Rewiring the organizational network: Corporate offsites and network tie formation

Madeline K. Kneeland | Adam M. Kleinbaum

1Babson College, Wellesley, Massachusetts, USA
2Tuck School of Business, Dartmouth College, Hanover, New Hampshire, USA

Abstract

Research Summary: Social networks are integral to collaborative work, but research on network change has shed little light on the mechanisms firms use to stimulate collaborative network ties among their employees. In this study, we examine the effects of corporate offsites on the evolution of social networks within an organization. We find that offsites lead to rewiring of intraorganizational networks, but with a surprising asymmetry: they stimulate everyone to initiate more collaboration ties, but only those who attend the offsite receive more ties. These results are consistent with a conceptualization of offsites as direct interventions that focus on social interactions for those who attend, but also as indirect interventions that signal the value of collaboration to everyone, even those who do not attend.

Managerial Summary: Corporate offsites are events that convene people from across a firm to interact outside their regular work environment. Despite their popularity, this article offers the first data-driven analysis of their effectiveness in promoting collaboration among employees. Offsites facilitate employees’ awareness of who knows what, build trust, and foster interpersonal affect among employees. This study shows that offsites have a dual effect on the social network of an organization: they prompt everyone in the firm to initiate more...
collaborative ties following an offsite, but those who actually attend the offsite attract more of those collaborative tie requests. Therefore, offsites can be a useful tool to boost collaboration—with benefits accruing both to the individuals whose networks grow and to the firm in which they work.

KEYWORDS

collaboration, network evolution, organization design, social networks, tie formation

INTRODUCTION

The implementation of collaborative business strategies depends fundamentally on the structure of informal social networks in organizations. Especially in knowledge-intensive industries, no individual has all the knowledge required to get the work done; instead, working successfully requires tapping into disparate resources of knowledge and expertise from across the organization. And, due to the inherent incompleteness of formal organizational structure (Galbraith, 1977; Galbraith & Nathanson, 1978), a primary conduit for such decentralized information sharing is the informal network of personal and professional relationships between employees and their colleagues (Burt, 2005; Kilduff & Tsai, 2003).

Given the importance of social networks for collaborative work, research over the last few decades has documented that advantageous networks yield career advantages for individuals. People with broad networks are better equipped to tap into diverse resources because the disconnected others in their networks, by virtue of their disconnection, inhabit different thought worlds and therefore provide access to diverse informational resources (Dougherty, 1992). Network brokers, those who connect disconnected others, tend, as a result of their privileged access to the informal resources of the organization, to be assessed as more creative, to be evaluated more favorably, to get paid more, and to be promoted faster (Aral & Van Alstyne, 2011; Brass, 1984; Burt, 1992, 2004, 2005).

And since the benefits of intrafirm networks accrue not only to the individuals who reside in them, but also to the organization that comprises them (Krackhardt & Hanson, 1993), we ask: what happens when firms act to shape the networks of their members? In this paper, we bring the first empirical evidence of which we are aware to bear on the question of whether and how temporary co-location affects the collaboration network of an organization. We argue that such temporary co-location leads to in-person interactions that are valuable for job-related networking and information sharing because they promote three interpersonal foundations of collaboration: awareness of who knows what, trust, and interpersonal affect.

Our empirical setting, 8 years of a large corporate law firm’s annual offsite meetings, occurring from 2005 to 2012, also allows us to extend our theoretical understanding of how offsites stimulate network evolution by examining the role of individual agency in the formation of new network ties following corporate offsites. We analyze the changes in working relationships through the complete records of billable hours of all partners in this law firm, allowing us to observe the formation of collaboration ties in actual client work. In this context, we are able to
unpack the directionality of the ties that are formed—that is, who initiates and who receives new collaborative work ties—to understand more precisely the impact of offsites on intraorganizational collaboration networks.

Results indicate that offsites do stimulate network activity within the firm, but also reveal surprising asymmetries in the ways in which offsites facilitate tie formation and tie reception for attendees and non-attendees. Consistent with the conventional wisdom, we find that those who attend the offsite do, in fact, initiate moderately more new collaborations following the offsite compared to before. However, surprisingly, and counter to our hypothesis, we find that people who did not attend the offsite also increased their collaborative initiation. That is, the existence of the offsite seems to prompt agentic network change across the firm, even among those who did not attend, because the very existence of the offsite reinforces that the firm values collaboration and encourages collaborative outreach. But beyond this signal, offsites provide a locus for networking activity (Feld, 1981), a formal structural context that shapes the bottom-up emergence of networks (Clement & Puranam, 2018). On the other hand, we find that incoming collaboration requests only increase for those who actually attend offsites. That is, those who miss an offsite can themselves engage in collaborative behaviors to change their own network, perhaps compensating for their offsite absence, but they cannot induce others to seek out collaboration with them. Simply put, the agency to shape one’s network has its limits.

2 | THEORY

Social networks are integral to the implementation of strategies that rely on collaborative work. Research in strategy implementation and organization design has long acknowledged that formal organizational structure is inherently incomplete (Galbraith, 1977; Galbraith & Nathanson, 1978). To fill the coordination gaps that emerge in every firm, informal networks of social and professional relations emerge, linking employees together. Early evidence suggests that the increase in remote and hybrid work since the COVID-19 pandemic will further accentuate not only the importance (Choudhury et al., 2024), but also the challenges (Yang et al., 2022) of collaborating through social networks.

And, if performance in collaborative work depends on social networks, it should come as no surprise that people with well-structured networks perform better. Research since Burt (1992) has concluded that brokers—people whose social networks put them at the nexus of otherwise disconnected people and groups and, thereby, enable them to integrate disparate information and other resources—are more creative (Burt, 2004) and are evaluated more favorably (Burt, 2005). Evidence consistent with this “stylized fact” comes from the media (Brass, 1984), financial services (Burt, 1992; Mizruchi & Stearns, 2001), technology (Mehra et al., 2001), and creative (Uzzi & Spiro, 2005) industries, and from cross-industry studies of corporate R&D scientists (Gabbay & Zuckerman, 1998), to cite a few of many studies. And, by integrating knowledge from the disparate corners of the organization, brokers are vital to the successful implementation of collaborative strategies (Krackhardt & Hanson, 1993).

Conceptual and theoretical work dating back to Feld (1981), who, in turn, drew on Simmel (1902), suggests that shared membership in formally organized arrangements—which Feld termed social foci—leads to the generation of new network ties. Consistent with this early theorizing, agent-based models by Centola (2015) and by Clement and Puranam (2018) lay out clear expectations that shared social foci should induce the formation of new ties. However, there is surprisingly little corroborating evidence. In one study that provides some evidence consistent
with the idea that organizational foci induce tie formation, Kleinbaum and Stuart (2014) argue that a job in the corporate center exerts a causal effect on one's network, making it larger, sparser, and more integrative, due to the task requirements of interacting across business units.

However, we know of virtually no empirical research that has examined how established firms can strategically stimulate the creation of new social ties among employees for the purpose of achieving its professional goals. Instead, most research into the antecedents of network structure has focused on the role of endogenous network processes (Heider, 1958; Kossinets & Watts, 2009; Kovacs & Kleinbaum, 2020; Zaheer & Soda, 2009), organizational factors (Kleinbaum, 2012; Kleinbaum et al., 2013; Kleinbaum & Stuart, 2014; Mayer & Puller, 2008; Yakubovich & Burg, 2019), individual differences (Feiler & Kleinbaum, 2015; Mehra et al., 2001; Parkinson et al., 2018; Sasovova et al., 2010) and interactions thereof (Kleinbaum, 2018) that bring about differences in networks. We find this gap in the literature to be surprising because scholars of organization design increasingly view the structure of the informal organization as a design element to be proactively managed in the implementation of strategy (Galbraith, 1977; Galbraith & Nathanson, 1978; Puranam, 2018). Furthermore, we observe a wide range of firms grappling with the question of the organizational investment of bringing geographically dispersed workers together as the balance of in-person, remote, and hybrid work continues to evolve.

2.1 The corporate offsite as an organizationally sanctioned locus for networking

To fill this gap, we study corporate offsites, a widespread, firm-sanctioned locus for intraorganizational networking by an organization’s members. Offsites have become ubiquitous across many—and especially across knowledge-intensive—industries (Events Industry Council, 2018). Firms anticipate that offsites will generate a range of benefits for the organization as a result of bringing together their geographically disparate employees, who can use offsites both to refresh or solidify existing relationships and to form new collaborations (Lobell, 2022). Rewiring even a small number of ties in a collaboration network can generate short paths between previously distant individuals (Watts & Strogatz, 1998), which can improve creative and financial performance (Uzzi & Spiro, 2005). Offsites are one way to facilitate such interactions, and these opportunities can increase collaboration, generate more or higher quality ideas, and boost morale (Campos et al., 2018; Chai & Freeman, 2019). Because of these expected benefits, firms spend lavishly on offsites (Events Industry Council, 2018). We anticipate that as employees spend more time working remotely, the demand for in-person interaction—whether on-site or off-site—will only increase.

It is widely assumed that offsites facilitate connections that will translate into formal, productive working relationships and, thereby, contribute to organizational performance (BBW, 2022; Forbes, 2020). But, there is little empirical evidence to substantiate whether these goals are met. Some evidence suggests that at “mixers,” social obligations compel us to interact with those whom we already know as much as with potential new ties (Ingram &

1Recent research suggests that academic conferences (Campos et al., 2018; Chai & Freeman, 2019) facilitate new collaboration. While both corporate offsites and academic conferences bring geographically dispersed individuals together, conferences differ substantially from offsites, which are comprised of individuals from a single organization, sharing a common organizational identity and alignment in their performance incentives.
Morris, 2007). Furthermore, within an organization, other easily accessible channels, such as word of mouth and internal directories, exist to reduce the search costs of locating expertise across the firm. Despite these countervailing forces, our baseline expectation is that attending offsites will create opportunities to expand one’s intra-organizational network, relative to those who do not attend.

Networking opportunities, such as offsites, are implicitly framed as organizationally sanctioned opportunities to proactively change one’s network. However, network change is a product not only of an individual’s own behavior, but also of the behavior of those within her network and potential network (Kleinbaum et al., 2015). As such, networking opportunities both give individuals a chance to modify their own networks and to showcase their talents in the collaborative marketplace, inviting ties from others. We therefore believe it is important to understand how offsites influence these two processes in potentially different ways in the co-creation of the network.

2.2 Attending offsites facilitates three interpersonal foundations of collaboration

Because they bring people together for informal, face-to-face interaction, offsites are a useful means for those who attend to establish three interpersonal foundations of collaboration: awareness of potential collaborators, trust, and interpersonal affect.

First, face-to-face interaction at offsites facilitates the bidirectional awareness of who knows what, a precondition for task collaboration. That is, offsites help to build the transactive memory system of an organization. Research on transactive memory systems has found that informal interaction gives people opportunities to learn more about the work of others and, thereby, to develop a cognitive map of who knows what in their organization (Argote & Ingram, 2000) and is more productive when it occurs in person (Lewis, 2004; Tang et al., 2015). More generally, there is a long history of research—both prior (Allen, 1977) and subsequent (Mok et al., 2010) to the advent of the internet—indicating that communication is heavily conditioned by physical proximity, so to the extent that co-location enables the communication that fosters awareness of who knows what in an organization, offsites should be valuable. Indeed, a recent study found that temporary co-location of the sort that occurs at offsites is a valuable source of mutual awareness that gives rise to collaboration (Chai & Freeman, 2019).

One partner at the firm we studied described how the rich interactions that occur at offsites promote awareness of what others do as a basis for future collaboration: “We have cross-disciplinary meetings, get to know folks, and get attuned and sensitized to what they do besides what’s on the door plate. You make the mental note ‘Oh, he does real estate, but he really likes the finance part of real estate’.” In reflecting about the genesis of his collaborative practice, another partner noted, “A lot of it, I think, boils down to being really good at understanding what other people do, which is difficult in a few different ways. You’ve got to meet the person, you’ve got to ask the right questions and learn about it and understand enough about their practice to really see how that fits in with what you do.”

Second, offsites also create opportunities for potential collaborators to build trust, a critical pre-condition for collaboration and knowledge sharing, particularly in virtual work (Golden & Raghuram, 2010). Trust refers to an individual’s willingness to make herself vulnerable to another (Schilke et al., 2021). Scholars have distinguished between dimensions of trust that result from different sources of interpersonal vulnerability, such as trust in another’s
competence (i.e., will she be able to perform the task required?) or motives (i.e., can I rely on him to act in my best interest?; McEvily et al., 2021; Twyman et al., 2008). Trust in both competence and motives can be explored through network referrals from shared colleagues (Coleman, 1988; McEvily et al., 2021), but only to a limited degree. As one of our informants noted: “One way you get comfortable is that you’ve met them. ... You’ve shot the breeze with them ... and gotten to know them a little bit. So, one way [to build trust] is that you’ve met them in these in-person meetings.”

Third, offsite meetings are valuable for fostering interpersonal affect. Beyond knowing someone’s expertise and trusting in their motives and competence, research shows that interpersonal liking is an important antecedent condition to collaboration. Negative interpersonal affect effectively kills collaboration and positive affect significantly increases the likelihood that two people will collaborate (Casciaro & Lobo, 2008). Furthermore, meaningful social interaction happens more readily in person than it does through electronic or other remote interaction (Choudhury et al., 2024; Wilson et al., 2006). Anecdotally, one of our informants asserted that one benefit of attending offsite meetings is in establishing the affective foundation of collaboration: “If you don’t get along with somebody, that’s no good. They could be the expert in the world and if you don’t like them, if you don’t want to work with them, that’s not a good place to be.”

Our argument is not that collaboration can only occur face-to-face; on the contrary, the shift to remote and hybrid work imposed by the global COVID-19 pandemic showed that remote collaboration is possible, albeit not without challenges (e.g., Yang et al., 2022). But, establishing new collaborative ties is different from maintaining ongoing collaborative ties (Kovács & Kleinbaum, 2024), and face-to-face interaction at offsites provides opportunities to establish these three critical foundations for collaboration: awareness of who knows what, trust in others’ motives and competence, and positive interpersonal affect.

2.3 New ties initiated

Since offsite meetings facilitate the foundations of collaborative ties, we expect that attendance at an offsite will lead people to initiate more new network ties. Prior research establishes that networking results from the confluence of opportunity and choice (McPherson & Smith-Lovin, 1987). Although research has examined the role of some opportunity structures in tie formation—such as propinquity (Allen, 1977; Catalini, 2018; Wineman et al., 2014)—we know far less about the ways in which firms systematically create temporally situated opportunities for the formation of intra-organizational ties. Here, we examine offsites as deliberate shocks to the opportunity structure for new collaborative tie formation.

For several reasons, we expect that offsites will affect the rate at which individuals initiate new ties. In knowledge-intensive industries, expertise is distributed across the firm, and the value of the firm’s output resides in the collective expertise network of its members (McEvily et al., 2012) and their ability to collaborate to solve complex problems. Exposing individuals in the firm to potential collaborators allows them to discover fruitful ways to combine their own ideas, knowledge, and expertise with those of others in the organization in service of solving existing problems, generating new ideas, or allowing for application of expertise in different domains. In essence, offsites afford individuals the opportunity to see how others could create collaborative value for clients. The value of collaboration is salient to partners we spoke with at Big Law (a pseudonym for the firm we studied): “The more you could think of ways to work
with others in the firm, the more efficient and lucrative your practice will be.” Offsites help reduce search costs of finding new collaborators and in assessing their potential contribution to the focal actor’s network (Catalini, 2018). Thus, we believe offsites constitute a shock to networking opportunities and will be advantageous for attendees’ own network outreach.

Hypothesis 1. After an offsite, people who attended will *initiate* more new ties (i.e., ties to others with whom they have not recently collaborated) than people who did not attend.

2.4 New ties received

However, just as the focal individual takes the offsite as an opportunity to discover new collaborators, so too does everyone else, and some of those alters may find ego to be an enticing collaborator. Thus, the offsite serves not only as a locus for gathering information about the capabilities of other potential collaborators, but also as a setting for showcasing one’s own capabilities to potential collaborators. In this altercentric perspective (Kleinbaum et al., 2015), attending the offsite creates an opportunity for heightened visibility in the marketplace of potential collaborators, including those with whom one does not often interact due to structural barriers, such as differing geographic or practice areas. Because of these opportunities, we expect that following an offsite, people who attended will *receive* more new collaborative ties than people who did not attend.

Hypothesis 2. After an offsite, people who attended will *receive* more new ties (i.e., ties from others with whom they have not recently collaborated) than people who did not attend.

In the following section, we outline the variables and models used to disentangle new tie initiation and reception following an offsite, as well as empirical techniques used to address the potentially significant effects of endogenous selection into offsite attendance.

3 EMPIRICAL SETTING AND DATA

To examine the role of offsites in network evolution, we studied the effect of annual partner offsite meetings on the subsequent intra-organizational networks of 759 partners within a large, U.S.-based corporate law firm, which we call *Big Law, LLP*. Across 2005–2012, we observe longitudinally which partners attended eight annual offsite meetings (hosted in two different U.S. cities) as well as the evolving formal work collaboration ties. These partner-only meetings are multi-day events, starting with a cocktail party on Friday evening, followed by a day of formal programming, interspersed with opportunities for informal networking (see Appendix A for a sample agenda; Figure A1). Although attendance is not required, there is a strong normative expectation of attendance, leading to an average attendance rate of 71.1% over the 8-year observation period.

We use granular administrative records of each partner’s monthly billable hours—recorded in 6-minute increments—to construct their formal collaborative networks in the months before and after each offsite. Here, network ties represent the directional sharing of work, in which
one partner asks another partner to collaborate on his/her “book of business.” A defining element of this setting is that partners curate a set of clients for which they solely manage the relationship, ensure the work is executed, and are ultimately responsible for the final product. Partners have discretion over which other partners they seek out for expertise to assist on their clients’ legal matters when the expertise falls outside of their own specialty (e.g., tax, intellectual property, litigation). Collaboration is essential in the context of corporate law, where both individual legal matters and a client’s needs are complex and span many domains of legal knowledge (Gardner, 2016). Critical to our study is the fact that ties are not symmetric, so we are able to distinguish between those that are initiated (seeking expertise) and those received (being sought for expertise) by any given partner. Therefore, our data allow us to unpack the agency dynamics of network tie formation as a function of the corporate offsite and to contribute to our theoretical understanding of how networks evolve.²

To construct the collaboration networks among partners we start with the complete set of billable hour records of shared work between partners, instances in which one partner invited another partner to execute work on his/her book of business. We observe over 346,000 instances of such sharing across 8 years of client work. We construct 96 monthly partner-to-partner collaboration networks based on records indicating which partner is the “billing attorney” responsible for each client and how many hours each other partner worked on individual client matters. The resulting networks represent the collaboration between partners where a tie is the aggregate amount of time spent working together in a month across all client matters. We use these data to construct our dependent and independent variables.

4 | VARIABLES AND MODELS

4.1 | Dependent variables

Our two dependent variables of interest are the counts of new ties initiated and of new ties received by each individual. We define a new tie as one that did not exist during the prior 6 months. Six months represents a significant amount of time relative to the duration of legal matters, which last several months, on average, and results are robust to alternative definitions. Collaboration networks are quite stable: the occurrence of initiating a new tie is low, with an average of 0.731 new ties initiated per month for each partner (SD = 1.248). Similarly, the average occurrence of receiving new ties is low, averaging 0.805 per month (SD = 1.432).³ In other words, on average, a partner is likely to initiate and to receive slightly fewer than one new tie every month to/from someone they have not worked with in the preceding 6 months. Although we have continuous data on the number of collaborative hours worked for each partner-partner dyad, we use binary indicators of new ties formed, aggregated to the individual partner level, because the decision to take on a new collaborator is qualitatively different from the decision to work more closely with someone.

²Although administrative records only include realized ties, strong social norms make refusing a collaboration request exceedingly rare in this firm due to concern for reputational repercussions and a desire for future reciprocation.

³These values are not identical because we include partners’ incoming ties from billing attorneys in “of counsel” and “special counsel” roles. These people are not partners, but they sell client work and recruit partners to collaborate on it, so including them is necessary to fully account for all work being shared with partners. These ties make up 9% of the received ties and results are substantively identical when we exclude them.
4.2 Independent variables

We have two key independent variables of interest. The first is a binary indicator of whether (1) or not (0) the individual attended the annual partner offsite in that year. The second is a binary indicator that distinguishes the months leading up to the offsite (pre) from the months of and after the offsite (post). We interact with these variables in a difference-in-difference design, described in the following section.

4.2.1 Controls

Our models control for the number of unique collaborators and for network constraint (Burt, 1992) in the previous months, as they might affect an individual’s ability to form new ties in the current month. We also include performance variables to control for the possibility that high performers may be more attractive collaborative partners. Specifically, we include the amount of client revenue the partner generated for the firm in the previous year and the hourly rack rate at which the partner bills, a proxy for their market value. We include dummy indicators for partners in their last year at the firm, as this could influence offsite attendance and their likelihood of forming new ties. We also include the natural log of partner tenure (ln [1 + partner tenure]) to account for the stage of career. All models include individual fixed effects to capture time-invariant characteristics, such as gender, practice group, and individual differences in proclivity to network. Additionally, we include year fixed effects to capture variation in market conditions—notable because this time window includes the 2008 financial crisis. Table 1 contains descriptive statistics for outcome variables and covariates.

4.3 Model

In our primary analysis, we take a difference-in-differences approach to estimate the effect of attending the offsite meeting on subsequent network tie formation. The first difference indicates whether the partner attended (1) the offsite in the given year (treatment effect) and the second difference compares the 2-month period just before the offsite (0) with the period just after (1). This approach reduces the noise from other networking opportunities throughout the year (though results are robust to including the other 8 months of the year). We chose a 2-month window to examine the effects of the offsite meeting because partners noted new collaborations could be formed at or immediately after the offsite, but we believe that the effects of attendance would likely diminish over time. Additional analyses use a 3-month pre-/post-offsite window or, alternatively, the full year as robustness checks (Appendix D). Formally:

4 For pre-offsite months that occur in the calendar year before the offsite (e.g., December 2008 before a February 2009 offsite), the attendance variable takes the value of the subsequent year (e.g., 2009).
5 We use a 2-month lag to avoid contaminating the post-offsite months with changes occurring from the offsite. Results remain consistent when using a 1-month lag or a single value of constraint 1-month prior to the offsite.
6 We include a lagged performance variable in all of the models, which cause a first year indicator to drop out of the models because first-year partners do not have performance measures for the prior year.
7 Although gender identity is not necessarily time-invariant, it is in the present data set.
\[y_{it} = e^{(\beta_1 \text{Attendee}_i + \beta_2 \text{Post Offsite}_t + \beta_3 (\text{Attendee}_i \times \text{Post Offsite}_t) + \beta_4 \eta_t + \beta X_{it} + \gamma_i + \epsilon_{it})} \]

where, \(y_{it} \) is the count of new ties initiated or, in separate models, received by individual \(i \) in month \(t \). \(\beta_1 \) is the effect of the stable classification of whether individual \(i \) attended the offsite (1) in the focal year or not (0); \(\beta_2 \) captures the main effect difference between the periods after (1) and before (0) the offsite; and \(\beta_3 \) is the difference-in-differences estimate. \(\eta_t \) is a year-fixed effect, \(X_{it} \) is a vector of time-varying individual-level controls, and \(\gamma_i \) is a partner fixed effect.

To appropriately fit a model to a low-count outcome variable, we use a Poisson quasi-maximum likelihood estimator. Estimated with robust standard errors, the Poisson QML relaxes the assumption that the underlying distribution of the data has mean equal to the

TABLE 1 Descriptive statistics and pairwise correlations of pre-/post-offsite variables.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. New ties initiated (6 months)</td>
<td>0.78</td>
<td>1.26</td>
<td>0</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. New ties received (6 months)</td>
<td>0.86</td>
<td>1.77</td>
<td>0</td>
<td>44</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Last year (in firm)</td>
<td>0.07</td>
<td>0.26</td>
<td>0</td>
<td>1</td>
<td>-0.12</td>
<td>-0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. First year (as partner in firm)</td>
<td>0.11</td>
<td>0.32</td>
<td>0</td>
<td>1</td>
<td>-0.13</td>
<td>-0.00</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>5. Partner tenure (log)</td>
<td>1.678</td>
<td>0.892</td>
<td>0</td>
<td>3.384</td>
<td>0.17</td>
<td>0.06</td>
<td>-0.06</td>
<td>-0.59</td>
</tr>
<tr>
<td>6. Rack rate (USD)</td>
<td>498.05</td>
<td>106.94</td>
<td>246.99</td>
<td>979.39</td>
<td>0.16</td>
<td>0.07</td>
<td>-0.05</td>
<td>-0.16</td>
</tr>
<tr>
<td>7. Prior year’s client revenue (log)</td>
<td>13.03</td>
<td>1.61</td>
<td>1.10</td>
<td>16.73</td>
<td>0.32</td>
<td>-0.02</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>8. Unique collaborators (2-month lag)</td>
<td>11.87</td>
<td>10.32</td>
<td>0</td>
<td>150</td>
<td>0.27</td>
<td>0.47</td>
<td>-0.15</td>
<td>-0.17</td>
</tr>
<tr>
<td>9. Constraint (2-month lag)</td>
<td>0.47</td>
<td>0.25</td>
<td>0.05</td>
<td>1.58</td>
<td>-0.22</td>
<td>-0.22</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>10. Post-offsite (2-month)</td>
<td>0.52</td>
<td>0.50</td>
<td>0</td>
<td>1</td>
<td>0.02</td>
<td>0.01</td>
<td>-0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11. Attend offsite</td>
<td>0.72</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
<td>0.10</td>
<td>0.13</td>
<td>-0.16</td>
<td>-0.21</td>
</tr>
<tr>
<td>12. Non-attendees with high attendance</td>
<td>0.14</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
<td>-0.06</td>
<td>-0.06</td>
<td>0.11</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Note: \(N = 9661–12,537. \)
variance. One limitation of this model is that the marginal effects are not readily interpretable (Greene, 2010), so we also use an OLS specification with clustered standard errors, which yields substantively identical results. An important concern about the setup of this study is that attendance at these offsite meetings is not randomly assigned and partners choose whether to attend or not. We address this issue of self-selection and endogeneity in Section 6.

5 | MAIN RESULTS

5.1 | The role of the offsite in the initiation of collaborative ties

We first regress the number of new ties initiated on control variables and fixed effects (Table 2, Model 1). In Model 2, we add our independent variables of interest: the attendance indicator and the post-offsite indicator. We find a positive, albeit imprecisely estimated, main effect of the post-offsite indicator ($b = .044$, $p = .112$). But surprisingly, we find no significant effect of the attendance indicator ($b = -.018$, $p = .693$). Further, we do not find evidence of an interaction between attendance and the post-offsite period ($b = -.030$, $p = .649$) in Model 3. In Model 4 (Table 2), we run an OLS regression and find results comparable with the primary Poisson quasi-maximum likelihood results in Model 3 ($b = .058$, $p = .232$); the marginal effect of 4.71% is plotted in Figure 1. In light of the insignificant interaction, we focus our interpretation on the main effect in Model 2. Regardless of attendance, in the post offsite period there was a 4.4% increase in the conditional mean number of new ties ($e^{.044}$ with $p = .112$). Our evidence suggests that the offsite may exert a moderate, albeit imprecisely estimated, influence on new tie initiation in the firm, but that, contrary to Hypothesis 1, those changes are not limited to those who attended the offsite. That is, it would seem that the signaling effect of holding the offsite had a greater impact on partners’ initiation of new collaborations than their actual attendance did.

5.2 | Post hoc exploration of alternative mechanisms

We initially theorized that the offsite itself would serve as a signal of the value the firm places on collaboration and that the signal would be localized to the occurrence of the event. However, the partners in the firm undoubtedly knew when the offsite would happen weeks or months in advance. The imprecise estimates of the post-offsite uptick in collaborative initiation that we report above led us to wonder, post hoc, whether the announcement of the offsite—and the subsequent chatter in the office about attending, reminders from firm management and so forth—might have served as a secondary treatment, signaling the importance of collaboration. If such a signal about the importance of collaboration is broadcast in the months leading up to the offsite, then we might observe a more general uptick in network tie initiation around, including before, the offsite. Said differently, we wondered whether the announcement of the offsite induced a spillover of the “offsite treatment” to occur even before the offsite itself

8This model drops 66 individuals (12.15%) because all outcome variables equaled zero, meaning that in these eight 4-month windows they did not initiate a new tie with someone they had not worked with in the prior 6 months. These are likely “service partners” who do not maintain their own books of business but exclusively assist on others’ work. By dropping them, we capture only those who are at risk of initiating new ties in this time frame.
occurred. In post hoc analyses (Table 2, Model 5) we find that the 4-month window surrounding the offsite (2 months before and 2 months after) show significantly more new tie initiation as compared to the other 8 months of the year ($b = .143, p < .001$). We speculate that the imprecision of our estimates of the hypothesized effect of tie initiation following the offsite (Models 2–4) may be related to the temporally diffuse nature of the signal being sent by the firm.

We expected that those who attended an offsite would initiate more new ties, but we did not anticipate a strategic response on the part of those who did not attend. What we find is that

For robustness, we also varied this parameter and found similar results with other specifications, including a 3-month window.
individuals who did not attend the offsite seem to compensate for their absence by also initiating more new ties, despite the fact that there was no option for remote participation in the offsite nor any formal post-offsite recap. Because of this unexpected finding, we explored in post-hoc analyses whether there were qualitative differences in the networking behaviors of these two groups. If non-attendees did not meet new contacts through attending the offsites, they had to rely on other mechanisms for initiating ties and the most likely alternative mechanism is referrals from their existing collaborators (Briscoe & Tsai, 2011). If this were the case, we would expect to see non-attendees initiate connections with contacts of their contacts, whereas attendees' networks should grow through seemingly random interactions that occurred at the offsite. We can test this post hoc explanation by looking at the change in network betweenness from the pre- to the post-offsite periods. Betweenness is a global measure that captures the extent to which partners find themselves on the shortest paths between others in the network. Unlike structural constraint (Burt, 1992), betweenness is not affected by network size, which we observe increases in the post-offsite months. After the offsite, as new collaborative ties rewire the organizational network, we find that attendees experience a modest increase in betweenness (mean change = .694) while non-attendees experience a decrease in betweenness (mean change = −29.25) in the 2 months after the offsite (t = −2.241, p = .013). This effect is robust to a 3-month post-offsite window, to winsorizing the change in betweenness at the 1% and 5% level to account for its long-tailed distribution, and to excluding partners who are in their final year at the firm and those with low attendance records at offsites, both of whom may not adhere to organizational norms. This post hoc evidence is consistent with the possibility that the offsite prompts non-attendees to seek new collaborators based on referrals from their existing network, rather than through the more serendipitous rewiring (Watts & Strogatz, 1998) that occurs at offsites.

We also ran these analyses using structural constraint and found that both attendees and non-attendees experienced a decrease in constraint (dropped by an increase in network size; Burt, 1992), but that compared with non-attendees, attendees saw a larger reduction in the structural constraint of their networks in the 2 months (difference = −.011, t = 1.458, p = .075) and 3 months (difference = −.009, t = 1.680, p = .047) after the offsite.
A second possible mechanism by which non-attendees might proactively seek to expand their networks is by rekindling old collaborative relationships, rather than forming brand-new ones, in the post-offsite period (Levin et al., 2011). To test this mechanism, we increased the threshold for what constitutes a “new” tie to include only dyads with no prior observable collaboration in the 8-year observation window. Our ability to observe past collaboration is censored by the length of our observation window, particularly for the early years of the sample. Although we do not find a significant difference between these groups in forming definitively “brand new” ties, we cannot rule out the possibility that rekindling dormant ties is a mechanism used by non-attendees to compensate for missing the offsite.

5.3 The role of the offsite in the receipt of collaborative ties

We turn our attention next to how the offsite affected individuals’ propensity to receive new ties (i.e., to receive incoming requests from new collaborators). As above, we first ran a Poisson quasi-maximum likelihood model including only the controls and fixed effects predicting new received ties (Table 3, Model 1), then added main effects in Model 2 and an interaction effect in Model 3.11 Consistent with Hypothesis 2, and unlike the corresponding effect on tie initiation, we find that those who attended the offsite did experience a significant increase in new ties received compared to those who did not attend (Table 3, Model 3, \(b = .190, p = .006\)). The conditional mean number of new incoming collaborative ties is 23.5% higher for attendees compared to non-attendees in the post-offsite period.12 Consistent with the parallel trends assumption, we do not find evidence of a meaningful difference between attendees and non-attendees in the pre-offsite months (\(b = .007, p = .905\)). We also do not see an overall main effect of the post-offsite period (\(b = -.026, p = .637\)); unlike our analysis of initiated ties, the boost in incoming ties following the offsite is limited to those who did attend the offsite. We also ran an OLS regression with clustered standard errors (Table 3, Model 4) and found a comparable coefficient (\(b = .177, p = .002\)), with a marginal effect of attendance in the post-offsite period of 19.7% (Figure 2).

Figure 3 plots the fitted values from the OLS model by the months leading up to and after the offsite. In all, we find support for the argument that attending the offsite gave individuals the opportunity to raise their visibility among potential collaborators and increased their likelihood of becoming a target of tie formation—but only for those who attended.

We close this section with some rough estimates of the economic significance of our findings. On average, offsite attendees’ new incoming collaboration ties comprise 0.48 billable hours of new work in each of the 2 months following the offsite. Since facilitating new collaboration is a stated goal of the offsite for the firm, our evidence is consistent with a significant return on investment, even in the short run: an offsite costing tens of thousands of dollars generated over $137,000 in new billable collaborations in the first 2 months alone. And while some of these “test run” collaborations undoubtedly fizzle out and others merely replace one collaborator

11For new received ties, there were 34 (6.3%) partners who did not receive any new incoming ties between 2005 and 2008 and were therefore dropped from analyses. Thus, our analyses only included those who were at risk of being targeted as new collaborators.

12We calculated the difference in conditional mean with: \((e^{\beta x_{0}(1)} - e^{\beta x_{0}(0)}) / e^{\beta x_{0}(0)}\), where \(x_{0}(1)\) is the attendee in the post-offsite condition, and \(x_{0}(0)\) is the non-attendee in the post-offsite condition.
TABLE 3 QML Poisson regression predicting new ties received.

<table>
<thead>
<tr>
<th></th>
<th>(1) Controls only</th>
<th>(2) First order terms</th>
<th>(3) Interaction</th>
<th>(4) OLS with FE</th>
<th>(5) Remove low attendees</th>
<th>(6) ET Poisson with IV</th>
<th>(7) IPTW first stage</th>
<th>(8) IPTW second stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack rate (hundreds of USD)</td>
<td>0.114 (0.061)</td>
<td>0.120 (0.063)</td>
<td>0.121 (0.063)</td>
<td>0.094</td>
<td>0.120 (0.067)</td>
<td>0.101 (0.041)</td>
<td>−0.031 (0.043)</td>
<td>0.144 (0.070)</td>
</tr>
<tr>
<td>Last year (in firm)</td>
<td>−0.361 (0.084)</td>
<td>−0.319 (0.087)</td>
<td>−0.314 (0.088)</td>
<td>−0.198</td>
<td>−0.226 (0.095)</td>
<td>−0.039 (0.161)</td>
<td>−1.245 (0.129)</td>
<td>−0.533 (0.106)</td>
</tr>
<tr>
<td>Partner tenure (log)</td>
<td>0.271 (0.118)</td>
<td>0.259 (0.119)</td>
<td>0.254 (0.120)</td>
<td>0.201</td>
<td>0.288 (0.127)</td>
<td>0.189 (0.059)</td>
<td>−0.037 (0.062)</td>
<td>0.503 (0.125)</td>
</tr>
<tr>
<td>Prior year’s client revenue (log)</td>
<td>−0.013 (0.016)</td>
<td>−0.010 (0.016)</td>
<td>−0.010 (0.016)</td>
<td>−0.013</td>
<td>−0.012 (0.017)</td>
<td>−0.093 (0.024)</td>
<td>−0.023 (0.025)</td>
<td>−0.041 (0.020)</td>
</tr>
<tr>
<td>Unique collaborators (2-month lag)</td>
<td>−0.001 (0.001)</td>
<td>−0.002 (0.001)</td>
<td>−0.003 (0.002)</td>
<td>−0.003</td>
<td>−0.003 (0.001)</td>
<td>0.038 (0.006)</td>
<td>0.017 (0.006)</td>
<td>−0.007 (0.002)</td>
</tr>
<tr>
<td>Constraint (2-month lag)</td>
<td>−0.085 (0.085)</td>
<td>−0.106 (0.082)</td>
<td>−0.110 (0.081)</td>
<td>−0.090</td>
<td>−0.111 (0.085)</td>
<td>−0.611 (0.194)</td>
<td>−0.076 (0.188)</td>
<td>−0.249 (0.106)</td>
</tr>
<tr>
<td>Post-offsite (2-month)</td>
<td>0.131 (0.037)</td>
<td>−0.026 (0.055)</td>
<td>−0.022 (0.036)</td>
<td>−0.020</td>
<td>0.138 (0.036)</td>
<td>0.568 (0.328)</td>
<td>0.235 (0.055)</td>
<td>0.235 (0.055)</td>
</tr>
<tr>
<td>Attend offsite</td>
<td>0.108 (0.041)</td>
<td>0.007 (0.056)</td>
<td>−0.011 (0.042)</td>
<td>−0.019</td>
<td>0.568 (0.328)</td>
<td>0.235 (0.055)</td>
<td>0.235 (0.055)</td>
<td>0.235 (0.055)</td>
</tr>
<tr>
<td>Post-offsite (2-month) × Attend offsite</td>
<td>0.190 (0.069)</td>
<td>0.177 (0.088)</td>
<td>0.184 (0.085)</td>
<td>0.184</td>
<td>0.184 (0.085)</td>
<td>0.184 (0.085)</td>
<td>0.184 (0.085)</td>
<td>0.184 (0.085)</td>
</tr>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td>0.360 (0.285)</td>
<td></td>
<td>−0.544 (0.431)</td>
<td>1.355 (0.433)</td>
<td>−3.557 (0.907)</td>
<td>1.355 (0.433)</td>
</tr>
<tr>
<td>N</td>
<td>9000</td>
<td>8988</td>
<td>8988</td>
<td>9251</td>
<td>7861</td>
<td>1740</td>
<td>4830</td>
<td>4830</td>
</tr>
<tr>
<td>Partner FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Practice group FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Office location FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>F-stat/χ²</td>
<td>40.79</td>
<td>50.54</td>
<td>56.50</td>
<td>3.05</td>
<td>42.36</td>
<td>230.10</td>
<td>349.94</td>
<td></td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses. F-statistic reported for OLS models; χ² reported for Poisson models; LR χ² reported for IPTW logit model. χ² is uninformative in a weighted model (Model 8), and therefore is left blank.
with another on existing client business, others expand and grow over time, enabling the development of new business for the firm.

To illustrate the latter point, consider the case of Sarah, a lateral hire into the Employment Law practice group at Big Law in January 2006. As a new partner, Sarah had no prior collaboration history and knew relatively few other partners in the firm. But the next month, she

13Sarah and Terrance are pseudonyms of real people from our sample. We tell their story here using real data, where available, and interpolating with reasonable inferences to bring to life the story underlying our quantitative data.
attended the partner offsite, where she had the opportunity to network informally, meet other partners, and share her own expertise while learning about other partners’ work. Shortly thereafter, in March, we observed that Terrance, a partner in the Trial practice group who also attended the offsite, initiated a new collaborative tie with Sarah for 0.2 billable hours, representing a small (just 12 min!) bit of work—a kind of “test run” of a new collaboration partner. This initial new tie—between two partners who had not recently collaborated—is what our dependent variable captures. Sarah seemingly passed Terrance’s test because in the next month, April, he sent her 7.5 h of work, followed by 21.1 h in May, 16.1 h in June, 59.6 h in July, and 22.5 h in August. Although we cannot observe the content of Terrance’s client work, identifying new collaborators with distinct expertise enables some partners to cross-sell new business for the firm, not merely replace past collaborators in performing the same work. Without doubt, this example highlights a very successful instance of new collaboration as a result of the offsite. In contrast, more than one-third of new collaborations initiated during the post-offsite period do not survive the initial “test run” and many more do not last much longer. But many do: in our data, nearly 17% of new post-offsite collaborations continued on at least a quarterly basis over the next 2 years.14

This empirical example was also consistent with anecdotal evidence recounted by partners: “I met him and talked to him about this at one of those [offsite] meetings. Perfect example of a ‘Hey, I saw this, couldn’t we get together and do that?’ And, [NAME] having the right mindset of not ‘Oh geez, this is all mine,’ but, ‘Oh, how can you help me? How can I help you?’ was very much at the heart of that...” After an initial meeting and “a wonderful dinner” with the client’s CEO, CFO, and general counsel, this partner became involved with one matter, which he described as a “courtesy.” That one matter, however, developed into a stream of work that resulted in over 1600 matters and a “significant client relationship that has withstood the test of time.” Our quantitative and qualitative data are thus consistent with a story in which the offsite facilitates the formation of new collaborative ties, some of which grow to be valuable collaborations for the organization.

In summary, we find that following an offsite, those who attended receive more new incoming collaborative ties than those who did not attend, consistent with Hypothesis 2. And although offsite attendees also increase their rate of new tie initiation, we were surprised to find, contrary to Hypothesis 1, that non-attendees increase their rate of new tie initiation by a similar amount—perhaps by using referrals to compensate for their non-attendance. Overall, our results are consistent with a valuable role of offsites in promoting collaborative network tie formation.

6 | SELECTION EFFECTS

The non-random attendance at offsites raises a concern that those who attend might also be more desirable collaborators, thereby driving the higher rates of new tie reception among offsite attendees in the absence of any treatment effect.15 To the extent that stable individual

14To explore this phenomenon empirically, we took all new collaborative ties that were formed during our “post offsite” period and recorded the number of collaborative hours each month over the next 2 years. We thank Reviewer 2 for suggesting this analysis.

15Throughout this section, we do not report selection results for tie initiation models, as the naïve results showed no significant difference between attendees and non-attendees. However, running similar models for initiated ties yields consistent results of little difference between the two groups.
characteristics contribute to selection into attendance, our individual fixed effects will address this concern. However, underlying differences that vary with time still pose a challenge to making causal claims. Short of randomly assigning attendance, which was infeasible, we address these endogeneity concerns using three different approaches. First, we estimate models on a subset of people who were all highly likely to attend, but only some of whom did in any given year. Second, we address the selection problem econometrically by estimating endogenous treatment Poisson models that use an instrumental variable based on flight delays that quasi-randomly precluded some partners from attending some offsites, and which affected their networks only through their effect on offsite attendance. Finally, we take an alternative econometric approach and estimate a double-robust, inverse probability of treatment weighted model, based on estimates of the propensity to attend the offsite. We elaborate on each of these below. Although we concede that perfect identification of the causal effect of offsite attendance on network tie formation is not possible, these three approaches together paint a convergent picture that is very consistent with our main results and, collectively, constitute compelling evidence that attendance at offsites may significantly increase new incoming collaboration ties.

In our first selection analysis, we identify individuals who were likely to attend but, for one reason or another, did not attend in a given year (e.g., due to family commitments, illness, or travel-related disruptions). Within this 8-year window, all offsites were held in February or March, leaving the partners who relied on air travel susceptible to winter weather cancellations. Along with anecdotal evidence, we collected data from the U.S. Department of Transportation’s Bureau of Transportation Statistics and found significant negative correlations of attendance with the percentage of flight cancellations ($r = -0.04, p < 0.001$) and delays ($r = -0.12, p < 0.001$) on the Friday of the offsite between city pairs of the focal partner’s office and the offsite location (see Appendix B).

We use this intuition to identify a subset of non-attendees who, under a different set of circumstances, would likely have attended the offsite and we use them as a matched control group in a differences-in-differences estimation. We first compare non-attendees with high attendance records (defined as attending more than 70% of other offsites, excluding the focal year; approximately 14% of the sample) against those with lower attendance records, and against attendees in the 2 months before the offsite. We find that those “attending types” who missed the focal offsite more closely resemble attendees than non-attendees with low attendance records in their collaboration network characteristics (size, constraint, and cross-practice collaboration) and prior performance (Appendix B, Table B1). To test the effect of offsite attendance against a more conservative comparison set, we remove those with low attendance records (i.e., those who were unlikely to attend in the first place) and re-estimate our difference-in-differences model comparing attendees only to non-attendees with high attendance records (Table 3, Model 5). Compared to this group of “counterfactual attendees,” actual attendees received significantly more new ties ($b = 0.184, p = 0.031$). Even the “attending types” did not benefit from the offsite unless they actually attended in a given year (Appendix B, Figure B1).

Our second approach to address the selection issue is to use the flight data for partners relying on air travel as an instrument for attendance to capture unexpected, exogenous travel disruptions as partners make their way to the offsite. Most partners traveled to the offsite in time for its biggest social event, the Friday evening cocktail hour. Flight cancellations were quite rare, so we used the proportion of delayed flights on the day the offsite began (Friday) as a

16This data only includes domestic flights, so partners traveling from international office locations (3.3% of the sample) were not included in these analyses.
The intuition behind this instrument is that although some partners intended to attend the offsite, flight disruptions introduce randomness into who is able to reach the offsite in a way that is independent of underlying individual characteristics that might drive any selection effect. In the first stage of our endogenous treatment Poisson estimator (Stata’s `etpoisson` command), we find that flight delays serve as a valid instrument for partners who travel to the offsite: Friday flight delays on the route between a partner’s home city and the offsite city negatively predict attendance ($b = -1.290, p < .001$) but are theoretically unrelated to incoming collaborative network ties. In Table 3, Model 6, we use flight delays as an instrument for attendance and we find a large, positive effect of attendance on received ties ($b = 0.568, p = .083$) in the post-offsite period. To the extent that attendance is randomly influenced by flight disruptions, we find strong econometric evidence that offsites may significantly increase new incoming collaboration ties, by more than 75% ($e^{0.568} = 1.765$).

The instrumental variable approach has the benefit of introducing exogenous variation into offsite attendance due to flight delays, but the limitation that the only available instrument is weak because although there are many partners, there are few offices and, therefore, few flight routes. To address endogenous attendance at offsites without relying on a weak instrument, we also estimated a propensity score estimator. Propensity scores use observable data to estimate the likelihood that any given individual will attend the offsite; weighting a regression estimate by the inverse of the propensity score creates a synthetic sample in which offsite attendance is independent of the measured covariates, thereby enabling us to make consistent estimates of the causal effect of offsite attendance (Wooldridge, 2010).

We estimated the propensity of each partner to attend each offsite with logistic regression, using the control variables above, as well as dummy variables for office location and practice area as predictors (Table 3, Model 7). A kernel density plot (Figure 4) showing heavily overlapping distributions of the propensity score between attendees and non-attendees lends credence to the assumption of common support, which is crucial for the validity of the inverse probability of treatment weight (IPTW) estimator. The closer these distributions are, the more credible the causal effect estimation is. We then estimated the effect of offsite attendance on new tie formation during the post-offsite period using the double-robust (Kurz, 2022), inverse probability weight regression adjustment (Wooldridge, 2010), using a Poisson quasi-maximum likelihood estimator (Wooldridge, 1997) controlling for the same vector of covariates in the second stage model (Table 3, Model 8). Results indicate that net of covariates, the average treatment effect of offsite attendance is 0.235 (SE = 0.055; $p < 0.001$). That is, in our synthetic sample in which offsite attendance can be assumed to be random, conditional on observables, those who attend the offsite receive more than 25% ($e^{0.235} = 1.265$) more collaborative requests.

17Flight cancellations and delays were so rare in March that we only included the years when the offsite was held in February in the instrumental variables analyses and only included partners who were required to travel to attend the offsite (i.e., the offsite was not located in the city in which they worked in a given year).

18Because the interaction term in our main difference-in-difference model is, like the underlying attendance variable, endogenous, it would require a second valid instrument. Because we have only one instrument, we look at the effect of attendance in the post-offsite months only.

19A placebo test using flight delay data from Thursday, the day before partners were likely traveling, has effectively no predictive power as an instrument for tie reception ($b = .413, p = .347$).

20Our results are largely consistent when using a 2SLS model (Stata’s `ivreg` command) with flight delays serving as a valid instrument in the first stage, $b = -0.352, p < .001$ (K-P Wald F: 16.34; Cragg-Donald Wald: 37.94), and a comparable coefficient in the second stage predicting new tie reception, $b = 0.593, p = .152$. Not surprisingly, the linear model fits our count outcome less well than the Poisson does.
than those who do not. Thus, the propensity score approach lends strong, significant, and convergent support to our main result that offsite attendance increases the rate of new incoming collaborative ties.

6.1 | Additional and robustness analyses

6.1.1 | Exploring heterogeneity in the effects

Attending a corporate offsite, such as the one we studied at Big Law, may yield larger returns for some people than for others. One of our proposed theoretical mechanisms for why an offsite is effective is that it provides the opportunity for partners to assess (and be assessed for) trust and interpersonal affect, in addition to professional expertise. We expect this to be particularly important for partners who are at earlier stages in their careers, who have had fewer years to establish an intrafirm reputation and build a network of collaborators. In line with this reasoning, we find that our received tie results are strongest for those who have been partners for 1–5 years ($b = .197$, $p = .048$; $N = 3408$), as compared to those who have had more time to establish their reputation over the course of 6–9 years ($b = .162$, $p = .198$; $N = 2342$) or at least 10 years ($b = .187$, $p = .131$, $N = 3089$). In other words, attending the offsite has a larger impact on junior partners’ ability to attract collaborators than on more senior partners’.

We also expect the offsite to provide an opportunity to assess partners whose reputations are not clearly defined by well-known performance metrics. Outliers in the distributions of hourly rack rate or annual client revenue are widely recognized as such, but the opportunity for interpersonal interactions at an offsite may be more effective at changing the perception of those partners in the crowded middle of the performance distribution. In additional post hoc analyses, we re-estimated our effects on terciles of both hourly rack rate and annual client revenue. We find a consistent pattern across both sets of analyses. Those partners in the middle tercile of rack rate (mean = 486.82; $N = 3051$; $b = .286$, $p = .007$) experience the biggest offsite effect on received collaboration ties, as compared to those who bill at lower (mean = 387.98; $N = 2210$;...
Similarly, partners in the middle tercile of prior year’s client revenue receive more ties than either the lowest tercile or the highest tercile. We interpret these differences as the offsite allowing partners to assess potential collaborators on additional dimensions besides on well-established prior performance metrics that are available throughout the rest of the year. We also note that this suggests that the Matthew Effect (Merton, 1968) is not responsible for the increase in received ties following the offsite. If high performance were driving our results, we would expect those at the top of the distribution to disproportionately benefit from attending the offsite.

In combination, these two sets of results reinforce the idea that although many factors shape the firm’s collaboration network, for people whose reputations are still being defined in the firm, attending an offsite and engaging with colleagues across the firm can be particularly impactful for shaping one’s collaborative network.

6.1.2 | Network diversity

We also conducted additional analyses to explore what ties were formed at the offsite (Appendix C) and found that offsites were particularly advantageous for facilitating new collaborative ties across intra-organizational boundaries. Results suggest that after the offsite, the newly initiated ties are primarily composed of cross-practice-group ties ($b = .120, p = .093$) as opposed to within-practice ($b = -.057, p = .517$; Table C1, Models 1 and 2). This is true for attendees and non-attendees alike as they reshape their networks. Therefore, the boost in network ties that attendees received is more likely to be from those outside their practice group, as opposed to from within their own practice group (Table C1, Models 3 and 4). The existence of “institutional holes” (Burt, 1992, pp. 148–149) between organizational silos—and the challenges they create for coordination (e.g., Gulati, 2007; Singer, 2006)—are well-known. To the extent that encouraging cross-practice collaboration is an organizational objective in hosting offsites, these face-to-face opportunities appear to be successful.

Related, we were struck by how the offsite enables informants to meet a more diverse set of partners than they see on a daily basis: “I think it’s way too easy to fall back into same old, same old way of doing things. So, you end up collaborating more with people who are more like you... You tend to gravitate back to wherever you are physically.” This anecdotal evidence is suggestive that offsites may provide opportunities to overcome sociocultural and geographic barriers and increase diversity within professionals’ collaborative networks. We leave it for future research to explore the effect more systematically.

Finally, we ran a host of analyses to ensure robustness of our main results, including removing the month of the offsite from analyses, varying the length of the pre-/post-window, varying the threshold of what is considered a “new tie,” excluding partners in their final year at the firm, and including month fixed effects in our models (Appendix D). Across all of these variations, the results are substantively unchanged.

7 | DISCUSSION AND CONCLUSION

In this study, we empirically examined the conventional wisdom that offsite meetings are effective opportunity shocks for intra-organizational networking and catalysts for meaningful
changes in an organization's collaboration network. We find that partners who attended the offsite did, in fact, initiate new collaborations around the offsite; surprisingly, however, partners who did not attend the offsite initiated new collaborations at the same rate. We interpret this as the proactive exercise of network agency by those who saw in the offsite a signal of the value the firm places on collaboration and who tried to compensate for having missed the offsite. Post hoc analyses show that although attendees and non-attendees similarly increased their collaborative behavior in the wake of the offsite in terms of initiating new collaborative ties, they likely relied on different mechanisms, which resulted in different structural changes for the two groups.

However, agency has its limits. Although partners who miss the offsite can proactively reach out, seek referrals, and initiate new collaborations, they cannot effectively attract others to reach out to them: our results indicate that new collaborations disproportionally target those partners who did attend the offsite. Said differently, attending offsites helps to increase one’s visibility and salience as a potential collaborator in the minds of others. Although the offsite may spur all individuals to make agentic changes to their own networks after the offsite, the reputational and business benefits of receiving new collaborative ties accrue only to those who, by their attendance, are salient in the minds of others. Simply put, showing up matters.

This study highlights an important element of network change: individuals can modify their own networks at any time through their own action, but they cannot compel others to initiate network ties with them (Tasselli & Kilduff, 2021). This limitation of agentic networking behavior and the complementary role of increased visibility for attracting tie formation has practical implications for both individuals and organizations. This research contributes to our understanding of network evolution by teasing apart the roles of ego and of alter in the co-creation of the organizational network (Kleinbaum et al., 2015). Furthermore, it calls for additional research into other antecedents of network salience, the tendency to be remembered by others as a potential contact when networking opportunities emerge.

This research also provides the first empirical evidence of which we are aware of the value of corporate offsites as strategic tools for the redesign of organizations by reshaping intra-organizational collaboration networks. This evidence is particularly important as we consider the role of physical co-location in an increasingly hybrid post-COVID world. The global pandemic beginning in 2020 has required an unexpected foray into remote work, which both revealed and developed the remote collaboration skills and preferences of firms and employees. While many journalistic accounts have marveled at the ability of technology to facilitate remote work (e.g., Keoun & Nelson, 2020), others have noted that serendipitous “collisions”—long argued to be important to the success of creative and knowledge-intensive firms—are more difficult to orchestrate in a virtual environment (Ferraz, 2020). If organic networking opportunities in an office are more limited, individuals must carefully consider their proactive opportunities to shape their collaborative networks. While no one can predict how the future of work will look, it will likely involve a greater degree of remote and hybrid work—which will only heighten the value of temporary face-to-face interactions like offsites for creating opportunities for collaboration.

Another speculative implication of our work lies in the “option value” of the relationships that are initiated at offsite meetings, but that do not develop further, at least initially. Our conservative estimate above of the value of offsite meetings included only those collaborations that materialize—in the form of billable client work—during the 2 months immediately following the offsite. However, not all collaborations will necessarily emerge immediately. Attending offsites also enables people to build a “rolodex” of potential collaborators of whom one is aware,
has built a degree of trust, and established the positive affect that would enable successful collaboration—but with whom a collaborative opportunity has not yet emerged. Such potential collaborators form a kind of a *proto-network* that effective partners can easily tap in the future. The existence of such a proto-network enables them to quickly offer new (to them) expertise to their clients when demand for additional services emerges and comprise a kind of “network insurance,” in the event that an existing collaborator needs to be replaced with a new one. We cannot observe such proto-networks in our archival data, so we leave it to future research (e.g., Lee et al., 2024) to empirically examine this phenomenon.

Our most surprising finding in this study was that all partners in the firm showed an increased inclination to start forming new collaborative relationships around the time of the offsite, regardless of whether or not they actually attended the offsite. We speculate that offsites (and likely even the announcement of an upcoming offsite) serve as a subtler, secondary treatment that might have an independent effect on collaboration networks: they signal to employees the value placed by the firm and its leaders on collaboration. Research on signaling dates back to Spence (1974), who argued that economic actors might engage in certain behaviors for the strategic purpose of credibly conveying information. In signaling research, would-be employees invest in education, for example, not because it prepares them for employment, but because it signals their underlying capability to potential employers (Spence, 1974). Subsequent work (Farrell & Rabin, 1996) has argued that for such signals to be credible, they must be costly. Incurring the financial and opportunity costs of gathering employees together reveals the organization’s true priorities about how employees should spend their time, making an offsite a credible signal that collaboration is important to the firm’s ability to implement its strategy (Kerr, 1975). And whereas the effects of the offsite in creating awareness of who knows what, trust, and interpersonal affect accrue only to those who attend the offsite, the effect of credibly signaling the value of collaboration to the firm accrues to everyone.

We theorize that the existence of this “social focus” (Feld, 1981) has both the primary effect on tie formation at the offsite and also a second-order effect outside of the focus. Most employees got the treatment of attending the offsite, but the very decision to host an offsite may have prompted those who did not attend to also engage in compensatory collaborative tie initiation. Finding new ways of initiating ties may be driven by the feeling of having missed out on the offsite opportunity or possibly by the availability of new information about potential collaborators through referrals from colleagues who did attend the offsite. While we cannot disentangle a “FOMO” mechanism from a water-cooler referral mechanism in our setting, we speculate that the idea of *compensatory initiative* may be a more general organizational phenomenon that plays out in myriad similar ways. For example, when informal networking happens in gender-exclusionary settings, such as golf courses or “adult entertainment venues” (Morgan & Martin, 2006), women may look for other settings in which to network. When office chitchat (Methot et al., 2021) focuses on topics that are better-known by some national communities than by others (e.g., American football or cricket), cultural outsiders may tire of feeling more “like that of audience than that of full participant” and seek other topics of conversation over which to bond (Kanter, 1977, p. 226). Common to these examples, and across a range of possible underlying mechanisms, is the idea of *compensatory initiative*, in which people who miss out on one opportunity may look for alternative means to achieve the same underlying social goals. We identify a pair of plausible examples in the compensatory initiatives of those who do not attend corporate offsites, and we call for additional research on other forms of compensatory initiative.
As with all research, this study is not without limitations. First, we do not observe the micro-interactions that lead to the formation of new ties during the offsites and cannot speak to the conditions that gave rise to these ties. However, the tradeoff we gain by using longitudinal archival data allows us to capture actual working relationships over time, a meaningful outcome for both the individual and the firm. In addition, studying multiple annual offsites allows us to control for individuals’ stable characteristics with fixed effects, which would not be possible by studying a one-time event.

Second, this is a single-firm study, so like all such studies, we cannot say with certainty that our results generalize beyond this firm; however, offsites like these are commonplace in many firms where knowledge-sharing and expertise networks are central to the work. Indeed, the only scope condition we see for which offsites will have these effects is that the offsite must bring together employees who would not otherwise interact, perhaps due to geographic or intra-organizational boundaries. Furthermore, although law firms are peculiar in some ways, prior research has argued that they are a good proxy for professional services firms—a large and important part of the economy in their own right—and for knowledge-intensive firms more generally (Gardner, 2016). Although law firm partners might, at first glance, seem like an idiosyncratic study population, the rise of non-equity partnerships in the legal industry makes them far more comparable to other knowledge workers than to co-owners (Galanter & Henderson, 2007).

Another limitation is that the present study does not address the question of long-term tie continuity. As our data indicate, many newly initiated ties quickly fizzle out, but many others, such as the one between Sarah and Terrance, will persist long after the offsite. Although we cannot speak to the future value created by any individual new tie, the new ties we observe, on average, represent the genesis of value-creating collaboration. Finally, although we estimate numerous models in an attempt to approximate the causal effect of offsites on intraorganizational networks using exogenous variation, we cannot estimate true causal effects without random assignment to offsite participation—a condition that was not feasible in this context.

In closing, we conclude that corporate offsites do serve their purpose of facilitating new collaborative relationships. This happens both directly, by creating structured opportunities for interaction among those attending the offsite, and indirectly, by signaling the value of collaboration and, thereby, prompting those who cannot attend to proactively seek alternative means of initiating new collaborative ties. But the limit on networking agency lies in the fact that offsites serve not only as a means to identify new collaborators, but also as “auditions” to be a collaborator for others. And, in this role, there is no substitute for showing up.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding from the Strategic Research Foundation (SRF) Dissertation Fellowship and valuable feedback from our editor, Andrew Shipilov, and from Gautam Ahuja, Dennie Kim, Minjae Kim, Barbara Larson, and Rob Seamans; from seminar participants at Babson College, Cornell University, Dartmouth College, ETH-Zurich, INSPER, the Northwestern Institute for Complex Organizations, Rice University, UC Irvine, the University of Amsterdam, and the University of Massachusetts; and from conference attendees at the Wharton People and Organizations Conference, and the INSEAD Network Evolution Conference. The usual disclaimer applies.
DATA AVAILABILITY STATEMENT

Research data are not shared.

REFERENCES

BBW. (2022). The right way to run a retreat (pp. 35–36). Bloomberg Businessweek.

Heider, F. (1958). *The psychology of interpersonal relations*. Wiley.

APPENDIX A

BIG LAW LLP
PARTNERS MEETING AGENDA

The Westin Boston Waterfront
Grand Ballroom

Friday
5:30 – 7:00 PM Cocktail Hour
7:00 PM Practice Group Dinner

Saturday
9:00 AM Chairman’s Report
10:30 – 11:00 AM Coffee Break
11:00 AM Ethics and Risk Management Panel
12:15 PM Lunch
1:30 PM Legal Industry Overview
3:00 PM Coffee Break
3:30 PM Diversity Panel
4:30 PM Practice Group Meetings
6:00 PM Dinner

FIGURE A1 Example offsite agenda at Big Law, LLP.
Figure B1 presents the interaction of new received ties for attendees and non-attendees in the 2-month windows before and after the offsite, removing non-attendees who, by virtue of their low attendance records, were unlikely to attend the offsite.

Flight variables were created through the following steps:

1. Each partner’s office location and the offsite location (in each year) create a city pair between which they were likely to travel. We gathered data from the U.S. Department of Transportation Bureau of Transportation Statistics (https://www.transtats.bts.gov/ONTIME/OriginDestination.aspx) for the Friday of the offsite in each year, which according to conversations with the law firm was the day most partners travel in order to arrive before the cocktail reception on Friday evening. We did not know which exact flight each partner was on so we took averages of all incoming flights between city pairs on the date of interest. We were particularly interested in flight cancellations and delays.

<table>
<thead>
<tr>
<th>TABLE B1</th>
<th>Comparison of attendees and non-attendees in the 2 months before offsite.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Non-attendees with low attendance</td>
</tr>
<tr>
<td>Percentage of collaborators outside of practice group</td>
<td>0.513</td>
</tr>
<tr>
<td>Constraint (month)</td>
<td>0.556</td>
</tr>
<tr>
<td>Prior year’s client revenue (logged)</td>
<td>12.776</td>
</tr>
<tr>
<td>Unique collaborators (month)</td>
<td>12.161</td>
</tr>
<tr>
<td>Percentage of collaborators outside of practice group</td>
<td>0.566</td>
</tr>
<tr>
<td>Constraint (month)</td>
<td>0.453</td>
</tr>
<tr>
<td>Prior year’s client revenue (logged)</td>
<td>13.091</td>
</tr>
<tr>
<td>N</td>
<td>339–726</td>
</tr>
</tbody>
</table>

Note: Only 1 month of lagged client revenue is used in comparisons because it is a year-level variable and does not vary by month. We exclude each partner’s first year from the comparison as their networks are in their first month of forming and do not have revenue from the prior year.
a. When a city had two or more major airports (such as O’Hare and Midway in Chicago), we collapsed the data across airports.

b. For several cities, we assumed the partners used the closest major international airport. For example, partners traveling out of Wilmington, DE likely used the Philadelphia airport (PHL).

2. For partners who needed to travel less than 300 miles to attend the offsite (305 miles in the case of one office), we assume that they relied on modes of transportation other than flight. For example, those traveling between Baltimore and Washington, DC would likely rely on Amtrak. These partners therefore had 0% chance of experiencing a flight cancellation or delay.

3. For partners who traveled from a destination where it was not obvious which airport they would use (8 partners) or where there were no direct flights between the city pair, we left the data as missing.

4. Because this data is for domestic flights, we record missing values for partners traveling from international offices (3.3% of partners).

APPENDIX C: ADDITIONAL ANALYSES

In addition to a count of new ties initiated and received, what ties the offsites spur is also of interest. The offsite was particularly successful in facilitating new ties between partners in different practices groups (Table C1, Models 1 and 3), rather than from those with similar expertise (Models 2 and 4).
APPENDIX D: ROBUSTNESS ANALYSES

Initiated ties results

Our main result of increased initiated ties for all partners (regardless of attendance) is robust to excluding the month of the offsite (Table D1, Model 1), whereby comparing the 2 months before to the month after the offsite and to using a 3-month pre-/post-window (Model 2). The result is consistent if we increase the threshold of a “new tie” to not having worked together in the previous 12 months (Model 3). We find consistent results when including all 12 months (comparing the 2 post-offsite months to the 10 other months of the year, Model 4) and when we include month fixed effects (Model 5). We also ensure the results are not driven by the skewed distribution of our dependent variables, and results are robust to winsorizing the counts of new ties (at the 5% and 95%, Model 6), to log transformations of the dependent variables (results not displayed), and to excluding partners in their final year at the firm (results not displayed).

| TABLE C1 Additional analyses of tie formation across and within practice groups. |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (1) New Ties Initiated Across Practice Group | (2) New Ties Initiated Within Practice Group | (3) New Ties Received Across Practice Group | (4) New Ties Received Within Practice Group |
| Rack rate (hundreds of USD) | 0.027 (0.074) | −0.003 (0.088) | 0.140 (0.067) | 0.068 (0.085) |
| Last year (in firm) | −0.434 (0.136) | −0.579 (0.203) | −0.256 (0.120) | −0.519 (0.134) |
| Partner Tenure (log) | 0.299 (0.134) | −0.130 (0.167) | 0.104 (0.136) | 0.582 (0.174) |
| Prior year’s client revenue (logged) | 0.048 (0.037) | 0.058 (0.047) | 0.008 (0.020) | −0.025 (0.023) |
| Unique collaborators (2-month lag) | 0.004 (0.003) | 0.004 (0.004) | −0.003 (0.002) | −0.004 (0.002) |
| Constraint (2-month lag) | −0.064 (0.109) | −0.335 (0.145) | −0.001 (0.100) | −0.199 (0.140) |
| Post-offsite (2-month) | 0.120 (0.071) | −0.057 (0.088) | −0.016 (0.067) | −0.053 (0.103) |
| Attend offsite | −0.007 (0.059) | 0.013 (0.090) | 0.004 (0.063) | 0.035 (0.089) |
| Post-offsite (2-month) × Attend offsite | −0.070 (0.077) | 0.064 (0.106) | 0.197 (0.078) | 0.184 (0.122) |
| N | 8468 | 8076 | 8670 | 8117 |
| Partner FE | Yes | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes | Yes |
| χ^2 | 42.65 | 51.79 | 47.87 | 47.89 |

Note: Standard errors in parentheses.
<table>
<thead>
<tr>
<th></th>
<th>Exclude offsite month<sup>a</sup></th>
<th>3-month pre/post</th>
<th>12-month new tie</th>
<th>Full year</th>
<th>Month FE</th>
<th>Winsorized DV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rack rate (hundreds of USD)</td>
<td>−0.050 (0.073)</td>
<td>0.054 (0.063)</td>
<td>0.032 (0.073)</td>
<td>0.058 (0.049)</td>
<td>0.015 (0.064)</td>
<td>0.049 (0.058)</td>
</tr>
<tr>
<td>Last year (in firm)</td>
<td>−0.493 (0.143)</td>
<td>−0.482 (0.128)</td>
<td>−0.553 (0.163)</td>
<td>−0.659 (0.113)</td>
<td>−0.505 (0.129)</td>
<td>−0.515 (0.113)</td>
</tr>
<tr>
<td>Partner Tenure (log)</td>
<td>0.208 (0.126)</td>
<td>0.134 (0.106)</td>
<td>0.098 (0.126)</td>
<td>0.185 (0.082)</td>
<td>0.168 (0.115)</td>
<td>0.137 (0.098)</td>
</tr>
<tr>
<td>Prior year’s client revenue (logged)</td>
<td>0.060 (0.036)</td>
<td>0.038 (0.029)</td>
<td>0.004 (0.035)</td>
<td>0.015 (0.022)</td>
<td>0.049 (0.033)</td>
<td>0.064 (0.028)</td>
</tr>
<tr>
<td>Unique collaborators (2-month lag)</td>
<td>0.005 (0.003)</td>
<td>0.002 (0.002)</td>
<td>0.006 (0.003)</td>
<td>0.002 (0.001)</td>
<td>0.005 (0.002)</td>
<td>0.004 (0.002)</td>
</tr>
<tr>
<td>Constraint (2-month lag)</td>
<td>−0.135 (0.103)</td>
<td>−0.149 (0.079)</td>
<td>−0.126 (0.104)</td>
<td>−0.171 (0.056)</td>
<td>−0.154 (0.090)</td>
<td>−0.121 (0.082)</td>
</tr>
<tr>
<td>Post-offsite (2-month)</td>
<td>0.041 (0.067)</td>
<td></td>
<td>0.067 (0.064)</td>
<td>0.211 (0.053)</td>
<td>0.094 (0.079)</td>
<td>0.059 (0.049)</td>
</tr>
<tr>
<td>Attend offsite</td>
<td>0.007 (0.053)</td>
<td>0.026 (0.044)</td>
<td>−0.014 (0.056)</td>
<td>0.017 (0.027)</td>
<td>−0.008 (0.050)</td>
<td>−0.012 (0.043)</td>
</tr>
<tr>
<td>Post-offsite (2-month) × Attend offsite</td>
<td>−0.066 (0.075)</td>
<td></td>
<td>−0.063 (0.072)</td>
<td>−0.085 (0.055)</td>
<td>−0.023 (0.064)</td>
<td>−0.019 (0.055)</td>
</tr>
<tr>
<td>Post-offsite (3-month)</td>
<td></td>
<td></td>
<td></td>
<td>0.071 (0.049)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-offsite (3-month) × Attend offsite</td>
<td></td>
<td></td>
<td></td>
<td>−0.016 (0.054)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>6421</td>
<td>13,153</td>
<td>8823</td>
<td>27,507</td>
<td>8861</td>
<td>8861</td>
</tr>
<tr>
<td>Partner FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Month FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>χ^2</td>
<td>71.93</td>
<td>66.98</td>
<td>56.81</td>
<td>148.89</td>
<td>145.36</td>
<td>77.17</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses.
^aCoefficients less precisely estimated due to smaller sample size.
Received ties results

The interaction between post-offsite and attendance is robust to excluding the month of the offsite (Table D2, Model 1), using a 3-month pre-/post-window (Model 2), and using a 12-month threshold of not having worked together as a “new tie” (Model 3). We find similar results when using all of the months of the year (Model 4) and including month fixed effects (Model 5). We also use a winsorized version of our dependent variable (at the 5% and 95%, Model 6) and a log transformation of the dependent variable (not displayed) to address skewed distributions. Our results are robust to excluding partners in their final year at the firm (results not displayed).

<table>
<thead>
<tr>
<th>TABLE D2</th>
<th>Robustness results for new ties received.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) Exclude offsite month<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>Rack rate (hundreds of USD)</td>
</tr>
<tr>
<td></td>
<td>Last year (in firm)</td>
</tr>
<tr>
<td></td>
<td>Partner Tenure (log)</td>
</tr>
<tr>
<td></td>
<td>Prior year’s client revenue (logged)</td>
</tr>
<tr>
<td></td>
<td>Unique collaborators (2-month lag)</td>
</tr>
<tr>
<td></td>
<td>Constraint (2-month lag)</td>
</tr>
<tr>
<td></td>
<td>Post-offsite (2-month)</td>
</tr>
<tr>
<td></td>
<td>Attend offsite</td>
</tr>
<tr>
<td></td>
<td>Post-offsite (2-month) × Attend offsite</td>
</tr>
<tr>
<td></td>
<td>Post-offsite (3-month)</td>
</tr>
<tr>
<td></td>
<td>Post-offsite (3-month) × Attend offsite</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Partner FE</td>
</tr>
<tr>
<td></td>
<td>Year FE</td>
</tr>
<tr>
<td></td>
<td>Month FE</td>
</tr>
<tr>
<td></td>
<td>χ²</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses.

^aCoefficients less precisely estimated due to smaller sample size.