/Sales), Dispersion
Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l), 



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Weighted Weighted Weighted Weighted Weighted

DUse_TUse X 1(Elas < Median),  -0.187** -0.177** -0.103 -0.180** -0.130* -0.171* -0.188** -0.119 -0.199** -0.185**

[0.074] [0.072] [0.071] [0.077] [0.079] [0.093] [0.093] [0.080] [0.091] [0.084]
DUse_TUse X 1(Elas < Median),  0.157** 0.198*** 0.236*** 0.159** 0.158** 0.472*** 0.504*** 0.451*** 0.391*** 0.374***

[0.077] [0.068] [0.065] [0.068] [0.074] [0.144] [0.111] [0.125] [0.103] [0.090]

Value-added / Value shipments 0.187 0.216* 0.054 0.107

[0.135] [0.125] [0.275] [0.167]

Input "Importance" -1.687 -1.453 -3.484*** -3.975***

[1.231] [1.302] [1.021] [0.802]

Intermediation -0.464*** -0.413*** -0.673*** -0.654***

[0.106] [0.102] [0.168] [0.149]

Own Contractibility 0.019 0.024 0.184** 0.198***

[0.048] [0.047] [0.076] [0.075]

Buyer contractibility -0.199*** -0.169** -0.499*** -0.508***

[0.067] [0.065] [0.108] [0.109]

p-value: Joint significance of 1 and 2 [0.0022] [0.0004] [0.0003] [0.0012] [0.0074] [0.0001] [0.0000] [0.0002] [0.0000] [0.0000]

p-value: Test of 2 - 1 = 0 [0.0005] [0.0001] [0.0002] [0.0003] [0.0019] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Year fixed effects? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2783 2783 2783 2783 2783 2783 2783 2783 2783 2783
R-squared 0.33 0.33 0.38 0.37 0.41 0.61 0.63 0.65 0.66 0.73

Dependent variable:   Intrafirm Import Share

Robustness Checks: DUse_TUse
Table 6

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. All columns use industry-year observations controlling for year fixed effects. 
Estimation is by OLS. The value-added / value shipments, intermediation, input "importance", and own contractibility variables are characteristics of the seller industry (namely, the industry that sells the input in 
question), while the buyer contractibility variable is a weighted average of the contractibility of buyer industries (the industries that buy the input in question). All columns include additional control variables whose 
coefficients are not reported, namely: (i) the level effect of the buyer industry elasticity dummy, and (ii) buyer industry factor intensity and dispersion variables, constructed as described in Section 4.3 of the main 
text. "Weighted" columns use the value of total imports for the industry-year as regression weights.

1(Elas > Median), Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l), Log (0.001+ R&D/Sales), Dispersion
Additional buyer industry controls included:



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Weighted Weighted Weighted Weighted Weighted

DownMeasure X 1(Elas < Median),  0.014 0.021 0.083 0.007 0.046 -0.137 -0.152 -0.040 -0.213** -0.216**

[0.067] [0.065] [0.062] [0.067] [0.065] [0.110] [0.110] [0.101] [0.103] [0.099]
DownMeasure X 1(Elas < Median),  0.277*** 0.294*** 0.310*** 0.284*** 0.270*** 0.515*** 0.505*** 0.500*** 0.442*** 0.371***

[0.084] [0.081] [0.076] [0.075] [0.075] [0.098] [0.098] [0.097] [0.084] [0.066]

Value-added / Value shipments 0.168 0.235* 0.331 -0.599***

[0.130] [0.120] [0.208] [0.150]

Input "Importance" -0.954 -0.866 -1.565* -2.805***

[1.351] [1.403] [0.806] [0.633]

Intermediation -0.488*** -0.443*** -0.652*** -0.599***

[0.104] [0.103] [0.161] [0.150]

Own Contractibility 0.062 0.059 0.204*** 0.211***

[0.046] [0.044] [0.077] [0.064]

Buyer contractibility -0.238*** -0.197*** -0.509*** -0.514***

[0.065] [0.063] [0.110] [0.102]

p-value: Joint significance of 1 and 2 [0.0050] [0.0015] [0.0002] [0.0009] [0.0018] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

p-value: Test of 2 - 1 = 0 [0.0102] [0.0066] [0.0170] [0.0039] [0.0169] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Year fixed effects? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 2783 2783 2783 2783 2783 2783 2783 2783 2783 2783
R-squared 0.33 0.39 0.33 0.37 0.42 0.65 0.68 0.65 0.69 0.75

Table 7
Robustness Checks: DownMeasure

Dependent variable:   Intrafirm Import Share

Additional buyer industry controls included:
1(Elas > Median), Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l), Log (0.001+ R&D/Sales), Dispersion

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. All columns use industry-year observations controlling for year fixed effects. 
Estimation is by OLS. The value-added / value shipments, intermediation, input "importance", and own contractibility variables are characteristics of the seller industry (namely, the industry that sells the input in 
question), while the buyer contractibility variable is a weighted average of the contractibility of buyer industries (the industries that buy the input in question). All columns include additional control variables whose 
coefficients are not reported, namely: (i) the level effect of the buyer industry elasticity dummy, and (ii) buyer industry factor intensity and dispersion variables, constructed as described in Section 4.3 of the main 
text. "Weighted" columns use the value of total imports for the industry-year as regression weights.



(1) (2) (3) (4) (5) (6)

Downstreamness: DUse_TUse DUse_TUse DUse_TUse DownMeasure DownMeasure DownMeasure

Weighted Weighted Weighted Weighted

Downstream X 1 (Elas < Med) X (HQ Quin 1),  0.049 0.009 -0.016 0.351*** 0.301** 0.290**
[0.129] [0.139] [0.118] [0.128] [0.134] [0.129]

Downstream X 1 (Elas < Med) X (HQ Quin 2),  -0.268** -0.477*** -0.331** -0.161 -0.312* -0.169
[0.118] [0.162] [0.148] [0.103] [0.186] [0.150]

Downstream X 1 (Elas < Med) X (HQ Quin 3),  -0.175 -0.162 -0.158 0.072 -0.020 -0.058
[0.148] [0.138] [0.124] [0.131] [0.160] [0.145]

Downstream X 1 (Elas < Med) X (HQ Quin 4),  -0.377*** -0.658*** -0.455*** -0.121 -0.394** -0.280**
[0.134] [0.108] [0.069] [0.128] [0.172] [0.125]

Downstream X 1 (Elas < Med) X (HQ Quin 5),  0.177 -0.046 0.024 0.229 -0.181 -0.050
[0.171] [0.192] [0.172] [0.157] [0.160] [0.158]

Downstream X 1 (Elas > Med) X (HQ Quin 1),  0.196 0.805** 0.798*** 0.465*** 0.624*** 0.593***
[0.248] [0.325] [0.278] [0.163] [0.113] [0.087]

Downstream X 1 (Elas > Med) X (HQ Quin 2),  -0.037 -0.099 -0.180 0.032 -0.001 -0.061
[0.146] [0.181] [0.175] [0.130] [0.238] [0.189]

Downstream X 1 (Elas > Med) X (HQ Quin 3),  0.216* 0.172 0.027 0.358*** 0.357 0.099
[0.119] [0.207] [0.145] [0.135] [0.257] [0.199]

Downstream X 1 (Elas > Med) X (HQ Quin 4),  0.130 0.819** 0.427 0.280* 0.519 0.079
[0.161] [0.390] [0.341] [0.159] [0.427] [0.352]

Downstream X 1 (Elas > Med) X (HQ Quin 5),  0.183** 0.271* 0.162 0.179 0.274 0.225*
[0.082] [0.144] [0.114] [0.117] [0.197] [0.117]

p-value: Joint significance of 11,.., ,  [0.0065] [0.0000] [0.0000] [0.0004] [0.0000] [0.0000]
p-value: Test of  -  = 0 [0.5271] [0.8062] [0.8438] [0.5397] [0.0182] [0.0833]
p-value: Test of  -  = 0 [0.9599] [0.1790] [0.0477] [0.1699] [0.1921] [0.0262]

Main and double interaction effects? Yes Yes Yes Yes Yes Yes
Year fixed effects? Yes Yes No Yes Yes No
Country-Year fixed effects? No No Yes No No Yes

Observations 2783 2783 207991 2783 2783 207991
R-squared 0.40 0.69 0.63 0.40 0.71 0.65

Extension: Effect of Headquarter Intensity
Table 8

Dependent variable:   Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1-2 and 4-5 
use industry-year observations controlling for year fixed effects, while Columns 3 and 6 use country-industry-year observations controlling for country-
year fixed effects. Estimation is by OLS. Columns 1-3 use DUse_TUse and Columns 4-6 use DownMeasure as the downstreamness variable 
respectively. The hq intensity measure is the first principal component of the buyer industry's Log (s/l), Log (equipment k/l), and Log (0.001 + 
R&D/Sales). All columns include additional control variables whose coefficients are not reported, namely: (i) the main and double interaction effects 
of the buyer industry elasticity dummies and hq intensity quintile dummies, and (ii) buyer industry factor intensity and dispersion variables, 
constructed as described in Section 4.3 of the main text. "Weighted" columns use the value of total imports for the industry-year or country-industry-
year respectively as regression weights.

Log (s/l), Log (equipment k/l), and Log (0.001+R&D/Sales)
HQ intensity:  First Principal Component of Buyer Industry

Additional buyer industry controls included:
Main and double interaction effects, 

Log (0.001+ R&D/Sales), Dispersion
Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l), 



(1) (2) (3) (4) (5) (6)

Downstreamness: DUse_TUse DUse_TUse DUse_TUse DownMeasure DownMeasure DownMeasure

Weighted Weighted Weighted Weighted

(Downstream Quin 1) X 1(Elas < Median),  0.101** 0.210*** 0.145*** 0.060 0.184*** 0.145**
[0.045] [0.058] [0.045] [0.051] [0.067] [0.059]

(Downstream Quin 2) X 1(Elas < Median),  0.041 0.131** 0.096* -0.005 0.062 0.019
[0.043] [0.062] [0.054] [0.045] [0.069] [0.055]

(Downstream Quin 3) X 1(Elas < Median),  0.008 0.063 0.010 -0.016 0.089 0.049
[0.046] [0.057] [0.046] [0.049] [0.076] [0.060]

(Downstream Quin 4) X 1(Elas < Median),  -0.047 0.092 0.047 0.024 0.064 0.032
[0.043] [0.065] [0.051] [0.045] [0.075] [0.058]

(Downstream Quin 5) X 1(Elas < Median),  0.017 0.084 0.082 0.023 0.039 0.058
[0.042] [0.063] [0.053] [0.042] [0.081] [0.064]

(Downstream Quin 2) X 1(Elas > Median),  0.021 0.031 0.016 0.013 -0.054 -0.068
[0.036] [0.067] [0.056] [0.039] [0.069] [0.052]

(Downstream Quin 3) X 1(Elas > Median),  0.086** 0.150** 0.072 0.035 0.076 0.018
[0.044] [0.065] [0.052] [0.047] [0.069] [0.066]

(Downstream Quin 4) X 1(Elas > Median),  0.030 0.086 0.017 0.073* 0.056 0.013
[0.048] [0.056] [0.050] [0.043] [0.072] [0.060]

(Downstream Quin 5) X 1(Elas > Median),  0.181*** 0.352*** 0.257*** 0.171*** 0.380*** 0.300***
[0.048] [0.067] [0.062] [0.059] [0.085] [0.074]

p-value: Joint significance of 11,.., ,  [0.0002] [0.0000] [0.0000] [0.0607] [0.0000] [0.0000]

p-value: Test of  -  = 0 [0.0644] [0.0530] [0.1986] [0.4766] [0.0278] [0.1006]

p-value: Test of  = 0 [0.0002] [0.0000] [0.0000] [0.0043] [0.0000] [0.0001]

Downstream Quin and Elasticity dummies? Yes Yes Yes Yes Yes Yes
Year fixed effects? Yes Yes No Yes Yes No
Country-Year fixed effects? No No Yes No No Yes

Observations 2783 2783 207991 2783 2783 207991
R-squared 0.35 0.63 0.61 0.33 0.67 0.63

Table 9
Extension: Implications of Firm Heterogeneity

Dependent variable:   Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1-2 and 4-
5 use industry-year observations controlling for year fixed effects, while Columns 3 and 6 use country-industry-year observations controlling for 
country-year fixed effects. Estimation is by OLS. Columns 1-3 use DUse_TUse and Columns 4-6 use DownMeasure as the downstreamness 
variable respectively. All columns include additional control variables whose coefficients are not reported, namely: (i) the main effects of the 
downstreamness quintile dummies and the buyer industry elasticity dummies, and (ii) buyer industry factor intensity and dispersion variables, 
constructed as described in Section 4.3 of the main text. "Weighted" columns use the value of total imports for the industry-year or country-industry-
year respectively as regression weights.

Additional buyer industry controls included:
Main effects of Downstreamness Quintiles and Elasticity dummies,

Log (0.001+ R&D/Sales), Dispersion
 Log (s/l), Log (equipment k / l), Log (plant k / l), Log (materials/l),



(1) (2) (3) (4) (5) (6)

Downstreamness: DUse_TUse DUse_TUse DUse_TUse DownMeasure DownMeasure DownMeasure

Probit Weighted Weighted Probit Weighted Weighted

Log (s/l) 0.424** -0.079 -0.072 0.343** -0.107** -0.104**
[0.166] [0.065] [0.059] [0.167] [0.048] [0.050]

   Log (equipment k / l) -0.084 0.131*** 0.130*** -0.056 0.125*** 0.124***
[0.203] [0.040] [0.041] [0.176] [0.040] [0.041]

   Log (plant k / l) -0.026 -0.139*** -0.140*** -0.030 -0.113** -0.113**
[0.234] [0.046] [0.046] [0.217] [0.049] [0.048]

Log (materials/l) -0.083 0.063 0.061 -0.098 0.042 0.040
[0.136] [0.043] [0.042] [0.133] [0.042] [0.041]

Buyer Log (0.001+ R&D/Sales) -0.015 0.080*** 0.080*** 0.001 0.080*** 0.080***
[0.064] [0.014] [0.014] [0.061] [0.014] [0.014]

Dispersion -0.234 0.117 0.113 -0.284 0.178 0.175
[0.405] [0.104] [0.104] [0.392] [0.115] [0.117]

Downstream X 1(Elas < Median),  0.047 -0.073 -0.072 0.634** -0.020 -0.011

[0.310] [0.074] [0.074] [0.317] [0.097] [0.088]
Downstream X 1(Elas > Median),  0.274 0.310*** 0.314*** -0.291 0.353*** 0.347***

[0.252] [0.106] [0.102] [0.246] [0.078] [0.084]
1(Elas > Median) 0.003 -0.268*** -0.268*** 0.661*** -0.244*** -0.234***

[0.231] [0.075] [0.075] [0.233] [0.076] [0.073]

Seller Log (0.001+ R&D/Sales) -0.028*** -0.028***
     X Country Entry Costs [0.007] [0.007]
Seller Log (0.001+ R&D/Sales) 0.030 0.026

[0.045] [0.041]
Inverse Mills Ratio -0.120 -0.082

[0.250] [0.197]

p-value: Joint significance of 1 and 2 [0.0036] [0.0024] [0.0000] [0.0001]

p-value: Test of 2 - 1 = 0 [0.0009] [0.0006] [0.0007] [0.0008]

Industry controls for: Buyer Buyer Buyer Buyer Buyer Buyer
Country-year fixed effects? Yes Yes Yes Yes Yes Yes

Sample: Total imports 
>=0

Total imports 
> 0

Total imports 
> 0

Total imports 
>=0

Total imports 
> 0

Total imports 
> 0

Observations 462990 186029 186029 462990 186029 186029
R-squared - 0.63 0.63 - 0.64 0.64

Table 10
Selection into Intrafirm Trade

Dependent variable:   Intrafirm Import Share

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels respectively. Standard errors are clustered by industry. Columns 1 
and 4 report the first-stage probits. The exclusion restriction variable is the seller industry's R&D intensity, Log (0.001+ R&D/Sales), and its 
interaction with a dummy variable for countries with above sample-median entry costs. The latter is constructed from the first principal 
component of the number of procedures, number of days, and monetary cost of starting a business, from the Doing Business dataset. 
Columns 2 and 5 report the second stage, which is run using weighted least squares; the observation weights are the value of total imports for 
the country-industry-year in question. Columns 3 and 6 report the second-stage regression excluding the inverse Mills ratio, to provide a 
comparison. Columns 1-3 use DUse_TUse and Columns 4-6 use DownMeasure as the downstreamness variable respectively. All columns 
also control for the buyer industry factor intensity and dispersion variables (constructed as described in Section 4.3 of the main text), as well 
as country-year fixed effects.


