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Abstract. Most operations models assume individuals make decisions based on a perfect
understanding of random variables or stochastic processes. In reality, however, individu-
als are subject to cognitive limitations andmake systematic errors.We leverage established
psychology on sample naivete to model individuals’ forecasting errors and biases in a
way that is portable to operations models. The model has one behavioral parameter and
embeds perfect rationality as a special case. We use the model to mathematically charac-
terize point and error forecast behavior, reflecting an individual’s beliefs about the mean
and variance of a random variable. We then derive 10 behavioral phenomena that are
inconsistent with perfect rationality assumptions but supported by existing empirical evi-
dence. Finally, we apply the model to two operations settings, inventory management
and queuing, to illustrate the model’s portability and discuss its numerous predictions.
For inventory management, we characterize order decisions assuming behavioral demand
forecasting. The model predicts that even under automated cost optimization, one should
expect a pull-to-center effect. It also predicts that this effect can be mitigated by separat-
ing point forecasting from error forecasting. For base stock models, it predicts that safety
stocks are too small (large) for short (long) lead times. We also express the steady-state
behavior of a queue with balking, assuming rational joining decisions but behavioral
wait-time forecasts. The model predicts that joining customers tend to be disappointed in
their experienced waits. Also, for long (short) lines, it predicts customers have more (less)
disperse wait-time beliefs and tend to overestimate (underestimate) the true wait-time
variance.

History: Accepted by Serguei Netessine, operations management.
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1. Introduction
Nearly all decisions are based on forecasts, whether
more intuitive or deliberative. The use of forecasts as an
input to decision making is prominent in classic oper-
ations management (OM) settings. In inventory man-
agement, a newsvendor’s order decision depends on
her forecasted demand for the selling season. In queu-
ing, a customer’s decision to join or balk depends on
his forecasted waiting time. And in process manage-
ment, a manager’s improvement decision depends on
her forecasted capacities of each stage. Although there
is an increasing use of computerized systems to sup-
port forecasting in businesses, many managerial fore-
casts still involve human judgment. Furthermore, cus-
tomers’ decisions are even more likely to be based on
human judgments as opposed to computerized fore-
casts. Therefore, accounting for behavioral elements of
forecasting is important for capturing more realistic
decision-making behavior in operations and manage-
ment science.

Forecasting is critical in the face of significant uncer-
tainty; in OM contexts, such uncertainty is typically
modeled using random variables or stochastic pro-
cesses. The two most fundamental forecasts needed to
support decision making in the face of uncertainty are
the point forecast and error forecast. In OM models,
these forecasts typically correspond to the mean and
variance of the random variable faced by the decision
maker. Therefore, in this article we focus on capturing
an individual’s forecasting behavior by modeling their
beliefs about the mean and variance of a random vari-
able. To the extent that researchers in other disciplines
in management science and economics implement ran-
dom variables on which a decision maker optimizes,
our model may also be useful to them; however, this
article focuses on modeling behavior for operations
management.

Most traditional OM models assume, either explic-
itly or implicitly, that individuals have a perfect under-
standing of random variables and stochastic processes.
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Specifically, they typically assume individuals know
and make decisions based on the correct mean and
variance of any random variable they face. By con-
trast, considerable behavioral work in the field of judg-
ment and decision making has found that individuals
have cognitive limitations and make certain system-
atic errors in their judgments under uncertainty. These
findings highlight the potential limitations of perfectly
rational models for capturing realistic behavior. From
an analytical modeling standpoint, however, it can be
challenging to find a way to incorporate a long list of
behavioral biases in a tractable and meaningful man-
ner. Furthermore, classic models based on the premise
of perfect rationality are well developed and have
yielded important insights, so it is desirable to incorpo-
rate more realistic behavior in such a way that we need
not completely abandon these formulations. Therefore,
there is a need for analytical models that are powerful
enough to capture a variety of behavioral phenomena
while still being tractable and implementable in exist-
ing models. While there have been recent advances
along these lines for profit-optimization decision tasks
in operations contexts (e.g., Su 2008), there has been
less advancement of behavioral models for forecasting,
which must precede such decision making. The goal of
this paper is to take a step toward filling this gap.
To be clear, our primary objective is not to study a

specific operations setting in-depth to derive prescrip-
tive managerial insights for that setting. Rather, our
objective is to develop a model that can be readily
inserted in various existing OM models that typically
assume perfect rationality such that human forecast-
ing behavior can be better accounted for. Furthermore,
our objective is not to present new empirical evidence
of behavioral biases. Rather, we seek to show how a
simple model based on established psychological prin-
ciples can capture a surprisingly rich representation of
forecasting behavior consistent with existing empirical
evidence.
The behavioral forecasting model we propose is

grounded in a psychological perspective that research-
ers have started to refer to as the naive intuitive statisti-
cian (see Fiedler and Juslin 2006 for an overview). This
perspective places emphasis on the role of the environ-
ment surrounding a decision maker and the extent to
which imperfect samples of information in the envi-
ronment explain behavioral anomalies, even with oth-
erwise perfect cognitive computation. In line with this
perspective, our model assumes that because of limita-
tions in one’s ability to gather, process, and recall infor-
mation (Simon 1955), individuals tend to think of only
a small random sample of possible outcomes instead
of perfectly leveraging the true random variable. They
then naively operate as though the statistical proper-
ties (the mean and variance) of this small sample are
perfectly representative of the properties of the true

random variable. Therefore, we assume that while the
individual can correctly describe the basic statistical
properties of the mental sample, they fail to correct for
the problems inherent in relying on small samples in
the first place (Tversky and Kahneman 1971). We build
most directly from Juslin et al. (2007).

The model assumptions are precise enough to allow
us to characterize the individual’s point and error fore-
casts as fully specified random variables, and we show
how to do so for a variety of commonly used dis-
tributions. For example, for a normal random vari-
able, we show that the individual’s point forecast is
also a normal random variable while her error forecast
is a gamma random variable. (Moreover, the two are
independent.) By contrast, a typical perfectly rational
model assumes the point and error forecasts are con-
stants and equal to the true mean and variance. Note
also that the point and error forecasts are fully speci-
fied based on only one new behavioral parameter—the
mental sample size—and the model embeds perfect
rationality as a special case (as the mental sample size
goes to infinity). Therefore, the model serves as a gen-
eralization of the perfectly rational model, and one can
compare the predictions of the model relative to the
perfect rationality benchmark by comparing behavior
under a finite mental sample size to behavior with an
infinite one.

After defining our behavioral forecasting model, we
derive 10 distinct phenomena that it captures (see
Table 1), which are not captured by a perfectly rational
model, and discuss how these results relate to exist-
ing empirical evidence. Doing so serves two purposes.
First, it demonstrates that we can relate a large num-
ber of behavioral phenomena (some of which are well
established) to a single model. In linking several behav-
ioral results, the model increases our understanding of
how these phenomena relate to each other.1 Second, it
shows that the model can be useful for future research
by capturing many departures from perfect rationality
with mathematical tractability.

The model performs well with respect to several
dimensions that are desirable for formal behavioral
theory (Rabin 2013)—portability, plausibility, parsi-
mony, power, and precision. It is directly portable to
classic OM model settings, is grounded in credible
and plausible psychology, parsimoniously uses only
one behavioral parameter, is powerful in that it cap-
tures a large number of behavioral phenomena, and
predicts precise differences from the perfect rationality
benchmark. The model is useful for analytical mod-
elers because it can be implemented “off the shelf”
to account for a rich set of forecasting behaviors with
only a single parameter where one typically would
simply assume perfect rationality. Modelers can derive
new managerial insights when accounting for more
realistic forecasting behavior, which can complement
results derived under the perfect rationality paradigm.
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Table 1. Phenomena Captured by the Behavioral Model of Forecasting

Behavioral phenomenon Corresponding behavioral model of forecasting prediction

Wisdom of the crowd The expected value of point forecasts is the optimal point forecast.
Forecaster dispersion predicts true

uncertainty and average forecaster
confidence

Point forecast variance is increasing in true uncertainty; expected error forecast is increasing
in point forecaster dispersion.

Underweighting rare events Point forecasts err more frequently toward the mode than away from the mode.
Optimizer’s curse When faced with multiple random variables, the individual’s belief about the mean of the

random variable associated with his largest point forecast is biased high.
Jensen’s inequality neglect and the

planning fallacy
Individuals tend to overestimate a convex function of the mean of a random variable,

causing them to overestimate how much can be completed in a given time interval.
Overconfidence The individual underestimates the error of her own point forecast.
Weak confidence-accuracy correspondence For normal random variables, the individual’s error forecast and her point forecast are

independent.
Format dependence and egocentric

assessment of others’ forecasts
The individual’s assessment of exogenously provided point forecasts is unbiased (for normal

random variables).
Gambler’s fallacy and the law of small

numbers
Over short time intervals, individuals tend to underestimate the error of their point forecast.

Nonbelief in the law of large numbers Over long time intervals, individuals tend to overestimate the error of their point forecast.

Furthermore, experimentalists and empiricists can use
the model to generate testable predictions, or plausible
explanations for observed anomalies, across a variety
of settings. The model not only hypothesizes clear dif-
ferences from perfect rationality but also predicts rela-
tionships between biases and individual differences
according to the behavioral parameter.
We provide two specific examples to illustrate how

the model can be applied to important OM settings.
First, we show that it can be applied to the classic
newsvendor and base stock models by capturing the
manager’s demand forecasting behavior. The model is
tractable enough to derive the predicted distribution
of order quantities, assuming order decisions are auto-
mated based on an individual’s behavioral point and
error forecast inputs. Second, we investigate the clas-
sic single-server queue with balking setting and show
how themodel can be applied to derive the steady-state
distribution of customers, assuming joining decisions
are rational given the individual’s behavioral wait-time
forecast inputs. For both examples, even without push-
ing the analyses beyond interpreting the previously
derived 10 phenomena, we observe several implica-
tions from the behavioral forecasting model. For exam-
ple, even if cost optimization is automated, the model
predicts a strong pull-to-center effect in the newsven-
dor problem, although it also predicts that this effect
can be potentially eliminated by separating the point
forecast from the error forecast tasks. It also predicts
that an overordering bias can be reduced by separating
the product choice decision from the order quantity
decision. For base stock models, it predicts too small of
safety stocks for short lead times but too large of safety
stocks for long lead times. In a queue with balking, the
model predicts that customers who join the queue tend
to be disappointed in their experienced wait times. For

long lines, it predicts that customers have more dis-
perse beliefs about wait times and tend to overestimate
the true wait-time variance. For short lines, it predicts
that customers have less disperse beliefs about wait
times and tend to underestimate true wait-time vari-
ance. These predictions and others are discussed in
Section 5.

There are important limitations of the model. Hu-
man judgment is complex and is certainly not exhaus-
tively accounted for by naive statistics on mental
samples. Even within the context of our model, the
assumptions could be further relaxed and parameter-
ized to better fit data. We will return to these limita-
tions and discuss opportunities for future research in
the conclusion.

2. Related Literature
While our model may be useful to other disciplines
in which perceptions of uncertainty are important
inputs to decision making, our article contributes most
directly to the field of behavioral operations manage-
ment (see Croson et al. 2013, Bendoly et al. 2010, Gino
and Pisano 2008 for recent reviews). There are two
categories of research in behavioral operations that
relate directly to this paper: (i) applications of general
behavioral economics models to operations settings
and (ii) forecasting experiments that uncover anoma-
lies in operations decision making.

The use of general behavioral models in operations
has thus far been primarily focused on importing fea-
tures of existing models from behavioral economics
into operations settings. This is often a nontrivial trans-
lation across fields, and these models have yielded
important operations insights. Arguably themost com-
monly imported behavioral modeling feature to oper-
ations management is a utility function of preferences.
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For example, operations scholars have imported utility
model features from prospect theory (Kahneman and
Tversky 1979a) and mental accounting (Thaler 1985)
to study topics such as inventory management (e.g.,
Schweitzer and Cachon 2000, Nagarajan and Shechter
2013, Chen et al. 2013), supply chain contracting (e.g.,
Zhang et al. 2016, Becker-Peth et al. 2013), and pric-
ing (e.g., Popescu and Wu 2007). Similarly, utility
models of social preferences have been adapted from
economics to generate research in supply chain man-
agement (e.g., Loch and Wu 2008, Özer et al. 2011,
Katok and Pavlov 2013). Furthermore, utility models
of time preferences and hyperbolic discounting in eco-
nomics (Laibson 1997) have recently been implemented
into operations models to study queuing (Plambeck
and Wang 2013). A second behavioral modeling fea-
ture used in operations management is random deci-
sion error to account for bounded rationality in opti-
mization. For example, following the advancements
of the quantal choice models (Luce 1959, McFadden
1981, Anderson et al. 1992) and the quantal response
equilibrium (McKelvey and Palfrey 1995), we began to
see these general models being applied to newsvendor
models (Su 2008, Kremer et al. 2010), capacity alloca-
tionmodels (Chen et al. 2012), and service systemmod-
els (Huang et al. 2013) to generate important insights.
The majority of this work has focused on devia-

tions from perfect rationality in decision making given
perfect knowledge of random variable inputs. By con-
trast, less work has examined deviations from perfect
rationality in the formation of beliefs that serve as the
inputs for decision making. This distinction is between
two fundamental challenges faced by decision makers:
the need to optimize (i.e., decision making) and the
need to forecast (i.e., judgment). There are a few recent
behavioral operations models that have focused on the
forecasting task. Croson et al. (2008) apply a model of
overconfidence in demand forecasting to newsvendor
order decisions. Their model assumes that individuals
act on a perceived demand distribution that is a mean-
preserving but variance-reduced transformation of the
true demand distribution. Additionally, Huang and
colleagues have studied opaque selling, capacity man-
agement, and service pricing (Huang and Yu 2014,
Huang and Liu 2015, Huang and Chen 2015) by apply-
ing models of “anecdotal reasoning” developed in
economics (Osborne and Rubenstein 1998; Spiegler
2006a, b, 2011). These papers relax the assumptions
of rational expectations in games and instead assume
that customers rely on random anecdotes (e.g., from
another customer’s experience) in order to make deci-
sions. Although the authors implement a similar sam-
pling approach, the objectives and contributions of
their work are quite different from ours. These papers
examine specific operations and marketing contexts
assuming customers use anecdotal reasoning. Here,

we focus on developing a general model, showing how
naive statistics on small mental samples can capture
a large number of empirically supported behavioral
phenomena, which can then be implemented in a vari-
ety of settings. We also study both error and point
forecasting, whereas these papers focus on point fore-
casting. This enables one to examine operational deci-
sions that depend on both the mean and variance of
the random variable.

Our article also relates to research in behavioral
operations management that experimentally examines
behavioral demand forecasting as a key driver of oper-
ational decision making. For example, Kremer et al.
(2011) studied biases in point forecasting behavior in
time-series forecasting. It is worthwhile to note that
the overreaction to signals they observe in stationary
demand environments is consistent with naive statis-
tics on a mental sample of recent outcomes. Moritz
et al. (2014) study the effect of individual differences
in cognitive reflection and decision speed also in time-
series forecasting environments. Feiler et al. (2013)
studied the effect of demand censoring on point fore-
casting behavior. Kremer et al. (2016) studied dif-
ferences between top-down and bottom-up forecast-
ing. Also, because the newsvendor decision-making
task can be decomposed into a demand forecasting
task and an order decision, some behavioral newsven-
dor research is related. Ren and Croson (2013) tested
the hypothesis that the pull-to-center effect may be
due to underestimation of the demand variance. Lee
and Siemsen (2017) also provided experimental evi-
dence that overconfidence plays a role in newsven-
dor decisions, focusing on whether decomposing the
newsvendor task into its subtasks can improve the
ultimate order. Much like these scholars, we desire
to bring more descriptive accuracy into operations
management. However, our article differs in that we
do not empirically document behavioral biases but
rather focus on formalizing psychological primitives
and demonstrating how these simple assumptions can
unify a variety of behavioral results.

3. A Model of Behavioral Forecasting
In this section, we first present a behavioral model of
the point forecast and error forecast for a single ran-
dom variable. Such a random variable corresponds,
for example, to the random demand in a newsvendor
model. Then, we extend the model to capture forecast-
ing for a stationary stochastic process, which corre-
sponds, for example, to the demand process in a base
stock model or the service process in a queuing model.

3.1. Naive Statistics on Mental Samples
To model forecasting behavior, we first model the
belief formation uponwhich forecasting judgments are
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made. To do so, we build from the psychology liter-
ature on the naive intuitive statistician (Fiedler and
Juslin 2006). Let Z be a random variable in the real
numbers with distribution function FZ , mean µ, and
variance σ2. A perfectly rational model assumes that
individuals know and perfectly base their decisions on
µ and σ2. By contrast, we begin by assuming that indi-
viduals must rely only on a small sample of discrete
random and independent outcomes from Z:

S(Z)� {Oi}i�1,...,n , Oi ∼ Z. (1)

This approach has three important behavioral features.
First, the individual forecasts by sampling: he or she
thinks in terms of distinct possible outcomes. This
assumption is consistent with empirical work in cogni-
tive psychology,which has shown that individuals tend
to think in terms of discrete counts and exemplars (e.g.,
Gigerenzer and Hoffrage 1995, Nosofsky and Palmeri
1997). It is also consistentwith the sampling approaches
in the anecdotal reasoning models in economics (e.g.,
Osborne and Rubenstein 1998, Spiegler 2006a).
Second, the number of outcomes considered by

the individual is finite or “small” (i.e., usually less
than seven). Again, such an assumption is consistent
with psychological theory: “Time pressure, structural
limitations of the cognitive system, or paucity of avail-
able data often force people tomake dowith but a sam-
ple, when they try to learn the characteristics of their
environment” (Kareev 2006, pg. 33). Working mem-
ory is cognition dedicated to the active processing of
thought, computation, and information. Research on
working memory capacity suggests that a mental sam-
ple is likely less than seven and, for complex processes,
can be expected to be between two and five (Kareev
2000), but we do not take a strong position on the exact
mental sample size we expect. We refer to the parame-
ter n as the mental sample size. It can generally be inter-
preted as the degree to which cognition is bounded,
with smaller sample sizes capturing more bounded
cognition. As n approaches infinity, the distribution of
the individual’s discretemental sample approaches the
true distribution.
Third, we assume the mental outcomes considered

are random draws from the true distribution Z. Thus,
the probability that a value will be considered by
the individual for any single mental draw is propor-
tional to its true likelihood of occurring. Although this
assumption is strong, it allows us to tractably capture
a reasonable and important feature: outcomes that are
more likely to occur are also more likely to be consid-
ered by the individual. It will also enable us to iso-
late the consequences of naive statistics on small sam-
ples without confounding them with biases as a result
of drawing from incorrect distributions or nonrandom
sampling.2 One situation in which this assumption

holds closely is when the individual has access to his-
torical data of many random realizations of Z and then
only recalls a subset of them (e.g., the most recent
n random outcomes). When historical realizations are
not available, such as is the case for judgments of novel
situations, the random sampling assumption may be
conceptualized as a simulation process in which the
individual leverages available predictive information
to simulate possible future outcomes.

Given only a small sample of random outcomes, one
could apply normative statistical methods to infer the
properties of the underlying distribution. By contrast,
we assume that individuals apply naive statistics and
operate as though properties of the mental sample are
equal to the properties of the true random variable.
Specifically, the individual naively believes the true
mean µ (a constant) is exactly

µb �
1
n

n∑
i�1

Oi , (2)

which is a random variable. Similarly, the individual
naively believes the true variance σ2 (a constant) is
exactly

σ2
b �

1
n

n∑
i�1
(µb −Oi)2 , (3)

which is a random variable. Here, the subscript b de-
notes the behavioral belief.

Applying naive statistics in the above manner can
be thought of as a belief in the representativeness of
small samples (Kahneman and Tversky 1972). The indi-
vidual in our model assumes the mean and variance
of her mental sample are equal to the mean and vari-
ance of the true distribution. Tversky and Kahneman
(1971) found that “people view a sample randomly
drawn from a population as highly representative, that
is, similar to the population in all essential character-
istics” (p. 105). Additional empirical examinations of
the psychology of sampling have led to similar con-
clusions. In studying subjective confidence intervals,
Juslin et al. (2007) concluded that “people tend to
assume that sample properties can be directly used
to estimate the corresponding population properties”
(p. 678). In a study of memories of variability, Kareev
(2006) concluded that “[p]eople tend to rely on sam-
ple data and do not correct for the biased values likely
to be observed in small samples” (p. 34). Similarly,
having reviewed a large body of psychological litera-
ture, Fiedler (2000) concluded that individuals suffer
from a “lack of metacognitive devices that would be
necessary . . . to correct sample statistics accordingly.”
He also argued that “given that even scientists [who
are] specialized in sampling issues fall prey to the
metacognitive weakness, everyday judgments should
be even more vulnerable” (p. 660).
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Naive statistics on small samples lead to two note-
worthy deviations from perfectly rational beliefs. First,
(µb , σ

2
b) are random variables because they are based

on the randomly drawnmental outcomes, but the indi-
vidual believes both to be equal to the true mean and
variance µ and σ2, which are constants. That is, he lacks
the metacognition to account for the fact that his sam-
ple mean and variance are not necessarily equal to the
truemean and variance. Put in sampling terms, he does
not account for the fact that his sample mean and sam-
ple variance have sampling error. Second, note that σ2

b
is the sample variance uncorrected for sample size. An
unbiased estimator of the variancewould be (1/(n−1)) ·∑n

i�1(µb − Oi)2. Consistent with this notion, psycholo-
gists have found evidence that individuals often fail to
account for the fact that small samples tend to under-
estimate the variance of the population. On the basis of
the results from five experiments, Kareev et al. (2002)
concluded that “the variance of the actually observed
samplewas a better predictor of people’s behavior than
sample variance corrected for sample size” (p. 296).
These twodeviations fromnormative statisticswill lead
to several predicted forecasting biases, as we will see in
subsequent analyses.

3.2. Point and Error Forecast Behavior
Now that we have modeled the individual’s beliefs
about random variables, we can use those beliefs to
characterize forecast behavior. We begin with the most
common type of forecast, the point forecast. Through-
out this paper we assume that the point forecast seeks
to minimize the expected mean squared error (MSE).
This criterion incentivizes one to guess the mean of
the random variable. Of course, one could use other
possible criteria, such as the mean absolute deviation.
However, operations decisions typically use the mean
of a random variable as a key input (see Sections 5.2
and 5.1), so it is natural to focus on MSE.
Under perfect rationality, the optimal point forecast

is simply the true mean,

x∗ � arg min
x

E[(x −Z)2]
� µ,

which is a constant. By contrast, the individual believes
the true mean is equal to the mean of her mental sam-
ple. Therefore, the behavioral point forecast is simply

Xb � arg min
x

1
n

n∑
i�1
(x −Oi)2

� µb ,

which is a random variable.

An attractive feature of formalizing behavioral fore-
casting with this sampling approach is that we can
fully characterize the distribution of Xb by leveraging
statistical theory. Below, we provide several examples.

Example 1. If Z is normally distributed with mean µ
and variance σ2, then Xb ∼Normal(µ, σ2/n).
Example 2. If Z is uniformly distributed on the inter-
val [α, β], then Xb ∼ Bates(n , α, β).
Example 3. If Z is exponentially distributed with
mean τ, then Xb ∼ Erlang(n , τ/n).
Example 4. If Z is Bernoulli distributed with success
probability p, then nXb ∼ Binomial(n , p).
Example 5. If Z is Poisson distributed with parame-
ter λ, then nXb ∼ Poisson(nλ).
Next, we derive the behavioral error forecast, a mea-

sure of one’s confidence in a point forecast. It is the
key qualifier to the point forecast that is necessary for
nearly any problem under uncertainty. Recall that the
perfectly rational point forecast x∗ is equal to the true
mean µ. Because the mean squared error of the true
mean is equal to the true variance, the perfectly rational
error forecast for x∗ is simply equal to the true variance,

ε2
∗ (x∗) � E[(x∗ −Z)2]

� σ2
+ (x∗ − µ)2

� σ2 ,

which is a constant. By contrast, the individual naively
believes the true mean is Xb � µb , so she expects the
error about Xb to be equal to what she believes is the
variance:

ε2
b(Xb) � σ2

b + (Xb − µb)2

� σ2
b ,

which is a random variable.
The behavioral error forecast tends to be more cum-

bersome to characterize analytically than the point
forecast. Still, it follows well-known distributions in
some cases, such as the example below.

Example 6. If Z is normally distributed, then ε2
b(Xb) ∼

Gamma((n − 1)/2, 2σ2/n).
Observe that, in general, the behavioral error forecast

is defined as a function of a point forecast and therefore
may be correlated with the behavioral point forecast
(e.g., see Section 4.7). Also, the error forecast can apply
to any point forecast, not only one’s own. For instance,
one can also evaluate other error forecasts such as the
behavioral error forecast of the optimal point forecast
(ε2

b(x∗)) or the optimal error forecast of the behavioral
point forecast (ε2

∗ (Xb)). We will leverage these quanti-
ties as points of comparison in Section 4.
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3.3. Extension to Stationary Stochastic Processes
In many operations models, uncertainty is captured
as a stochastic process rather than a single random
variable. Our model can be extended to forecasting
of stationary stochastic processes using the following
approach: the random draws in the mental sample
come from some natural time period, and individuals
naively assume that the mean and variance of the rate
in the mental sample are equal to the mean and vari-
ance of the true rate over any time period.
Formally, let Z � {Zt | t ∈ �} be a stationary stochas-

tic process with independent increments, where t is
the time period to be forecasted. For every Zt , we
denote its distribution function FZt

, mean µ(Zt), and
variance σ2(Zt). To generalize the sampling process, we
assume there is a certain time interval or reference period
length (denoted l) of the stochastic process from which
outcomes are typically recorded, experienced, and/or
observed by the individual. That is, the mental sam-
ples are drawn from Zl , and we haveS(Z)� {Oi}i�1,...,n ,
Oi ∼ Zl .
We apply naive statistics by assuming that the indi-

vidual naively believes the mean and variance of
the rates in the mental sample are representative of
the mean and variance of the true rate over any
time period. Let λb � (1/n)∑n

i�1 Oi/l be the individ-
ual’s perception about the mean rate, and let ν2

b �

(1/n)∑n
i�1(λb − Oi/l)2 be the individual’s perception

about the variance of the rate. Thus, the individual
believes that E[Zt/t] � (1/t)µ(Zt) is λb for all t. Simi-
larly, she believes that Var[Zt/t]� (1/t2)Var[Zt] is ν2

b for
all t. By solving both of these equations for Zt , we have
that the individual believes the mean of Zt is exactly

µb(Zt)� tλb (4)

and the variance of Zt is exactly

σ2
b(Zt)� t2ν2

b (5)

for any t. Note that when t � l, themodel reduces to the
single random variable case: µb(Zl)� l(1/n)∑n

i�1 Oi/l �
(1/n)∑n

i�1 Oi and σ2
b(Zl) � l2(1/n) · ∑n

i�1(λb −Oi/l)2 �

(1/n)∑n
i�1(µb(Zl) − Oi)2. Otherwise, the individual

extrapolates or interpolates from her mental sample
using her perception of the rate.
It may be helpful to consider the following exam-

ple. A company’s demand every day is an independent
and identically distributed (i.i.d.) random variable.
Employees always record and report sales outcomes by
the week. Therefore, Z is the daily demand process, and
the reference period length is l � 7 days. To form beliefs
about demand in a year (Z365), the individual thinks of
n outcomes of weekly demand (Z7). She then extrap-
olates to a year by assuming the mean and variance
of the demand rate in a year is the same as the mean
and variance of the demand rate in her mental sample.

If, instead, she were assessing demand in a week, she
would not need to make such an extrapolation because
her mental outcomes would already be in the appro-
priate time lengths.

Relative to the single random variable case, the sto-
chastic process case presents an additional deviation
from normative statistics: irrespective of the magni-
tude of t, the individual naively assumes that the
variance of the rate in her sample is representative.
Kahneman and Tversky (1972) presented experimental
evidence consistent with this notion. Participants were
told that the probability of success for a single ran-
dom draw was 50%. They then considered either 10,
100, or 1,000 draws with replacement and were asked
to report a likelihood distribution for different possible
proportions of successes (10%, 20%, etc.). Participants
generated nearly identical distributions for the propor-
tion of successes, irrespective of the number of draws.
Kahneman and Tversky (1972) referred to this as the
“universal sampling distribution,” and it is consistent
with the insensitivity to t in the model. This insensitiv-
ity to the time horizon leads to important biases, as we
will see in Sections 4.9 and 4.10.

Now that we have expressions for µb(Zt) and σ2
b(Zt),

the extension to point forecast behavior follows the
same structure as in the single random variable case.
The perfectly rational point forecast for the random
variable Zt is

x∗(Zt)� µ(Zt). (6)

By contrast, the behavioral point forecast for Zt is

Xb(Zt) � µb(Zt)
� tλb .

(7)

The normative error forecast for the normative point
forecast for Zt is

ε2
∗ (x∗(Zt))� σ2(Zt). (8)

By contrast, the individual believes the error of her own
behavioral point forecast for Zt is

ε2
b(Xb(Zt)) � σ2

b(Zt)
� t2ν2

b ,
(9)

where the second equality follows from (5).

4. Behavioral Phenomena Captured
by the Model

Recall that we define the perfect rationality model in
this context as one that assumes that decision makers
have a perfect understanding of the properties of the
random variables or stochastic processes that they face.
We now show that the behavioral model captures sev-
eral distinct behavioral phenomena that are not cap-
tured by such a model of perfect rationality.
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4.1. Wisdom of the Crowd
The behavioral model relaxes the perfectly rational
benchmark by capturing random forecasting behavior.
Thus, it captures the reality that even given the same
information, people may not always report identical
point forecasts equal to the optimal value.
A well-documented effect involving human forecast-

ing is the “wisdom of the crowd” (Surowiecki 2005).
This phenomenon states that the average of many peo-
ple’s point forecasts tends to be very accurate, more
accurate than most individuals’ point forecasts (e.g.,
Armstrong 2001, Clemen 1989, Einhorn et al. 1977,
Larrick and Soll 2006). Even though, given the same
information, people do not always report identical
point forecasts, the average of their point forecasts
tends to be quite accurate.

Our model captures this well-documented pheno-
menon in that although point forecasts are random, the
expected point forecast is optimal.

Proposition 1. The individual’s point forecast is equal to
the optimal forecast in expectation E[Xb]� x∗.

Of course, even for the optimal point forecast, the
forecast error is not zero because Z is still random.
However, in general, the expected point forecast will
outperform an individual with finite n in the long run.
What drives the wisdom of the crowd effect here is
the sampling mechanism: people make their forecasts
based on random pieces of relevant information such
that those people who rely on evidence for high val-
ues tend to be canceled out by others who randomly
rely on evidence for low values. Therefore, averaging
imperfect point forecasts both reduces variability and
generally improves accuracy.

4.2. Forecaster Dispersion Predicts True
Uncertainty and Average Confidence

Forecaster dispersion is the extent to which there is
variance or dispersion in point forecasts across indi-
viduals. Another key feature of the model’s sampling
formulation is that the degree of point forecast dis-
persion is endogenous: it depends on the parameters of
the model. By contrast, the perfect rational model does
not predict any relationships with point forecast dis-
persion because it does not predict any dispersion to
begin with.
Empirically, a strong relationship between forecaster

dispersion and true uncertainty has been documented
in demand forecasting in practice (Fisher and Raman
1996, 2010; Gaur et al. 2007). In a popular operations
management case study (Hammond et al. 1994), the
retailer Sport Obermeyer made demand point fore-
casts by averaging the point forecasts of seven internal
experts who all had access to the same information.
They then obtained a good predictor of their overall
point forecast error by multiplying the experts’ point

forecast dispersion by 1.75. In this manner, they con-
verted point forecast dispersion into a proxy of true
uncertainty.

A relationship between forecaster dispersion and
average forecaster confidence has also been docu-
mented empirically (Zarnowitz and Lambros 1987).
More dispersion across forecasts tends to correspond
with less confidence among those forecasters. The
importance of this relationship stems from the fact that
there are many situations in which only point forecast
data are accessible, but one would also like to estimate
what forecasters think about uncertainty.

Consistent with these empirical observations, our
model captures the following relationships between
forecaster dispersion, true uncertainty, and average
forecaster confidence.

Proposition 2. The individual’s point forecast has expected
dispersion Var[Xb] � σ2/n. The expected error forecast is
proportional to the expected dispersion, E[ε2

b(Xb)]� (n−1) ·
Var[Xb].

Thus, the larger the uncertainty in the environment,
the more dispersion we should expect in point fore-
casts, and vice versa. The second part of the proposi-
tion notes that because both error forecasts and point
forecast dispersion are functions of true uncertainty,
point forecast dispersion also predicts the average con-
fidence level of the population. Although these results
are straightforward, they are inconsistent with the per-
fectly rational model that captures no dispersion. They
are also intuitively appealing: we would expect some
dispersion and expect more dispersion across point
forecasts when there is more uncertainty. For exam-
ple, if Z is determined by the sum of two fair six-sided
dice, we would not necessarily expect all individuals
to make the perfectly rational point forecast of seven.
And we would expect more point forecast dispersion
(and forecasters to be less confident about their point
forecast accuracy in general) if the dice were 47-sided
as opposed to 6-sided.

Note that the model also predicts that the slope
of these relationships depends on the mental sample
size n. A given level of forecaster dispersion indicates
larger true uncertainty (and less average confidence)
when n is large compared with when n is small. In this
way, the model provides an interpretation of the con-
stant used at Sport Obermeyer, mentioned above. For
example, if forecasters are under more time pressure
(captured by a smaller n), it suggests that Sport Ober-
meyer should expect the constant to decrease below
1.75. On the other hand, as forecasters become more
sophisticated (a larger n), even small levels of disagree-
ment among the forecasters can indicate large true
demand uncertainties, and Sport Obermeyer should
multiply by a larger constant.
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4.3. Underweighting Rare Events
The model predicts endogeneity not only in the degree
of forecaster dispersion but also in the shape of dis-
persion. Because of the central limit theorem, Xb
approaches a normal distribution as n grows large.
However, in our model, n is small such that Xb may
deviate significantly fromnormality. In particular, indi-
viduals are unlikely to consider rare events when
thinking of their mental sample of possible outcomes.
Thus, most point forecasts trend toward the outcomes
that are most likely. Consequently, if Z is skewed, then
the distribution of point forecasts will also be skewed
in the same direction. We state it formally as follows.

Proposition 3. InequalityMode(Xb)< x∗ holds if and only
if Mode(Z) < x∗. If Z belongs to the Pearson family, then
Mode(Xb)<Median(Xb)< x∗ if Z is positively skewed, but
Mode(Xb) >Median(Xb) > x∗ if Z is negatively skewed.

In Proposition 2 we showed that the expected point
forecast is equal to the true mean. How can these
two propositions be reconciled? Although individu-
als are more likely to err away from rare events, those
that err toward rare events tend to do so much more
severely. Consider Z ∼ Bernoulli(0.01); there is a 1%
probability of a disaster, and the optimal point forecast
is x∗ � 0.01. By contrast, under our behavioral model
with n � 5, the point forecasts have the distribution
5Xb ∼ Binomial(5, 0.01). Consequently, the model pre-
dicts that approximately 95% of individuals will act
as though there is zero probability of a disaster. How-
ever, about 5% of individuals will act as though there
is about 0.2 probability. And about 0.1% of individuals
will act as though there is a 0.4 probability of a disaster.
In short, the model captures a phenomenon where the
majority of individuals underestimate the likelihood of
rare events, but a minority of individuals greatly over-
estimate it.
This pattern of behavior is consistent with empiri-

cal work in psychology on decisions from experience.
When sampling alternatives before making a risky
choice, individuals tend to make strong inferences
from their small samples of experience such that the
majority underweights rare events, but aminority over-
weights them (Hertwig et al. 2004, Rakow et al. 2008,
Hadar and Fox 2009). Hadar and Fox (2009, p. 324)
related their results to the following example:

Before taking a long trip a driver may seem to “under-
weight” and/or “underestimate” the possibility of a
tire blowout by failing to check tire wear and inflation
because the possibility of this outcome never occurs
to him. However, if the driver has experienced (per-
sonally or vicariously) a blowout or is reminded about
this possibility by a companion then he may “over-
weight” and/or “overestimate” this outcome, going to
great lengths to avoid a low-probability catastrophe
(blowout).

Returning to the wisdom of the crowd effect in Sec-
tion 4.1, this pattern of point forecast dispersion also
implies that one should not necessarily eliminate out-
liers when averaging point forecasts (Larrick and Soll
2006, Soll and Mannes 2011) because the large errors
of the minority may help offset the small errors of the
majority. If Z is positively (negatively) skewed, remov-
ing the point forecasts of the outliers will tend to bias
the resulting average downward (upward). In this way,
the model captures a distribution of perceptions of rare
events in a manner consistent with empirical findings
in psychology.

4.4. Optimizer’s Curse
The belief that the mean of one’s mental sample is
equal to the true mean of the random variable is espe-
cially problematic when optimizing over several ran-
dom variables. Imagine that a manager must choose
one product from a set of alternatives and then decide
how many units of that product to produce. He makes
a point forecast for each alternative’s demand, selects
the product associated with his highest point forecast,
and produces an amount equal to that point forecast.

Interestingly, this manager has likely just produced
toomany units. If each point forecast has random error,
then the largest point forecast tends to be larger than
its true mean value because of what is known as the
optimizer’s curse (Smith andWinkler 2006). In the pro-
cess of choosing the maximum point forecast, one is
more likely to choose a point forecast that had positive
error than one that had negative error. To account for
this problem, the maximal forecast should be adjusted
downward and more so when point forecasts have
more random error, and when the true means are close
together (Smith andWinkler 2006, Harrison andMarch
1984). However, Tong et al. (2016) demonstrate exper-
imentally that individuals generally fail to make such
an adjustment, resulting in an overestimation bias (see
also Kahneman and Tversky 1973 and Thaler 1988 for
similar work on regression-to-the-mean effects and the
winner’s curse).

Our behavioral model captures the optimizer’s curse
as follows. Because of naive statistics, individuals
incorrectly operate as though the mean of one’s mental
sample is identical to the mean of the random vari-
able, even though it has random error. If an individ-
ual assumes that his point forecasts for several random
variables are equal to their respectivemeans, then there
is no reason for him to believe that the forecast for the
random variable with the highest predicted outcome is
systematically biased.We state this formally as follows.

Proposition 4. Let Z1 ,Z2 , . . . ,Zk be k independent ran-
dom variables with true means µ1 , µ2 , . . . , µk . Let i∗ denote
the index associated with the individual’s maximal point
forecast Xb , i∗ � max{Xb , 1 ,Xb , 2 , . . . ,Xb , k}. Then, the indi-
vidual’s belief about µi∗ is biased high.
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It is important to observe that the above biased
belief about the chosen alternative is only for the same
individual that made the choice. From Proposition 1,
an individual is unbiased if he does not first choose
among a set. This combination of results suggests that
the optimizer’s curse may be reduced if the selection
task and forecasting task are given to two separate and
independent people.
The optimizer’s curse has important consequences in

numerous operations settings beyond product designs
and production decisions. For example, imagine that
a manager conducts process improvement by mak-
ing capacity forecasts under various designs and then
choosing the one that is forecasted to yield the great-
est improvement. The optimizer’s curse suggests that
she will overestimate the expected benefit of the cho-
sen design, potentially yielding an inflated willingness
to pay for it or affecting future budgetary and logistical
planning. Similarly, imagine that a customer decides
which product to purchase based on his quality fore-
casts for multiple products. The optimizer’s curse sug-
gests that he will be disappointed in the quality of
the purchased product, on average. We discuss further
applications in Section 5.

4.5. Jensen’s Inequality Neglect and the
Planning Fallacy

As previously noted, an important mechanism in the
behavioral model is that the forecaster naively believes
that her point forecast (which has random error) is
exactly equal to the true mean. In addition to neglect-
ing the optimizer’s curse, this naivety makes the
individual subject to what we call Jensen’s inequality
neglect. Because the individual treats Xb as the true
mean, he applies functions to it as one would to the
true mean. Mathematically speaking, he thinks that
g(Xb) � g(µ) for any function g. This belief is prob-
lematic because Xb is a random variable while µ is a
constant. Moreover, by Jensen’s inequality, we know
that E[g(Xb)] ≥ g(µ). The individual does not take
this inequality into account. Therefore, we have the
following.

Proposition 5. Let g( · ) be a convex function. The individ-
ual’s belief about g(µ) is biased high.

To our knowledge, no empirical work in psychol-
ogy or management has directly examined Jensen’s
inequality neglect. However, there is some evidence
that even trained statisticians fail to correct for Jensen’s
inequality when conducting estimations (Silva and
Tenreyro 2006), so it is reasonable to hypothesize that
customers and managers will also fail to do so.

An important example of a convex function that may
impact common decisions is the reciprocal.

Corollary 1. The individual’s belief about 1/µ is biased
high.

Suppose a manager is asked how many projects he
can complete in six years. If he bases his estimate on
how long he thinks it takes to complete each project on
average, the above corollary suggests that he tends to
overestimate how many projects he can complete. The
intuition is that misestimation gets magnified more
when the manager underestimates how long it takes
to complete a project than when he overestimates it.
For example, suppose that in actuality a project takes
one year on average so that, in expectation, he can
complete six projects in six years. If he overestimates
the average time needed to complete a project by six
months, then he will underestimate his six-year pro-
ductivity by two projects (6 years/(1.5 projects/year)�
4 projects). However, if he underestimates the average
time needed to complete a project by six months,
then he will overestimate his six-year productivity by
six projects (6 years/(0.5 projects/year) � 12 projects).
Therefore, he tends to overestimate his six-year pro-
ductivity overall.

Corollary 1 can be interpreted as a type of planning
fallacy. Traditionally, the planning fallacy refers to the
empirical observation that individuals tend to under-
estimate how long projects will take to complete (e.g.,
Buehler et al. 1994). Kahneman and Tversky (1979b)
suggested that the planning fallacy occurs because
people focus on how the components of a project can
be successfully coordinated and completed, underap-
preciating the combined impact of the many ways in
which a plan can go awry. The planning fallacy may
also emerge as a consequence of failing to unpack all
of the individual steps that are required to complete a
complex project (Kruger and Evans 2004). Our model
generates an alternative source of the planning fallacy:
neglecting errors in the forecasted cycle time—the time
needed to complete one unit of work—leads to overes-
timation of the work completion rate, even if cycle time
estimates are unbiased.

4.6. Overconfidence
Perhaps the most well-known empirical result related
to the error forecast is overconfidence in the accuracy
of one’s point forecast, sometimes more specifically
referred to as overprecision (Moore and Healy 2008).
Empirical evidence supporting such overconfidence
has typically employed the task of having individuals
provide two numbers such that they are 90% sure the
answer will lie between them. Surveying the overcon-
fidence literature, Jain et al. (2013, p. 1970) found that
self-reported 90% confidence intervals “are likely to
capture much less than 90% of the actual realizations,
often only 40% to 70% of the realizations.” There is a
clear tendency of individuals to provide overly narrow
confidence intervals.

Of course, the perfectly rational model predicts no
overconfidence; under perfect rationality, the point
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forecast equals the true mean and the error forecast is
equal to the true variance. By contrast, our behavioral
model generates such overconfidence. To see this, note
that, on average, the behavioral error forecast can be
expressed as

E[ε2
b(Xb)]� (n − 1)σ2/n.

It is smaller than the true variance by a factor (n − 1)/n.
Next, let ε2

∗ (Xb) denote the true expected error of the
behavioral point forecast. It can be evaluated as

E[ε2
∗ (Xb)] � E[(Xb −Z)2]

� σ2/n + σ2

�
n + 1

n
σ2

and is larger than the true variance by a factor
(n+1)/n. Combining these two observations yields the
following proposition.

Proposition 6. The individual underestimates the error of
his point forecast for the random variable Z by a fac-
tor of (n + 1)/(n − 1). That is, E[ε2

b(Xb)] � ((n − 1)/
(n + 1))E[ε2

∗ (Xb)].

The magnitude of the above underestimation can be
significant. If n � 3, the individual thinks his point fore-
cast errorwill be only 1/2 of its true expected value. Put
another way, he underestimates the root mean squared
error by a factor

√
0.5, which suggests that an indi-

vidual’s 90% confidence interval will capture the true
outcome only about 75% of the time.

The model captures two separate drivers of overcon-
fidence. First, the individual fails to account for his
own random point forecast error (recall that Var(Xb) �
σ2/n > 0) and instead naively assumes his own point
forecast is equal to the true mean.3 Second, he tends
to underestimate the variance of Z because small sam-
ples have lower variances than their populations (recall
that σ2

b � (n − 1)σ2/n < σ2). The manner in which our
model captures overoptimism in the accuracy of one’s
point forecast is similar to the work of Juslin et al.
(2007), which demonstrated that sampling and statisti-
cal naivete can lead to overly narrow confidence inter-
vals even in the absence of any more pernicious bias,
such as confirmatory information search.

4.7. Weak Confidence–Accuracy Correspondence
We have shown that the model captures overconfi-
dence: individuals tend to underestimate their own
point forecast error. However, are more confident indi-
viduals more accurate? From a managerial perspec-
tive, one would hope that individuals displaying more
confidence are in fact more accurate. However, empiri-
cal work in psychology has often found a surprisingly
weak correspondence between confidence and point

forecast accuracy (Henry 1993, Sniezek and Henry
1989, Tsai et al. 2008).

Interestingly, the behavioral model also captures a
surprisingly weak correlation between an individual’s
point forecast and error forecast. In fact, if Z is normally
distributed, the individual’s point and error forecasts
are independent. Consequently, the individual’s error
forecast and her true expected error are also indepen-
dent. We state this formally below.

Proposition 7. If Z is normally distributed, then ε2
b(Xb)

and Xb are independent. Moreover, ε2
b(Xb) and ε2

∗ (Xb) are
independent.

If Z is normally distributed, the model states that
a confident person is no more likely to be accurate
than an unconfident person. At first glance, this result
may appear surprising. After all, the error forecast
is defined as a function of the point forecast. Also,
one might expect that an individual who has a ter-
ribly erroneous point forecast should also have very
low confidence. However, the result is a consequence
of a statistical fact of normal distributions: the sam-
ple mean and sample variance of a normal distribution
are independent. By connecting this statistical fact with
forecasting behavior, the model provides a plausible
mechanism for the empirically observed weak corre-
spondence between confidence and accuracy.

There may, of course, exist other factors that make
point and error forecast accuracy positively correlated.
For example, a subset of individuals may face a ran-
dom variable with a smaller true uncertainty (i.e.,
smaller σ2), which would generate a positive correla-
tion between confidence and accuracy. Furthermore,
when Z is nonnormally distributed, the point and error
forecast are not independent; if Z is positively (nega-
tively) skewed, then Xb and ε2

b(Xb) are positively (neg-
atively) correlated.4 Proposition 7 does not preclude
these possibilities, but it does show why under cer-
tain conditions confidence and accuracy may not cor-
respond to the degree one might expect.

Finally, we note that the independence of the behav-
ioral point and error forecasts for normally dis-
tributed Z is very useful for analytical tractability.
Indeed, we will leverage it later in this section and in
Section 5.

4.8. Format Dependence and Egocentric
Assessment of Others’ Forecasts

Although the behavioral model predicts that individ-
uals will be overconfident in their own point forecast,
surprisingly, it predicts that overconfidence may be
eliminated when assessing an exogenous point forecast.

Proposition 8. Let Z be normally distributed and y be an
exogenous point forecast. The individual’s error forecast for y
is unbiased; E[ε2

b(y)]� ε2
∗ (y).
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The intuition is as follows. Although the individ-
ual underestimates σ2, such underestimation is per-
fectly canceled out by the added randomness in his
belief about µ, which he also ignores. By making the
point forecast exogenous, we have flipped one of the
drivers of overconfidence (incorrect beliefs about µ)
into a driver of underconfidence. This perfect cancella-
tion relies on the result from Proposition 7 that Xb � µb
and ε2

b(Xb) � σ2
b are independent when Z is normally

distributed. If Z is not normally distributed, then the
two effects may not perfectly cancel out, although over-
confidence should still generally be smaller for exoge-
nous versus endogenous point forecasts.
Overconfidence in the accuracy of one’s own forecast

but good confidence calibration for an exogenous point
forecast may seem like a strange pattern of results.
However, there exists empirical support for exactly this
pattern. As mentioned previously, when employing a
confidence interval generation task (e.g., “Set an upper
and lower bound such that there is an 90% chance
that the correct answer falls in that range”), experi-
ments have consistently revealed that individuals pro-
vide intervals that are too narrow (see Section 4.6).
However, when employing a probability estimation
task for exogenously provided intervals (e.g., “What is
the probability that the correct answer is between 1,700
and 1,800?”), experiments have found overconfidence
is greatly reduced (Gigerenzer et al. 1991, Hansson
et al. 2008, Klayman et al. 1999, Haran et al. 2010).
This phenomenon is referred to by psychologists as
format dependence because the likelihood of observing
overconfidence depends on the format of the question
(Juslin et al. 1999). Our model provides a sampling-
based explanation consistent with that proposed by
Juslin et al. (2007) but in the context of point and error
forecasting.
Finally, by comparing this result with the overcon-

fidence in one’s own point forecast (see Proposi-
tion 6), note that the model captures a systematically
higher confidence in one’s own forecasts than oth-
ers’ forecasts, evenwhen unwarranted. Such egocentric
evaluation of others’ point forecasts is consistent with
evidence of egocentric advice discounting (e.g., see
Yaniv and Kleinberger 2000), in which individuals do
not adjust their own forecasts sufficiently in response
to observing another person’s independent forecast.

4.9. The Gambler’s Fallacy and the Law of
Small Numbers

The next two phenomena concern individuals’ beliefs
about stochastic processes and therefore require our
extension to stationary stochastic processes.
A well-known behavioral forecasting bias for sto-

chastic processes is the gambler’s fallacy, which is the
tendency to believe that if an event occurred less fre-
quently than its theoretical probability in the past, it

will occur with higher probability in the future, even
if the process is truly random and memoryless. It
can also be described as a belief in local balancing
within random sequences. For example, people tend to
believe that a fair coin flip will be significantly more
likely to be tails after observing several heads in a row
than after observing several tails in a row (Rappoport
and Budescu 1992, 1997). The result is consistent with
the “law of small numbers,” which, generally speak-
ing, says that individuals exaggerate how likely it is
that a small number of random outcomes will have
the same characteristics as the true distribution from
which they were drawn (Tversky and Kahneman 1971,
Rabin 2002). If one believes that the true rate should
be achieved in any short time interval, one will expect
deviations in one direction to soon be canceled out by
deviations in the other (Rabin and Vayanos 2010).

The behavioral model captures a bias consistent with
the gambler’s fallacy and a belief in the law of small
numbers by way of an underestimation of point fore-
cast error in the short run. Recall that Zt is the random
variable of interest. When t is small (relative to l), the
behavioral model predicts that the individual is over-
confident in the accuracy of her point forecast. For-
mally, we have the following.

Proposition 9. Let Z be a stationary stochastic process with
independent increments. The individual underestimates her
point forecast error for t < ln/(n − 2). This bias is decreas-
ing in t.

The main driving force behind why the individual
underestimates her point forecast error for small t is
that she believes that highs and lows in the stochas-
tic process should average out with as much force
in small time t as it does in the reference period
length l. For example, imagine that amanager typically
observes monthly demand (l � 30 days) but must fore-
cast demand for the next 10 days. The model predicts
she expects the demand rate in 10 days to only vary
as much as the demand rate varies in a month, even
though the variance of the demand rate in 10 days is
likely to be much larger.

Notice that when t is equal to l, the individual is still
overconfident. The overconfidence in this case reduces
to the overconfidence in the single random variable
case, discussed in Section 4.6.

4.10. The Nonbelief in the Law of Large Numbers
The previous result concerns beliefs about stochas-
tic processes in the short run. What pattern emerges
regarding beliefs about stochastic processes in the
long run?

Past work has found evidence of a “nonbelief in
the law of large numbers” (Benjamin et al. 2016): peo-
ple have a tendency to falsely believe that the charac-
teristics of even very large random samples may still
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deviate from the population’s true characteristics. For
example, for 1,000 fair coin flips, what is the chance
that the number of heads will fall within the range
of 450 to 550? In Kahneman and Tversky (1972), par-
ticipants assigned a probability of 0.21 when answer-
ing this question, even though the true probability is
greater than 0.99.
The behavioral model captures a bias consistent with

a nonbelief in the law of large numbers by way of an
overestimation of point forecast error in the long run.
When t is large (relative to l), the individual is under-
confident in the accuracy of her point forecast. Specifi-
cally, we have the following.

Proposition 10. Let Z be a stationary stochastic process
with independent increments. The individual overestimates
her point forecast error for t > ln/(n − 2). This bias is
increasing in t.

The mechanism driving this result is similar to that
in Proposition 9: the individual does not believe that
highs and lows will average out any more than they
do in the reference time length, even for very large
time intervals. Of course, by the actual law of large
numbers, we know that the average observed rate will
indeed equal the true expected rate as t→∞. There-
fore, for large enough values of t, this false belief in
the representativeness of the rate in her mental sam-
ple is enough to overcome the overconfidence result
in Section 4.6, resulting in underconfidence. Therefore,
when forecasting for a sufficiently long time horizon,
our model predicts overestimation of the point fore-
cast error.

5. Illustrative Examples
We now provide two examples of how one can apply
the behavioral model of forecasting to OM settings—
the newsvendor model and a single-server queue
with balking model. We will show that the behav-
ioral forecasting model can be tractably imported to
derive the distribution of inventory order decisions
(assuming behavioral demand forecasting but rational
cost minimization) and the steady-state distribution
of customers in the queue (assuming behavioral wait
time forecasting but rational utility maximization). We
then discuss the direct implications of the previously
derived 10 behavioral phenomena for these settings. To
be clear, our purpose is not to derive optimal policies
nor performance implications, but rather to show that
the model opens the door to studies of this kind. Sim-
ilarly, our purpose is not to provide evidence for the
implications of the model in each setting, but rather
to show that the model can generate interesting and
testable predictions when applied to OM settings.

5.1. Demand Forecasting in the Newsvendor Model
5.1.1. Relaxing Perfect Rationality in Forecasting. The
newsvendor model is the fundamental building block
of stochastic inventory management. In it, a manager
must determine an inventory order size q in advance
of a random demand D. We will assume that D is nor-
mally distributed with distribution function FD , mean
µ, and variance σ2. For every unit the manager’s q falls
short of the realized demand, he incurs an underage
cost cu . For every unit he exceeds demand, he incurs
an overage cost co . Thus, his inventory cost is

C(q)� co[q −D]+ + cu[D − q]+ , (10)

where [x]+ � max{x , 0}. The optimal inventory level q∗

minimizes the expected inventory cost. It is straightfor-
ward to show that q∗ satisfies

FD(q∗)�
cu

cu + co
.

The right-hand side is called the “critical fractile.” The
left-hand side is called the “in-stock probability.”
Therefore, the optimal order quantity achieves a prob-
ability of being in stock equal to the critical fractile.

Let z∗ � Φ−1(cu/(cu + co)), where Φ−1 is the inverse
of the standard normal distribution function. It is well
known that for normally distributed D, the optimal
inventory level can be written as

q∗ � µ+ σz∗
� x∗ + ε∗(x∗)z∗ ,

(e.g., see Zipkin 2000). The first term of the optimal
inventory level is often referred to as the “cycle stock”
because one expects it to be used based on expected
demand. The second term is often referred to as the
“safety stock” because while one does not expect to
use it, demand is uncertain, and it hedges against the
asymmetric costs of underage and overage costs. Stan-
dard models assume that the individual’s decision is
based on a perfectly rational forecast—the individual
uses the true demand mean and variance in the for-
mula above to determine the order quantity.

By contrast, we can incorporate our model of behav-
ioral forecasting to relax the perfect rationality assump-
tion in the newsvendor model. Instead of basing the
order on the true demandmean and variance, the indi-
vidual bases it on her point forecast and error forecasts.
Therefore, the resulting inventory decision based on
the behavioral forecast is

Qb � Xb + εb(Xb)z∗ , (11)

which, in contrast with q∗, is a random variable. Be-
cause demand is normally distributed, from Exam-
ples 1 and 6, we know that Xb ∼ Normal(µ, σ2/n)
and ε2

b(Xb) ∼Gamma((n−1)/2, 2σ2/n). Moreover, from
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Proposition 7, we have that Xb and ε2
b(Xb) are inde-

pendent random variables. Therefore, Qb is a fully
defined random variable that we can express using the
convolution of the probability density functions of Xb
and ε(Xb).
5.1.2. Direct Implications of the Behavioral Phenom-
ena. Given that the newsvendor order decision serves
as a building block to many operations models, one
could leverage the behavioral forecastingmodel to con-
duct an in-depth study on a variety of topics using
the samemethods as with the perfectly rational model.
However, even without conducting additional analy-
ses (solving for optimal policies, determining contract
performances, etc.), we can generate implications for
inventory management by interpreting the 10 previ-
ously derived behavioral phenomena.
From overconfidence (see Section 4.6), the model

predicts that order quantities will be biased toward
the demand mean even under automated order-
ing decisions. This pattern is consistent with the
well-documented pull-to-center effect (Schweitzer and
Cachon 2000, Bolton and Katok 2008) and laboratory
evidence suggesting that the effect is at least in part
due to demand overconfidence (Ren and Croson 2013)
and the order-to-demand framing of the newsvendor
problem (Kremer et al. 2010).

Furthermore, recall that there were two compo-
nents driving the overconfidence bias according to our
model: an underestimation of the true variance and an
assumption that one’s point forecast is centered on the
true underlying mean. Therefore, Proposition 6 sug-
gests that in order to achieve an in-stock probability
level equal to the critical fractile, one must increase
individuals’ safety stocks by a factor

√
(n + 1)/(n − 1),

even though the average safety stock in Qb is only less
than the safety stock in q∗ by a factor

√
n/(n − 1). In

other words, increasing safety stocks to account for
behavioral underestimation of variance observed in the
laboratory is not enough—one must increase safety
stocks even further to account for behavioral naivety
with point forecast error.
Newsvendor orders in the laboratory exhibit random

error (Su 2008), which sometimes is even more costly
than the pull-to-center effect (Rudi and Drake 2014).
The model relaxes perfectly rational orders by captur-
ing random error generated by behavioral forecasting.
Specifically, the model predicts that we should expect
to see larger dispersion in order quantities for (1) prod-
ucts with high true demand variance, (2) products with
very high or very low profit margins (consistent with
Chen et al. 2013), and (3) people with larger pull-to-
center effects (consistent withMoritz et al. 2013). To see
this, note that endogenous dispersion (see Section 4.2)
implies that the dispersion of the cycle stock is increas-
ing in the variance of demand. The dispersion of the

safety stock is also increasing in the demand variance
(see Example 6). Because these dispersions are inde-
pendent (Proposition 4.7), we have point (1). Point (2)
follows from the fact that εb(Xb) is multiplied by z∗ in
the formula for Qb . And point (3) follows from the fact
that both overconfidence and dispersion are decreas-
ing in n.
However, based on format dependence (see Sec-

tion 4.8), if one person makes a point forecast and a
different person takes that point forecast as exogenous
to make an error forecast, the resulting error forecast
should be unbiased. Therefore, applying Proposition 8,
the model predicts that if we decomposed the order
decision such that the cycle stock was determined by
one person’s point forecast and the safety stock was
determined by another person’s error forecast of the
first person’s point forecast, the resulting order quan-
tity should achieve an in-stock probability closer to the
critical fractile.

Similarly, the model also predicts that it should be
advantageous to separate product selection decisions
from inventory decisions. The optimizer’s curse (see
Section 4.4) suggests that if a manager is placing an
order for a product because it is associated with his
highest forecasted demand among several products,
then his cycle stock decision will be biased high. How-
ever, by separating the product selection decision and
the inventory order decision, firms may be able to
reduce this bias.

Finally, Propositions 9 and 10 regarding the law
of small numbers and the nonbelief in the law of
large numbers (see Sections 4.9 and 4.10) suggest that
point forecast error is significantly underestimated for
short time intervals but significantly overestimated for
long time intervals. Substituting these results into the
expression for Qb , we see that the implications of these
findings for inventory decision making in base stock
models (or other inventory control models where lead-
time demand plays an important role) are that individ-
uals will have too little safety stock for short lead times
but too much safety stock for long lead times.

5.2. Wait-Time Forecasting in an
Observable Queue

5.2.1. Relaxing Perfect Rationality in Forecasting.
Consider the classic model setting of the single-server
queuewith balking, such as the one considered inNaor
(1969). Customers arrive to a server according to a Pois-
son process with rate λ customers per minute. Service
times are i.i.d. and exponential with expected time τ
minutes. A customer receives benefit r from completed
service, but waiting (both in line and while receiving
service) is costly at rate c. Customers are served on a
first-come, first-served basis. Customers are homoge-
neous with r ≥ cτ.

Upon arriving to the system and observing the num-
ber of customers in line, the customer forecasts the wait
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time based on the queue length. From this forecast, she
decides whether or not to join the queue. Let Wk+1 be
the true waiting plus service time for a customer who
arrives when there are k people in the system (both in
line and in service). A customer would like to join the
line if cWk+1 ≤ r (i.e., if the reward for joining is greater
than the cost of waiting). Of course, at the time hemust
decide whether or not to join, Wk+1 is uncertain, and he
must make a decision based on his point forecast.
Naor (1969) models all customers as making per-

fectly rational forecasts and maximizing expected net
rewards. Thus, the join or balk decision is determined
by the true expected wait time E[Wk+1]. Upon observ-
ing k customers in line ahead of him, a customer joins
the queue if and only if

c(k + 1)τ ≤ r. (12)

The resulting joining process is Poisson with rate λ
if k + 1 ≤ r/(τc) and zero otherwise. The steady-state
queuing behavior is equivalent to a finite-capacity
queue model with a capacity of k̄ � br/(cτ)c. That is, it
is an M/M/1/k̄ system. The steady-state probabilities
are well known (see, for example, Kulkarni 2009):

Pk �
1− ρ

1− ρ k̄+1
ρk , k � 0, 1, . . . , k̄ ,

where ρ � λτ.
Our behavioral model enables us to relax Naor’s

model (Naor 1969) to capture behavioral aspects of
forecasting by capturing join or balk decisions that are
based on individuals’ behavioral point forecasts, which
are not always equal to the true expected wait time.
Let Xb(Wk+1) be the behavioral point forecast for Wk+1.
Then, upon observing k individuals in the queue, a
customer joins the queue if and only if

cXb(Wk+1) ≤ r.

Because each service time is exponential with mean τ,
we know that Wk+1 ∼ Erlang(k + 1, τ). By contrast,
by applying the behavioral forecasting model in Sec-
tion 3.3, it is straightforward to show that Xb(Wk+1) ∼
(k + 1)τb , where τb ∼ Erlang(nl , τ/(nl)) with the dis-
tribution function denoted by Fτb

( · ). Here, τb denotes
the individual’s belief about the average time per cus-
tomer, and l denotes the reference number of cus-
tomers. The individual will join the queue if

c(k + 1)τb ≤ r, (13)

which occurs with probability Fb(r/(c(k + 1))). Thus,
the joining process when there are k customers in line
is Poisson with rate

λk � λFτb

(
r

c(k + 1)

)
,

and the resulting steady-state probabilities can be
shown to be

Pk � AkP0 , k ≥ 1,

P0 �
1∑∞

i�0 Ai
,

where

Ak �
λ
τ

Fτb

(
r

c(k + 1)

)
Ak−1 ,

A0 � 1.

Thus, the behavioral model of forecasting can tractably
be imported to express the steady-state behavior of the
queue.

5.2.2. Direct Implications of the Behavioral Phenom-
ena. Again, one could apply thismodel to queuing sys-
tems and conduct in-depth analyses to try to address
various questions. For example, the model can be
inserted in Cui and Veeraraghavan (2016), which takes
arbitrary service rate belief distributions to study con-
gestion and revenues. However, even without doing
so, we can generate implications for queuing theory by
interpreting the behavioral phenomena derived earlier.

In contrast with the perfectly rational model, the
present model captures dispersion in arriving cus-
tomers’ wait-time expectations. In particular, from Sec-
tion 4.2 and (7), it predicts that wait-time forecasts are
more disperse when the lines are longer.

Furthermore, because service times are exponential,
the model predicts that most people underestimate
their wait time and a few people will greatly overesti-
mate their wait time (see Subsection 4.3). Thus, when
the true expected cost of waiting equals the reward
(i.e., when (12) holds at equality), individuals are more
likely to join than balk in the behavioral model (i.e.,
the probability that (13) holds is greater than 0.5; see
Proposition 3).

The implication from the optimizer’s curse (see Sec-
tion 4.4) is that, on average, customers will be dis-
appointed in their wait-time experiences. Individuals
choose the maximum of the net reward from join-
ing and zero (from not joining). Therefore, the true
expected wait time among those individuals who
choose to join tends to be longer than their respective
point forecasts (see Proposition 4). This gap between
expectations and experience is important because a
wealth of behavioral research shows that the outcome
relative to the expectation is a fundamental determi-
nant of (dis)satisfaction.

One prediction from Jensen’s inequality neglect (see
Section 4.5) is that customers overestimate how many
positions they should expect to move forward in a
given time interval. This result follows from Corol-
lary 1: calculating how much progress one expects to
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make in a given time interval requires taking the recip-
rocal of the forecasted wait time per customer, and
the reciprocal is a convex function. Therefore, an indi-
vidual may choose to renege because of slower-than-
expected progress within the queue.
Finally, the predicted law of small numbers and the

nonbelief in the law of large numbers (see Sections 4.9
and 4.10) imply that individuals underestimate the
uncertainty of the wait times for short lines but over-
estimate the uncertainty of wait times for long lines.
This pattern suggests that, all else equal, customers
may appear to prefer shorter lines even if there is no
difference in actual wait time.

6. Conclusion
Accounting for behavioral elements of forecasting is
important for more accurately modeling decision-
making behavior in operations and management sci-
ence. In this paper we presented a behavioral model
of forecasting based on the psychological process of
mental sampling and naive statistics. It captures many
forecasting-related behavioral phenomena and can be
directly imported into formal models that typically
assume individuals have perfect understanding of ran-
dom variables and stochastic processes. Our model can
serve as a building block such that a rich set of fore-
casting behavior can be accounted for with a single
parameter within more complex models. It may also be
useful for empiricists because it is grounded in credible
psychology and may help explain observed anomalies
or be a source for new testable hypotheses. We have
illustrated some of these opportunities for inventory
management and queuing applications.

Researchers who are interested in achieving greater
descriptive accuracy can further develop this model.
For instance, rather than assuming inferences from
small samples are purely naive, one could parame-
terize the extent to which an individual applies sta-
tistical corrections to infer the properties of the true
uncertainty. Additionally, our model assumes that the
mean and variance of a sample is computed without
error, but one could add random error in these calcu-
lations. Furthermore, one could relax the assumption
that the possible outcomes considered by the individ-
ual are random draws from the true uncertainty distri-
bution (see Section 3.1). Such complexities reduce the
parsimony of the model; however, achieving greater
descriptive accuracy through additional parameteriza-
tion may build a stronger linkage to the psychology
literature on judgment and decision making and gen-
erate new insights and hypotheses.

We make no strong claims about how to increase
mental samples or reduce statistical naivete. How-
ever, at a high level, the model suggests that a focus
on the consideration of more possible outcomes can

improve forecasting. Some strategies observed in man-
agement practice are seemingly consistent with an
attempt to increase one’smental sample size. For exam-
ple, BlackRock, the world’s largest asset management
firm, encourages its employees to consider 20 possi-
ble outcome scenarios before forming an opinion about
how a given alternative affects their risk management
strategy. Additionally, the model suggests that if a
debiasing strategy works for one forecasting bias, there
is reason to believe that it will also work for the others,
because they can be the product of the same underly-
ing process. Finally, the model may be useful from a
system design standpoint. Rather than attempting to
improve the judgment of individuals, systemdesigners
can use the model to intelligently structure the envi-
ronment in anticipation of behavioral deviations from
optimal forecasting.

The illustrative OM examples we provided raise
other important and unanswered research questions
that can be fully developed. Researchers in other disci-
plines in management science and economics may also
be able to use ourmodel to relax assumptions of perfect
rationality in belief formation within other contexts.
Our hope is that this work serves as a useful building
block for future analytical and empirical research both
in operations and more broadly.

Acknowledgments
The authors thank the following people for their valuable
conversations and feedback: Greg DeCroix, Justin Sydnor,
Steve Leider, Laurens Debo, Xuanming Su, Andy King,
Connie Helfat, and Nagesh Gavirneni. Additionally, the
authors are grateful for the helpful comments and ques-
tions from the seminar participants at Duke, the University
of Texas at Dallas, and Tuck, and the conference partici-
pants at the 2015 Behavioral Operations Conference. Finally,
the authors thank the department editor and the anony-
mous associate editor and reviewers for their constructive
feedback.

Appendix
Proof of Propositions 1 and 2. The proof follows directly
from the definitions of Xb , x∗, and ε2

b(Xb). �
Proof of Proposition 3. The first part follows from the ran-
dom sampling assumption. The second part follows from the
fact that Mode(Z) <Median(Z) < µ holds if Z belongs to the
Pearson family (see Groeneveld and Meeden 1977). �

Proof of Proposition 4. The proof follows very closely that
of Proposition 1 in Smith and Winkler (2006). Observe that
the true mean values µ1 , µ2 , . . . , µk are fixed, but the point
forecasts Xb , 1 ,Xb , 2 , . . . ,Xb , k , which are what the individual
believes to be the true mean values, are uncertain. Let j∗

denote the random variable with the maximum true mean
µ j∗ � maxµ1 , µ2 , . . . , µk . Thus, j∗ is fixed, but i∗ is a random
variable that depends on the outcomes of the point forecasts.
From the definitions of i∗ and j∗, we have

µi∗ −Xb , i∗ ≤ µ j∗ −Xb , i∗ ≤ µ j∗ −Xb , j∗ .
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Taking expectation over the uncertainty regarding the point
forecasts, we have E[µi∗ − Xb , i∗ ] ≤ E[µ j∗ − Xb , j∗ ]. The right-
hand side equals zero because j∗ is independent of the
point forecasts and E[Xb , j] � µ j for all j. Thus, E[µi∗ − Xb , i∗ ]
≤ 0. The left-hand side is not necessarily zero because i∗ is
a random variable that depends on the point forecasts of
each Z. If there is a chance that i∗ does not equal j∗, then the
inequality is strict. Because the individual believes that Xb , i∗

is the true mean, we have the result. �

Proof of Proposition 5. By Jensen’s inequality, we have
g(E(Xb)) ≤ E[g(Xb)]. Substituting E[Xb]�µ, we obtain g(µ)<
E[g(Xb)]. The right-hand side is the expected value of the
individual’s belief about g(µ). �

Proof of Proposition 6. The proof follows from the expres-
sions for ε2

b(Xb) and ε2
∗ (Xb). �

Proof of Proposition 7. The proof follows the same proof
that the sample mean and the sample variance are indepen-
dent for a normal population (e.g., Casella and Berger 2002,
p. 218), with some minor adjustments to correct for the fact
that the individual’s belief about the variance is the sample
variance uncorrected for the sample size. �

Proof of Proposition 8. The actual error of y is given by
E[(y−Z)2]�E[y2−2yZ+Z2]� y2−2yµ+E[Z2]� y2−2yµ+
σ2 + µ2 � σ2 + (y − µ)2. The individual expects the error to be

E[ε2
b(y)] � E[σ2

b + (y − µb)2]

�
n − 1

n
σ2

+ y2 − 2yµ+E[µ2
b]

�
n − 1

n
σ2

+ y2 − 2yµ+Var[µb]+ µ2

�
n − 1

n
σ2

+ y2 − 2yµ+
σ2

n
+ µ2

� σ2
+ (y − µ)2 , �

Proof of Proposition 9. The individual expects his forecast
error to be

ε2
b(Xb(Zt))�

t2

l2 σ
2
b(Zl),

which has expected value (t2/l)((n − 1)/n)σ2(Z1). His actual
error is

E[ε2
∗ (Xb(Zt))] �

t2

l2n
σ2(Zl)+ σ2(Zt)

�
t2

ln
σ2(Z1)+ tσ2(Z1)

�
t + ln

ln
tσ2(Z1).

The individual underestimates her own point forecast error if
E[ε2

b(Xb(Zt))] < E[ε2
∗ (Xb(Zt))]. Substituting the values above,

this inequality is equivalent to

t2

l
n − 1

n
σ2(Z1) < t + ln

ln
tσ2(Z1),

t(n − 1) < t + ln ,

t < l
n

n − 2 .

To see that the bias is decreasing in t, we take the derivative
of the quotient:

∂
∂t

(
E[ε2

b(Xb(Zt))]
E[ε2

∗ (Xb(Zt))]

)
�
∂
∂t

(
(t2/l)((n − 1)/n)σ2(Z1)
((t + ln)/(ln))tσ2(Z1)

)
�
∂
∂t

(
t(n − 1)
t + ln

)
�
(n − 1)(t + ln) − t(n − 1)

(t + ln)2

�
ln(n − 1)
(t + ln)2 > 0,

so the individual underestimates error further (the numer-
ator is smaller) for smaller values of t. That is, one should
expect to find overconfidence when the time horizon being
forecasted is similar to, or shorter than, the reference time
unit, l. Note that for t � l, the result reduces to the single
random variable case, and the individual underestimates the
error by a factor (n − 1)/(n + 1) (see Proposition 6). �

Proof of Proposition 10. Similar to the proof of Proposi-
tion 9. �

Endnotes
1Consistent with this aspect, leading psychologists have called for
psychological theories that “serve an integrative function by explain-
ing multiple phenomena, providing an organizing principle for a
field criticized for being long on effects and short on unifying expla-
nations” (Weber and Johnson 2009, p. 56).
2For example, the “availability heuristic” (Tversky and Kahneman
1973) suggests that mental samples are not random because some
outcomes are systematically harder to imagine. Similarly, there is
also a stream of literature that investigates how nonrandom sam-
ples emerge in the environment and from individuals’ decision mak-
ing (e.g., March 1996, Denrell 2005, Feiler et al. 2013, Feiler and
Kleinbaum 2015).
3While random error is not the most commonly cited explanation
for overconfidence, some psychologists have stressed its potential
importance (e.g., Soll 1996, Soll and Klayman 2004).
4Recall our comment that when leveraging thewisdom of the crowd,
one should not necessarily discard point forecasts that seem like
outliers. Here, we find a reason why it may be difficult to follow this
advice: when Z is skewed, individuals with extreme point forecasts
also tend to report lower confidence, making their advice tempting
to ignore.
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