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A.1 Import behavior by CMS purchase status

The CMS data do not provide information on the countries from which offshoring firms source. I

therefore use the linked CMS-firm data to provide richer information on foreign sourcing decisions.

Table A.6 presents the average extent to which firms offshore, measured as firms’ imports over sales.

Column 1 shows that domestic fragmenters source a relatively small share of their production offshore.

Their average imports over sales is only three percent, compared to 20 percent for firms that primarily

offshore. Somewhat surprisingly, firms with no CMS purchases import an average of nine percent of

their sales. To assess whether this high share may result from industry compositional differences or

sales in other sectors, I calculate firms’ share of imports over sales relative to the average share of their

modal industry. Excluding firms with employment outside of manufacturing, the relative shares are

0.67, 0.68 and 3.9 for non-purchasers, domestic fragmenters, and offshorers respectively. Offshoring

firms’ share of imports over sales is almost four times their industry average, while non-purchasers

and domestic fragmenters’ share is less than their industry mean. Column 2 shows firms’ share of

imports from low-income countries. I classify countries as low income if they are in the bottom two

per-capita GDP terciles.1 Firms with no CMS purchases and domestic CMS purchases import 28 and

19 percent of their manufactured good imports from low-income countries respectively. In contrast,

offshorers source almost half of their imports from low-income countries.

Table A.6 also presents information about the products and countries from which firms import.

Column 2 shows that the median count of distinct ten digit Harmonized System (HS) codes imported

by firms is zero for firms with no CMS purchases and one for domestic fragmenters. In contrast, firms

that purchase CMS offshore import a median of eight distinct products, and firms with both domestic

and offshore purchasing plants import a median of 123 products. Column 3 shows that this pattern

holds for the subset of importing firms in each category. Columns 4 and 5 provide the same statistics

for the number of countries from which a firm imports. Firms with no CMS purchases import from

a median of zero countries, domestic fragmenters import from a median of one, and offshorers import

from a median of three. Firms with a mix of plants that source domestically and others that source

offshore import from a median count of 20 countries. Conditional on importing, firms that source

primarily offshore still import from more countries than firms that fragment domestically or not all.

1I obtain countries’ per-capita GDP in 2007 from the International Monetary Fund. The GDP data are unavailable
for a small number of countries that represent less than one percent of imports in each CMS category.
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A.2 Variable Descriptions

Electronic Networks: I measure whether a plant used electronic networks in 2007 with a dummy

variable equal to one for plants that report using an electronic network to control or coordinate

shipments. The precise question from the 2007 Census of Manufactures is:
If not shown, please enter your 11-digit Census File

Number (CFN) from the mailing address.

Form MA-10000 

(08/10/2007)
Page 3
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E-SHIPMENTS

A.
Did this plant use any electronic network to control or coordinate the flow of any of the shipments of goods reported

in

5

, line A? Or, were the orders for any of the shipments reported in

5

, line A received over an electronic network?

B.

Electronic networks include:

• Electronic Data Interchange (EDI) • Extranet

• E-mail • Other online systems

• Internet

0181

Yes - Go to line B

0182

No - Go to

7

Percent of total reported in

5

, line A that were ordered, or whose movement was

controlled or coordinated over electronic networks (Report whole percents. Estimates

are acceptable.) ..................................

0109

2007

Percent

2006

Percent

%

%

7

EMPLOYMENT AND PAYROLL

Include:

•

Full- and part-time employees working at this establishment whose payroll was reported on Internal Revenue

Service Form 941, Employer's Quarterly Federal Tax Return, and filed under the Employer Identification

Number (EIN) shown in the mailing address or corrected in

1

.

Exclude:

•

•

Full- or part-time leased employees whose payroll was filed under an employee leasing company's EIN.

Temporary staffing obtained from a staffing service.

For further clarification, see information sheet(s).

A. Number of employees

1. Number of production workers for pay periods including:

a.

b.

c.

d.

March 12 .......................

June 12 ........................

September 12 .....................

December 12 .....................

0325

0324

0344

0347

2. Add lines A1a through A1d ...............

0329

3.

Average annual production workers (Divide line 2 by 4 -

omit fractions.) ......................

0335

4. All other employees for pay period including March 12 ...

0336

5. TOTAL (Add lines A3 and A4) ...............

0337

Mark "X"

if None

2007

Number

2006

Number

B. Payroll before deductions (Exclude employer's cost for

fringe benefits.)

1. Annual payroll

a. Production workers ...............

b. All other employees ...............

c. TOTAL (Add lines B1a and B1b) .........

2. First quarter payroll (January-March 2007) ......

0304

0305

0300

0310

Mark "X"

if None

2007

$ Bil. Mil. Thou.

2006

$ Thou.

C. Number of hours worked by production workers (Annual hours

worked by production workers reported on lines A1a through

A1d.) ............................

0200

Mark "X"

if None

2007

Hours

Thou.

2006

Hours

Thou.

CONTINUE WITH
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Although the question asks about establishments’ use of electronic networks to control or coordinate

shipments, data from the the 1999 Annual Survey of Manufactures (ASM) Computer Survey Network

Use Supplement (CNUS) show that plants’ use of electronic networks to sell goods is correlated with

their use of networks to purchase inputs. I find that plants’ acceptance of online orders for their

manufactured products has a correlation coefficient of .23 with their use of networks to purchase

materials or supplies. In addition, 32 percent of plants that sell goods over networks also use networks

to provide information about their design specifications to external suppliers, compared to only 16

percent of plants that do not sell goods over networks. The same pattern (30 percent vs. 16 percent)

holds for plants that do or do not use networks to purchase inputs. These findings support the premise

that plant use of electronic networks to control or coordinate shipments is a good proxy for a plant’s

use of technology to communicate with suppliers.

I measure plants’ use of electronic networks in 2002 using data from this similar question in the

2002 Census of Manufactures:

E-COMMERCE SALES, SHIPMENTS, RECEIPTS, OR REVENUE

A. Did any of the amount reported in 4 , line A include e-commerce sales, shipments, or receipts? (E-commerce
sales, shipments, or receipts are online orders for products from customers where price and/or terms of the sale
are accepted or negotiated over an Internet, Extranet, Electronic Data Interchange (EDI) network, electronic mail, or
other online system. Payment may or may not be made online.)

0181 Yes - Go to line B 0182 No - Go to 6
2002

Percent

CAD/CAM Industry Intensity: I measure industry intensity of Computer Aided Design

(CAD) and Computer Aided Engineering (CAE) using the Computer Survey Network Use Supplement

(CNUS) from the 1999 Annual Survey of Manufactures (ASM). The CNUS asked manufacturing es-

tablishments a number of questions about their use of different types of technology. I use the following

question to identify whether a particular establishment used CAD/CAE software in 1999:

For each of the following computer networked business processes, please indicate below whether
this plant currently uses or plans to begin using by December 2002.

No plans
to use by
12/2002

Plans to
use by
12/2002

Uses
now
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(5)

c. Production
Management

(1)

(2)

(3)

(4)

(5)

(6)

Integrated CAD/CAE (Computer Aided Design/Computer Aided Engineering)

Design of the production process

Production scheduling

Production monitoring

Test and acceptance of product

Outsourcing of research and development

I construct an indicator for all plants that used CAD in 1999 and calculate the share of plants in

an industry using CAD relative to plants that did not use CAD and had no plans to use it by 2002. I

do not include plants that report planning to use CAD by 12/2002. The ASM is not a representative

sample, so I use weights provided in the CNUS to avoid any potential selection bias. I calculate the

CAD measure at the NAICS 6 level.

Industry CAD intensity ranges from almost zero to one, with a mean of 0.44 and standard deviation

of 0.25. The least CAD intensive industries are food manufacturing and textiles, while automotive,

aerospace and machinery manufacturing are all CAD intensive. Table A.1 presents correlation coef-

ficients of industry CAD intensity and various industry-level measures. Consistent with the premise

that CAD facilitates communication about design specifications, the share of plants in an industry that

use CAD software is highly correlated with the industry fraction of plants that report using electronic

networks to share their product designs with suppliers, as well as with the fraction that share designs

electronically with other company units. The correlation coefficients with CAD intensity are 0.49 and

0.54 respectively, with p-values of 0.00.

Industry CAD intensity is also positively correlated with industry capital intensity and skill in-

tensity, with correlation coefficients of 0.09 and 0.16 respectively.2 CAD intensity also seems to be

higher in industries that use more differentiated inputs. The correlation coefficient between industry

CAD intensity and the fraction of inputs not sold on an exchange and not reference priced, as calcu-

lated by Nunn (2007), is 0.26 and significant at the one percent level. Finally, I investigate whether

CAD-intensive industries may have already experienced significant offshoring of the entire physical

transformation process. To do so, I calculate the ratio of industry imports by wholesale firms relative

to domestic production. There is a significant contingent of plants classified in the wholesale sector

that design goods and coordinate production processes in foreign locations (see Bernard and Fort,

2015, for details on these firms). The second to last row of Table A.1 shows that the ratio of industry

imports by wholesale firms with no U.S. manufacturing plants relative to the value of U.S. manufac-

turers’ production is unrelated to industry CAD intensity. The bottom row shows a similar result for

imports by all wholesale firms, including those with U.S. manufacturing establishments.

U.S. Wage Data: I use 2006 U.S. wage data from the Bureau of Labor Statistics’ Occupational

Employment Statistics (OES) Survey to measure production worker wages by state and industry. The

state level data provide the mean wage by six-digit occupation. I limit the data to the 110 “Production

occupations” and match them to national OES data on occupations and four-digit NAICS industries.

2Capital intensity is measured as total assets owned by plants in an industry at the beginning of 2007 relative to
the industry’s total employment. Skill intensity is the share of non-production workers in an industry relative to total
employment. All variables are from the 2007 U.S. Census of Manufactures.
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I use the national data to determine the occupational intensity of each industry, which I calculate as

the share of workers in a given occupation in the industry’s total employment of production occupation

workers. I match the national share of each occupation within an industry to the state-occupation

level wage data. I then compute the state-industry wage as the average, weighted by the national

industry share, of each occupation’s wage within an industry. The wage for industry j in state h is

then:

wagehj =
∑
o∈j

[wageo,h ×
empo,j,US
empj,US

], (A.1)

where o denotes occupations. In principle, this methodology avoids attributing wage differences across

industries and states to compositional differences in a state’s employees. In practice, occupations are

unevenly distributed across states so that some states do not have employment, and therefore wage

values, for certain occupations. For example, only three states have nuclear power operators, seven

have shoe machine operators, and 15 have semiconductor processors.3 In addition, some states are

missing wage data for some of their occupations. To ensure that the shares of employment in each

state-industry combination sum to one, I use the average state wage for the five-digit occupation (or

four-digit occupation if the five-digit occupation wage is missing) to which the missing occupation

belongs.

Relative Foreign Wages: The foreign wage data are from the International Labor Organization

and available for 1983-2003. I use monthly wages in US $s provided by Oostendorp (2005). I construct

relative foreign wages for each industry-occupation as w∗/wUS , where w∗ denotes the wage in a

foreign country. This relative wage follows the theoretical framework and provides a unit free measure

that applies to specific industries and occupations. To the extent that skill varies by industry and

occupation, the relative wage controls for compositional differences in countries’ wages that are driven

by workers of varying skill levels. I primarily use wages from 2000 because it is the most recent year

of complete data. When the 2000 data are missing for a given country-industry-occupation, I use

data from the closest year. Because the relative wage is unit free, it is not affected by dollar inflation,

though significant changes in the exchange rate over time may cause measurement problems for data

substitution from other years. I match the ILO data to NAICS industries by hand and average over

industries to obtain a relative foreign wage in a given NAICS industry. The industries vary from three-

digit to six-digit NAICS. Despite substituting missing values with data from alternate years, there are

still missing data. When available, I replace missing data with the average wage for a higher level

of NAICS aggregation in a given country. There are some countries for which no data are available.

Since identifying sourcing locations is a primary focus of this paper, country-specific characteristics

are critical and I therefore do not impute data for the missing countries.

Skill measures: I measure state worker skill as the share of workers with at least a college degree

using the 2007 data from the American Community Survey (ACS).

3The uneven distribution of occupations across the country is consistent with production fragmentation. It also
suggests an important role for the substitutability of labor in a given location, for a given industry. I do not address this
dimension of variation as a determinant of fragmentation.
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Deep Water Ports: I identify all potentially relevant water ports using data from the Mar-

itime Administration’s Port Import Export Reporting Service (PIERS).4 The data are collected from

vessel manifests and bills of lading and provide imports, measured by number of shipping containers

in twenty-foot equivalent units (TEUs), by port. To ensure the ports correspond to viable import

channels, I restrict the ports to deep water ports with a value of imports greater than 100 TEUs. (I

except Anchorage, Alaska from this exclusion criterion since it imported 92 TEUs in 2007, but is the

largest viable import port in Alaska.) Latitude and longitude for each port are from the Intermodal

Terminal Facility database from the Research and Innovative Technology Administration’s Bureau of

Transportation Statistics (RITA/BTS) National Transportation Atlas Databases (NTAD) 2010.5 This

database is missing Port Manatee, FL and the Port of Honolulu, HI so I obtain latitude and longitude

for these ports from: www.worldportsource.com/states.php. The final port data are available at

http://faculty.tuck.dartmouth.edu/teresa-fort/data.

Border Crossings: I identify all potential border crossings with Canada and Mexico using border

crossing/entry data from RITA/BTS.6 The data originate from the U.S. Department of Homeland

Security, Customs and Border Protection, OMR database. There are 86 Canadian and 25 Mexican

entry ports into the U.S. I exclude the crossings that had no truck traffic in 2007 to obtain 82 Canadian

and 22 Mexican potential crossing points. I attach latitudes and longitudes to these crossings using

the centroid for the county in which the port is located. The final data are available at http:

//faculty.tuck.dartmouth.edu/teresa-fort/data.

Domestic suppliers The CMS sample also has information about plants’ primary activity. Treat-

ing all plants that identify their primary activity as “Providing contract manufacturing services to

others”, I calculate the distance between each manufacturing plant in the CMS sample and the closest

manufacturing service provider (MSP). The precise question I use to identify MSPs is provided below.

4The data are available here: www.marad.dot.gov/library_landing_page/data_and_statistics/Data_and_

Statistics.htm.
5Data available here: www.bts.gov/publications/national_transportation_atlas_database/.
6The data can be downloaded here: http://www.bts.gov/programs/international/transborder/TBDR_BC/TBDR_

BCQ.html.
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A.3 Fragmentation and industry characteristics

Table A.2 shows how fragmentation and offshoring, as well as their relationship with technology,

relate to industry characteristics. Each column in Panel A reports the results from a series of bivariate

ordinary least squares regressions in which industry shares, listed in the left column, are regressed

ex-post on the industry characteristic listed at the top of the column. I also calculate an industry-

specific estimate of the relationship between plant technology and fragmentation (or offshoring). To

do so, I regress a fragmentation (or offshoring) indicator on an industry-by-plant technology indicator.

Panel B reports results from a series of bivariate regressions in which these industry-by-technology

fragmentation and offshoring estimates are regressed ex-post on industry characteristics. Finally I

regress an indicator equal to one if an offshoring firm sources from a particular country on industry-

by-technology-by-country human capital tercile indicators, with middle skill countries as the omitted

category. Panel C reports results from regressing these industry-by-technology-by country human

capital estimates on industry characteristics. The industry regressions are all weighted by the number

of plants in an industry and I report Huber-White standard errors to allow for heteroskedasticity.

A.4 Robustness of wages and distance results

Table A.4 presents several robustness tests for the wage and distance linear probability model estimates

presented in the paper. If local demand and wages are correlated, then the estimated wage coefficient

will be biased. I assess this potential issue by controlling for personal income in the plant’s economic

area, as defined by the Bureau of Economic Analysis (BEA) economic areas.7 Columns 1 and 4 in

Table A.4 show that controlling for local demand does not affect the estimated coefficients.

Another potential concern is that the wage estimate is biased by differences in worker skill across

states. Although the wage measure is based on wage differences within detailed occupation codes

across states, it may still reflect skill heterogeneity. To assess the extent to which the wage estimate

is biased by skill, I construct skill measures that vary by state. Columns 2 and 5 in Table A.4 show

that the wage coefficient is robust to these controls.8

As an alternative measure of the distance to domestic suppliers, I construct a weighted average to

a plant’s input suppliers. First, I use I-O tables to determine the requisite inputs of production for

each industry and to calculate the fraction of expenditure on each of these inputs. I assume that all

plants in an industry use all of the inputs listed in the I-O tables in their production process with

the same weights. Using the plant-level Census of Manufactures data, I then calculate the distance

between each plant in my sample and the closest manufacturing plant that produces each input, where

a plant’s production is based on the plant’s industry. As an example, suppose that car manufacturing

7There are 179 BEA economic areas. These areas are designed to capture relevant regional markets surrounding
metropolitan or micropolitan statistical areas.

8I have also estimated the probability of fragmentation and offshoring while controlling for the share of state workers
with an associate’s degree and a high school degree, and the share of production workers with a college degree and an
associate’s degree. In all cases, the estimated coefficients on the variables of interest are largely unchanged.
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uses tires (10 percent), glass (5 percent), and metal (85 percent). I calculate the distance to the

closest tire, glass, and metal manufacturers and then construct a single weighted distance for each car

manufacturing plant, where the weights are the value of each type of input in total input costs for the

plant’s industry.

Columns 3 and 6 in Table A.4 show that the weighted distance measure suggests an even more

important role for distance than the

B Theory Appendix–For online publication only

In this appendix, I present a model of domestic and foreign fragmentation by heterogeneous firms.

Because the purpose of the model is to understand firm-level decisions, I do not aggregate the model

to solve for the industry equilibrium.

Let E denote aggregate expenditure in a representative industry (I omit industry subscripts for

notational simplicity). Preferences across varieties for the representative industry have the standard

CES form, with an elasticity of substitution ε = 1
1−σ > 1. These preferences lead to demand for a

particular variety i in a given industry,

q(i) = Ap(i)−ε, A =
E∫

i∈j p(i)
1−εdi

(B.1)

where p(i) is the price of variety i and A is exogenous to an individual firm.

Labor is the only factor of production and is supplied inelastically. Producers use one unit of

labor to produce one unit of task output. Production requires a continuum of tasks, indexed by k.

Producers combine task output via a Leontief production function to produce a single composite input

M , as in Rodŕıguez-Clare (2010). More formally, M = mink{mk}, k ∈ [0, 1], where mk denotes the

output of task k.9 For expositional simplicity, I normalize the number of tasks in the representative

industry to one. Since tasks are defined by a unit labor requirement, the empirical analysis controls

for the potential that industries differ in the number of tasks required to produce M . Producers

have heterogeneous productivity, denoted by ϕ > 0, and transform the composite input M into their

product via: q = ϕM .

B.1 Profits with no fragmentation

With CES preferences, the optimal final good price is a mark-up over marginal cost given by pi(ϕ) =

Ci/ϕσ, where Ci denotes the marginal cost of the input M for firm i. Let wh denote the wage in the

producer’s home state. Because producers make mk one-to-one from labor, the cost of one unit of M

9The assumption of no substitutability between tasks that use the same factor of production is common in the
literature and simplifies the analysis. The model could be extended so that the composite input is produced via a
constant elasticity of substitution technology that depends on the intensity with which each task is performed.
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at the integrated producer is Ci = wh and its profits are:

πI =
(1− σ)A

σ(1−ε)

[
ϕ

wh

](ε−1)

. (B.2)

B.2 Profits with fragmentation

Fragmentation allows producers to purchase task output from a manufacturing service provider (MSP)

in another location with potentially lower labor costs.10 The assumption that wage differences exist

within a country for the same quality of labor is supported by empirical evidence (e.g., Bernard et

al., 2013). I assume perfect competition among MSPs so that the price of a task purchased from an

MSP in another domestic (D) or offshore (O) sourcing location s is given by Ps(mk) = ws, where

s ∈ {D,O}.11 By assuming that a firm can only source from a domestic or foreign location, the model

does not address the role of interdependencies in firms’ sourcing decisions. See Blaum et al. (2013) and

Antràs et al. (2014) for a discussion of these extensive margin interdependencies and how to address

them.

While fragmentation allows a producer to access cheaper labor, it also entails certain costs. Estab-

lishing a supply network incurs a fixed cost fD when the MSP is domestic and fO when the MSP is

foreign, with fD < fO. Fragmentation also incurs a task specific cost due to the additional transporta-

tion and coordination needs associated with breaking up the production function across locations.

The fragmentation cost for firm i in industry j to source task k from location s is represented by the

function:

τ(δis, ωk, ηi, γs, ρj) ≥ 1, (B.3)

which I assume is continuously differentiable in all its arguments. δis denotes the distance between

the final good producer and the sourcing location s. Transportation costs are increasing in distance so

that ∂τ
∂δ > 0. ωk represents an inherent characteristic, such as weight or complexity, of the output from

task k. Tasks can be ordered on the continuum from zero to one such that ∂τ
∂ω > 0 reflects task-specific

differences in fragmentation costs attributable to these inherent differences. This attribute of the

cost function is similar to Grossman and Rossi-Hansberg (2008). ηi captures producer i’s information

technology, and γs reflects the human capital in the sourcing location. I assume technology lowers

fragmentation costs so that ∂τ
∂η < 0. ρj represents the extent to which production technology in

industry j is amenable to electronic communication. If electronic communication about the production

process lowers fragmentation costs, then ∂2τ
∂η ∂ρ < 0. Intuitively, a firm’s communication technology will

have a bigger impact on costs when its production process can be codified in an electronic format.

A sourcing location’s human capital may also have an impact on the effectiveness of technology.

If so, then we expect the cost-reducing effect of firm and industry technology to increase in the

10MSP is the term used by practitioners and the U.S. Census Bureau to describe these suppliers.
11In this setup, fragmentation lowers production costs only through a cheaper wage. In practice, MSPs also enjoy

gains to specialization that provide an incentive for fragmentation even when wages are the same. The model can easily
be extended to capture this by assuming MSPs require α < 1 units of labor per task output.
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sourcing location’s human capital ( ∂2τ
∂ηi∂γs

< 0 and ∂2τ
∂ρj∂γs

< 0.) Finally, the effect of electronic

communication on fragmentation costs may also depend upon country human capital. In other words,

the differential effect across industries of firm technology may be an increasing function of human

capital ( ∂3τ
∂ηi∂ρj∂γs

< 0).

An important limitation of these assumptions is that the model allows for a differential impact

of human capital on the cost-lowering effects of firm and industry technology, but not on production

costs across countries. In other words, the model assumes that wage differences reflect unit labor

costs that are adjusted for differences in worker output due to skill or other factors. In the empirical

implementation, it will be important to control for skill differences and other factors that could lower

production costs across countries.

Final good producers pay the task specific fragmentation costs in units of labor from sourcing

location s. The per-unit cost to final good producer i for task k purchased from an MSP in location

s is:

ckijs = wsτ(δis, ωk, ηi, ηs, ρj). (B.4)

Fragmenting only maximizes variable profits if it results in lower costs of task production. Without

loss of generality, order tasks such that fragmentation costs are strictly increasing in the index k for

a given location. A necessary, though not sufficient, condition for fragmentation is then

wh > wDτD(0) or (B.5a)

wh > wOτO(0), (B.5b)

where D and O denote the lowest cost domestic and offshore locations respectively, and τ(0) denotes

the fragmentation cost of task k = 0. Equation (B.5) simply states that the task with the lowest

fragmentation cost must be cheaper to fragment, either domestically or offshore, than to produce in

an integrated plant. Whenever equation (B.5a) holds, then for offshoring to be potentially viable, it

must also be the case that
wO
wD

<
τD(0)

τO(0)
. (B.6)

In this case, the decision to offshore is independent of the home wage and depends only on the relative

costs and benefits of sourcing from the firm’s lowest cost domestic location relative to its lowest cost

foreign location.

Equations (B.5) and (B.6) highlight the role of relative wages and costs in determining whether

fragmentation and offshoring take place. If the wage differential is not sufficiently high relative to

fragmentation costs, then producers will not fragment and non-participation arises without any role

for fixed costs and productivity.12

When a producer only sources from one location s, then its optimal share of fragmented production,

12The other potential corner solution is wh > wsτs(1), where s ∈ {D,O}. In this case, producers fully fragment. Since
the focus of this paper is on U.S. manufactures that still perform some fraction of their physical transformation activities,
I assume wh is sufficiently low relative to costs so that full fragmentation does not occur.
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k̄s, is implicitly defined by

wh = wsτs(k̄s), where s ∈ {D,O}. (B.7)

The cost of the composite input M , for producer i sourcing from s is then:

Cis = (1− k̄s)wh + ws

k̄s∫
0

τis(k) dk, where s ∈ {D,O}. (B.8)

Figure B.1a illustrates the case where offshoring maximizes variable profits by minimizing the cost of

producing M .

This new cost for the composite input M results in the following profits for producer i:

πis =
(1− σ)A

σ(1−ε)

(
ϕ

Cis

)(ε−1)

− fs, where s ∈ {D,O}. (B.9)

B.3 Derivations of the productivity thresholds

In equilibrium, final good producer i chooses the sourcing location s that maximizes profits maxs{πis},
where s ∈ {I,D,O}. Since fragmentation entails a fixed cost, it will never occur if Equation (B.5) does

not hold. In this section, I determine the optimal fragmentation strategy for the subsets of producers

in a geographic state for whom: (i) domestic fragmentation maximizes variable profits; (ii) offshoring

maximizes variable profits. I first determine producers’ optimal share of fragmented tasks, and then

identify those producers’ profit maximizing decision.

Producers who face costs ckiD < ckiO ∀k represent the subset of producers for whom domestic

fragmentation maximizes variable profits, ND. Figure B.2a illustrates this cost scenario. In the figure,

CD, the cost of the composite M defined in Equation (B.8), is simply the area under the bold line.

Because domestic fragmentation also entails a fixed cost, Figure B.2b depicts the optimal sourcing

strategy for firms with these wage and cost conditions. Fragmentation lowers marginal costs and

therefore results in a profit function that is steeper in ϕε−1, but the fixed cost to fragment means that,

of the producers in the set ND, only those with productivity above the threshold

ϕ̃D =

[
σ1−ε

(1− σ)A

(
fD

C1−ε
D − w1−ε

h

)] 1
ε−1

, (B.10)

find it optimal to fragment domestically.

The subset of producers for whom offshore fragmentation maximizes variable profits face costs

ckiD > ckiO ∀k. Figure B.1a depicts this situation. CO, the cost of the composite input M , is the

area under the bold line. The cost of M under offshoring is clearly lower than the cost with domestic

fragmentation, which is the lower than the cost from integrated production. If the relative fixed

costs are small compared to the relative costs of M under domestic versus offshore fragmentation,
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then optimal profits are similar to those in Figure B.2b, except here only integrated production or

offshoring take place. However, if relative fixed costs are large compared to relative savings, or

fO
fD

>
C1−ε
O − w1−ε

h

C1−ε
D − w1−ε

h

,

then integrated production, domestic fragmentation, and offshoring are all possible profit maximizing

strategies. Figure B.1b depicts this case. Producers with productivity between ϕ̃D and ϕ̃O, fragment

domestically, while those with productivity above ϕ̃O offshore, where

ϕ̃O =

[
σ1−ε

(1− σ)A

(
(fO − fD)

C1−ε
O − C1−ε

D

)] 1
ε−1

. (B.11)

B.4 Comparative Statics

The model provides a framework in which to assess how changes in producer technology, distance to

suppliers, and labor cost differences affect the decision to fragment production. This section assesses

how these factors affect: (i) whether or not fragmentation is potentially feasible (i.e., the impact on

variable profits), and (ii) total profits.

B.4.1 Variation in producer’s technology

The model predicts that plants with better communication technology, η, will face lower fragmentation

costs. In particular, the cost of the composite input M for a producer fragmenting from location s is

decreasing in technology, according to:

∂Cs
∂η

=
∂k̄s
∂η

[
αwsτ(k̄s)− wh

]
+ αws

k̄s∫
0

∂τ(k)

∂η
dk < 0. (B.12)

The term in square brackets in Equation (B.12) is equal to zero from Equation (B.7).13 The sec-

ond term represents the inframarginal savings that result from better technology. Holding distance

and wage differences constant, an improvement in communication technology decreases fragmentation

costs. This decrease means that fragmentation is now potentially viable for a larger set of firms.

Producers for whom fragmentation already maximized variable profits are also more likely to

fragment production in response to improvements in their communication technology. The change in

fragmentation profits from an improvement in technology η is:

∂πs
∂η

= (1− ε)B[Cs]
−ε∂Cs

∂η
, (B.13)

13This is essentially the envelope condition in that the impact of changes in the share of tasks fragmented on profits
is zero to the first order. As is true for all derivatives, this expression holds for small changes in η. Figure B.2a shows
that the derivative may not capture the effect of large changes in η on task production costs.

11



where

B ≡ (1− σ)A

(σϕ)1−ε .

Plugging in Equation, (B.12), better technology increases fragmentation profits. Since πI is unaffected

by the change, this implies a lowering of the productivity threshold above which fragmentation is

optimal.

B.4.2 Variation in the home wage

An increase in the producer’s home wage, wh, makes fragmentation relatively more profitable. The

change in integrated profits relative to fragmented profits is

∂πI/∂wh
∂πs/∂wh

=
[wh]−ε

(1− k̄s)[Cs]−ε
. (B.14)

Plugging in the equation for Cs and simplifying shows that the decrease in profits from integrated

production is always greater than the decrease from fragmented production whenever

(1− k̄) +
1

τ(k̄)

∫
τ(k)dk > (1− k̄)(1/ε), (B.15)

which is a condition that always holds whenever k̄ > 0.

B.5 Domestic versus offshore sourcing

Of the firms that fragment production, only those with productivity above ϕ̃ε−1
O do so offshore. Since

the slope of the offshoring profit function depends upon fragmentation costs, the likelihood of exceeding

ϕ̃ε−1
O is also decreasing in the distance between a firm and its potential offshore sourcing locations.

More formally

∂ϕ̃ε−1

∂δ
=

[
∂CO
∂δ
− ∂CD

∂δ

](
wh(fO − fD)[
C1−ε
O − C1−ε

D

)2 ( σ2−εA

(1− σ)2

)(
C−εO − C

−ε
D

))
. (B.16)

The three terms inside the parentheses are positive, so the effect on the offshoring threshold depends

upon the sign of the terms in the square brackets. If a decrease in distance to foreign suppliers does

not affect plants’ distance to domestic suppliers, then the second term is zero and Equation (B.16) is

positive. The offshoring threshold is therefore higher, leading to the following prediction:

The offshoring threshold also depends upon communication technology. Specifically, the effect of

changes in technology on the productivity threshold is given by

∂ϕ̃ε−1

∂η
=

[
∂CO
∂η
− ∂CD

∂η

](
wh(fO − fD)[
C1−ε
O − C1−ε

D

]2 ( σ2−εA

(1− σ)2

)(
C−εO − C

−ε
D

))
(B.17)
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The terms in parentheses are positive, so the offshoring threshold is decreasing in technology as long

as ∂CO
∂η < ∂CD

∂η . Plugging in Equation (B.12) shows that an improvement in communication technology

will make offshoring relatively more profitable than domestic fragmentation if the inframarginal cost

savings from offshored production exceed the inframarginal cost savings of domestic fragmentation.

Consider the case depicted in Figure B.1a where ciD > ciO. In this case, offshoring maximizes variable

profits, but the higher fixed cost to offshore induces domestic fragmentation over some range of ϕ.

Under these conditions, the terms in the first set of brackets in Equation B.17 can be expressed as

αwO

k̄O∫
k̄D

∂τO(k)

∂η
dk + αwO

k̄D∫
0

∂τO(k)

∂η
dk − αwD

k̄D∫
0

∂τD(k)

∂η
dk. (B.18)

The first term is always negative, while the second two terms offset each other if the technology shock

affects all tasks and domestic and offshore costs equally. When this occurs, a technology improvement

will lower a firm’s offshoring threshold, making it more likely that the firm offshores. In contrast,

if the technology shock lowers domestic fragmentation costs relatively more than offshoring costs,

the offshoring threshold may rise, thereby decreasing the likelihood that a given firm will exceed the

threshold.
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Online Appendix Figures and Tables

Figure A.1: Differential impact of electronic networks, by industry CAD intensity

(a) Fragmentation (b) Offshoring | Fragmentation

Notes: Effect of plant use of electronic networks evaluated at different levels of industry CAD/CAM intensity.
Based on the estimates reported in columns 3 and 6 of Table 3 in the paper.
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Figure A.2: Differential impact of change in electronic network use, by industry CAD intensity

Notes: Effect of plant use of electronic networks evaluated at different levels of industry CAD/CAM intensity.
Based on the panel estimates reported in column 5 of Table 3 in the paper.

Table A.1: Correlations between industry CAD intensity and industry-level variables

CAD ShrDesSup ShrDesCo KI SI DI Off

Share designs 0.49
w/suppliers 0.00

Share designs 0.54 0.23
w/comp. units 0.00 0.00

Capital Intensity 0.09 -0.24 0.20
0.04 0.00 0.00

Skill Intensity 0.16 0.25 0.10 0.00
0.00 0.00 0.02 0.99

Diff Inputs 0.26 0.35 0.12 -0.37 0.37
0.00 0.00 0.01 0.00 0.00

Wholesale imports -0.03 -0.02 0.05 -0.08 0.01 0.15
to sales 0.57 0.62 0.27 0.10 0.92 0.00

Whole/Manf imports -0.03 -0.02 0.10 -0.07 -0.01 0.16 0.92
to sales 0.54 0.70 0.03 0.13 0.81 0.00 0.00

Notes: Correlation coefficients between industry CAD intensity, the share of manufacturing plants
that use electronic networks to share designs with suppliers, the share that use networks to share
designs with other company units, capital intensity, skill intensity, share of differentiated inputs, and
wholesale firm imports relative to domestic manufactures’ sales. Details on industry variables are
provided in the text. P-values reported in italics.
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Table A.2: Fragmentation and offshoring industry and industry-by-technology estimates

CAD Share diff Skill Log capital
Routineness

intensity inputs intensity intensity

Panel A: Industry Shares

Fragmentation 0.345*** 0.357*** 0.510*** -0.008 -0.357*
(0.089) (0.070) (0.121) (0.018) (0.197)

Offshoring 0.032*** 0.054*** 0.106*** 0.004 -0.065*
(0.011) (0.012) (0.025) (0.005) (0.038)

Offshoring | Fragmentation 0.027 0.100*** 0.163** 0.007 -0.059
(0.035) (0.032) (0.065) (0.012) (0.105)

Panel B: Industry by Technology Coefficients

Fragmentation 0.053* 0.047 0.016 0.003 0.124
(0.031) (0.052) (0.070) (0.008) (0.103)

Offshoring 0.003 0.041*** -0.003 -0.005 0.045
(0.013) (0.012) (0.027) (0.004) (0.053)

Offshoring | Fragmentation -0.031 0.066* -0.154* -0.023* 0.115
(0.035) (0.035) (0.081) (0.012) (0.130)

Panel C: Industry-by-Technology-by-Country Human Capital Coefficients

Low Skill Country Offshoring -0.030 0.020 -0.135*** -0.015*** 0.127***
(0.021) (0.022) (0.034) (0.006) (0.045)

High Skill Country Offshoring 0.060* 0.017 0.296*** 0.043*** -0.267**
(0.033) (0.049) (0.069) (0.012) (0.102)

Notes: Each column reports the coefficient and Huber-White robust standard error from a bivariate regression
of the estimated industry fragmentation or offshoring coefficient in the left column on the industry characteristic
listed at the top of the column. Panel A reports results for industry fragmentation and offshoring shares. Panel
B reports results for estimated industry-by-technology fragmentation and offshoring coefficients. Panel C reports
results for estimated industry-by-technology-by-country human capital tercile coefficients. There are 86 NAICS
4 manufacturing industries, though Panel C includes only 79 industries. Routineness is only available for 77
industries (70 for Panel C). Regressions are weighted by the number of plants in each industry.
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Table A.3: Marginal Effects for Nested Logit Estimation

ME on Probability of
None Domestic Offshore Off | Frag

A. Baseline Specification
ln(Distanceis)

Domestic 0.011 -0.017 0.007 0.023
0.003 0.008 0.006 0.016

Offshore 0.010 -0.009 -0.002 -0.003
0.003 0.002 0.002 0.002

ln(wageh) -0.156 0.143 0.013
0.044 0.040 0.012

Elec. networksi -0.100 0.090 0.010 0.005
0.028 0.025 0.009 0.004

ln(V AProdi) -0.041 0.033 0.008 0.013
0.012 0.010 0.007 0.009

B. Baseline Specification, with CAD Interaction
ln(Distanceis)

Domestic 0.006 -0.011 0.005 0.017
0.002 0.006 0.005 0.011

Offshore 0.006 -0.005 -0.001 -0.002
0.002 0.001 0.001 0.001

ln(wageh) -0.225 0.207 0.017
0.064 0.056 0.015

Elec. networksi -0.092 0.095 -0.003 -0.029
0.026 0.028 0.004 0.019

ln(V AProdi) -0.041 0.033 0.008 0.014
0.012 0.009 0.007 0.009

Notes: Average marginal effects (AMEs) for the Nested Logit specifications reported in Table 9 of the paper.
Standard deviations of AMEs reported in italics.
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Table A.4: Robustness estimates of the probability of fragmentation and offshoring

Dependent variable is an indicator equal to one if plant i:

Fragments Production Offshores | Fragmentation

1 2 3 4 5 6
Demand Skill IO Dist Demand Skill IO Dist

Elec. networksi 0.097*** 0.097*** 0.097*** 0.023*** 0.023*** 0.023***
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

ln(wageh) 0.187*** 0.161*** 0.175*** -0.096*** -0.106*** -0.093***
(0.028) (0.029) (0.027) (0.026) (0.027) (0.026)

ln(V AProdi) Q2 0.044*** 0.043*** 0.043*** 0.007** 0.007** 0.007**
(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

Q3 0.077*** 0.077*** 0.077*** 0.028*** 0.028*** 0.028***
(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

MSP 5-20 miles away -0.020*** -0.020*** 0.006 0.006
(0.005) (0.005) (0.006) (0.006)

20+ miles away -0.016 -0.017 0.002 0.000
(0.011) (0.011) (0.016) (0.016)

Port 51-200 miles -0.017*** -0.015*** -0.011*** -0.004 -0.004 -0.005
(0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

200+ miles away 0.002 0.007 0.005 -0.014*** -0.013*** -0.016***
(0.005) (0.005) (0.005) (0.004) (0.005) (0.004)

50+ miles to Mexico -0.016 -0.015 -0.021* -0.097*** -0.095*** -0.095***
(0.012) (0.012) (0.012) (0.018) (0.018) (0.018)

50+ miles to Canada -0.010 -0.011 -0.009 -0.011* -0.011* -0.011*
(0.008) (0.008) (0.008) (0.007) (0.006) (0.007)

ln(Personal income) 0.000 0.001
(0.001) (0.002)

College Degree 0.036*** 0.019
(0.012) (0.014)

Input wtd. dist is 10-50 miles -0.018*** 0.001
(0.004) (0.003)

50+ miles -0.024*** 0.002
(0.008) (0.007)

NAICS6 Fixed Effects yes yes yes yes yes yes
Adj. R2 0.09 0.09 0.09 0.08 0.08 0.08

Notes: Demand controls for personal income in the plant’s BEA Economic Area. Skill controls for the share of workers with
a college degree. IO dist is the weighted distance to each closest input supplier based on the plant’s industry and the implied
inputs from the BEA Input-Output tables. CAD is the CAD/CAM intensity in a plant’s industry. MSP denotes manufacturing
service provider. Standard errors clustered by state. *, **, *** denote 10%, 5% and 1% significance respectively. Results are
also robust to clustering by industry. N suppressed for disclosure avoidance.
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Table A.5: Fraction of Plants that Purchase CMS in each NAICS 4 Industry

Industry Description Share

3118 Bakeries and Tortilla Manufacturing 0.08
3273 Cement and Concrete Product Manufacturing 0.08
3211 Sawmills and Wood Preservation 0.10
3116 Animal Slaughtering and Processing 0.11
3253 Pesticide, Fertilizer, and Other Agricultural Chemical Manufacturing 0.13
3212 Veneer, Plywood, and Engineered Wood Product Manufacturing 0.13
3279 Other Nonmetallic Mineral Product Manufacturing 0.14
3113 Sugar and Confectionery Product Manufacturing 0.14
3115 Dairy Product Manufacturing 0.14
3379 Other Furniture Related Product Manufacturing 0.15
3274 Lime and Gypsum Product Manufacturing 0.15
3241 Petroleum and Coal Products Manufacturing 0.15
3117 Seafood Product Preparation and Packaging 0.16
3111 Animal Food Manufacturing 0.16
3328 Coating, Engraving, Heat Treating, and Allied Activities 0.17
3112 Grain and Oilseed Milling 0.18
3121 Beverage Manufacturing 0.19
3271 Clay Product and Refractory Manufacturing 0.19
3114 Fruit and Vegetable Preserving and Specialty Food Manufacturing 0.19
3259 Other Chemical Product and Preparation Manufacturing 0.20
3251 Basic Chemical Manufacturing 0.20
3149 Other Textile Product Mills 0.21
3362 Motor Vehicle Body and Trailer Manufacturing 0.22
3255 Paint, Coating, and Adhesive Manufacturing 0.22
3219 Other Wood Product Manufacturing 0.22
3159 Apparel Accessories and Other Apparel Manufacturing 0.23
3366 Ship and Boat Building 0.23
3261 Plastics Product Manufacturing 0.23
3272 Glass and Glass Product Manufacturing 0.24
3221 Pulp, Paper, and Paperboard Mills 0.24
3119 Other Food Manufacturing 0.24
3371 Household and Institutional Furniture and Kitchen Cabinet Manufacturing 0.25
3141 Textile Furnishings Mills 0.25
3372 Office Furniture (including Fixtures) Manufacturing 0.26
3262 Rubber Product Manufacturing 0.26
3252 Resin, Synthetic Rubber, and Artificial Synthetic Fibers and Filaments Manufacturing 0.26
3122 Tobacco Manufacturing 0.27
3133 Textile and Fabric Finishing and Fabric Coating Mills 0.27
3313 Alumina and Aluminum Production and Processing 0.27
3314 Nonferrous Metal (except Aluminum) Production and Processing 0.27
3152 Cut and Sew Apparel Manufacturing 0.27
3161 Leather and Hide Tanning and Finishing 0.27
3131 Fiber, Yarn, and Thread Mills 0.27
3132 Fabric Mills 0.28
3391 Medical Equipment and Supplies Manufacturing 0.28
3169 Other Leather and Allied Product Manufacturing 0.28
3323 Architectural and Structural Metals Manufacturing 0.28
3151 Apparel Knitting Mills 0.29
3399 Other Miscellaneous Manufacturing 0.30
3365 Railroad Rolling Stock Manufacturing 0.30
3326 Spring and Wire Product Manufacturing 0.30
3334 Ventilation, Heating, Air-Conditioning, and Commercial Refrigeration Equipment Manufacturing 0.31
3231 Printing and Related Support Activities 0.32
3312 Steel Product Manufacturing from Purchased Steel 0.32
3324 Boiler, Tank, and Shipping Container Manufacturing 0.32
3254 Pharmaceutical and Medicine Manufacturing 0.32
3256 Soap, Cleaning Compound, and Toilet Preparation Manufacturing 0.33
3311 Iron and Steel Mills and Ferroalloy Manufacturing 0.34
3327 Machine Shops; Turned Product; and Screw, Nut, and Bolt Manufacturing 0.35
3329 Other Fabricated Metal Product Manufacturing 0.36
3359 Other Electrical Equipment and Component Manufacturing 0.36
3222 Converted Paper Product Manufacturing 0.36
3315 Foundries 0.36
3346 Manufacturing and Reproducing Magnetic and Optical Media 0.36
3351 Electric Lighting Equipment Manufacturing 0.37
3352 Household Appliance Manufacturing 0.37
3322 Cutlery and Handtool Manufacturing 0.38
3344 Semiconductor and Other Electronic Component Manufacturing 0.38
3353 Electrical Equipment Manufacturing 0.38
3363 Motor Vehicle Parts Manufacturing 0.39
3332 Industrial Machinery Manufacturing 0.40
3333 Commercial and Service Industry Machinery Manufacturing 0.40
3321 Forging and Stamping 0.40
3335 Metalworking Machinery Manufacturing 0.41
3331 Agriculture, Construction, and Mining Machinery Manufacturing 0.41
3339 Other General Purpose Machinery Manufacturing 0.42
3343 Audio and Video Equipment Manufacturing 0.42
3325 Hardware Manufacturing 0.44
3369 Other Transportation Equipment Manufacturing 0.47
3345 Navigational, Measuring, Electromedical, and Control Instruments Manufacturing 0.47
3364 Aerospace Product and Parts Manufacturing 0.50
3336 Engine, Turbine, and Power Transmission Equipment Manufacturing 0.50
3341 Computer and Peripheral Equipment Manufacturing 0.50
3342 Communications Equipment Manufacturing 0.55
3361 Motor Vehicle Manufacturing 0.65
3162 Footwear Manufacturing DDD

Notes: Shares weighted by inverse probability of being included in the sample. Sorted by
share of plants that purchase CMS. DDD is supressed for disclosure avoidance.
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Table A.6: Manufacturing firms’ import behavior, by CMS purchase status

Imports
Sales

Low-income
Median count of Firm

HS Productsc Countriesd

(share) All Firms Importers All Firms Importers

No Purchases 0.09 0.28 0 3 0 2
Domestic Purchases 0.03 0.19 1 4 1 2
Offshore Purchases 0.2 0.48 8 11 3 4
Domestic & Offshore 0.16 0.19 123 124 20 20

Notes: Manufacturing firms are all firms in the CMS sample with one or more plants classified in
manufacturing. Firm imports are limited to manufactured goods. Imports

Sales is the average of total
firm imports over sales. Low income is firms’ average share of low income imports. a Count of
distinct 10 digit Harmonized System codes a firm imports. b Count of distinct countries from which
a firm imports.
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Figure B.1: Integrated production, domestic fragmentation or offshoring

(a) Variable costs per task (b) Profits

Figure B.2: Integrated production and domestic fragmentation

(a) Variable costs per task (b) Profits
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