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Abstract: Even when the research literature makes available to us the latest, 
most sophisticated solution algorithms, it may be possible to satisfy our needs 
with a generic solution approach. Faced with the need to find a solution to a 
challenging sequencing problem, we might be well served by relying on  
off-the-shelf optimisation software, implemented in Excel. To illustrate this 
point as it applies to sequencing problems, we revisit some results from the 
recent literature and compare the outcomes we can obtain with a specialised 
algorithm to those from a general-purpose, spreadsheet-based approach. 
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1 Introduction 

The flowshop model is a basic and widely-studied scheduling model. A special variation 
of the model, involving synchronous material movement, has recently been highlighted in 
the work of Huang and Ventura (2013), hereafter referred to as H&V. They created and 
tested an original dynamic programming algorithm that finds the minimum makespan in a 
three-station flowshop with synchronous transfers. Computational results indicated that 
their algorithm was ultimately limited by its storage requirements, but they were able to 
produce optimal solutions for problems containing up to 17 jobs. They also developed 
and tested several heuristic methods for the same problem, indicating that those methods 
could be effective for problem sizes that the dynamic programming algorithm could not 
accommodate. 
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In the inaugural issue of this journal, the case was made for attacking sequencing 
problems with a generic spreadsheet-based approach (Baker, 2011). In an earlier era, the 
spreadsheet was seldom considered a serious platform for solving sequencing problems. 
Personal computers and laptops were not particularly powerful, and the optimisation 
software that ran on those machines was not competitive with software available on 
larger machines. As a result, the spreadsheet was often dismissed as a simplistic 
mathematical device that might serve the educational environment but could not solve 
serious optimisation problems. In that setting, developments in scheduling theory 
favoured special-purpose solution methods that were tailored to particular types of 
problems. Such methods flourished in the research literature, and for good reason: they 
represented the best way – sometimes the only way – to solve challenging sequencing 
problems. 

With the advance of technology, however, that situation has changed. Excel has 
become familiar to a wide audience, especially in the business world. More and more 
users have become comfortable using the Excel interface, typically for purposes other 
than optimisation. Hardware and software have improved considerably, and  
general-purpose optimisation methods have been tuned to perform well in spreadsheet 
environments. In particular, mixed-integer programming formulations of certain 
sequencing problems can be solved with generic spreadsheet-based optimisation software 
to produce results that in some cases virtually match the computational speed of 
specialised, state-of-the-art procedures. 

A similar phenomenon has occurred in the development of heuristic solution 
methods. Off-the shelf versions of powerful, general-purpose heuristic algorithms have 
proven effective at solving sequencing problems on spreadsheets, and Excel users can 
employ these algorithms with modest preparation requirements. 

The implication is that general-purpose software merits consideration when exploring 
ways of finding solutions to sequencing problems, either for specific practical cases or in 
research studies. For practitioners, it is not always necessary to solve the largest, most 
challenging version of a particular problem, and a spreadsheet-based approach may be 
the most sensible one. For researchers, the tradition of searching for ever more novel and 
clever tailored algorithms may overlook the impressive capabilities of spreadsheet-based 
software, thereby leaving a potential gap in the evaluation of computational approaches 
to solving a theoretical problem type. This paper reinforces that point by revisiting the 
flowshop problem with synchronous transfers and demonstrating the virtues of a generic 
solution approach. 

In the next section, we review the main features of the problem under study and 
describe a mixed-integer programming formulation. We then report some computational 
results using the kind of hardware and software that is easily accessible to students and 
practitioners. Those results show that the mixed-integer programme finds solutions 
roughly as fast as the dynamic programming algorithm, but it does not face storage limits. 
We then turn to the subject of heuristic solutions and present computational evidence of 
better solutions than were previously available. 

2 The flowshop with synchronous transfers 

In the H&V version of the problem, a machining centre contains three stations (see 
Figure 1). One station is a loading/unloading (L/U) station, where parts are placed into 
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the production line and later removed from the line. The two other stations each house a 
CNC machine. An individual part or job moves from the L/U station to the first CNC 
machine, then to the second CNC machine, and finally back to the L/U station, where it 
leaves the centre. We can think of the parts as travelling along a clock face from loading 
at 6 o’clock to a first operation at 2 o’clock to a second operation at 10 o’clock and then 
back to 6 o’clock to unload. The parts move around the machining centre on a rotary 
table that transfers all resident parts simultaneously. 

Figure 1 Diagram of the synchronous flowshop 

 

For the purposes of notation, let Lj be the loading time for job j and let Uj be the 
unloading time. In addition let Aj be the processing time for job j on the first CNC 
machine and let Bj be the processing time for job j on the second CNC machine. The 
schedule consists of a series of time intervals, or cycles, within which each job 
experiences one operation before the rotary table transfers it to the next station. If we let 
[j] represent the job in sequence position j, then the cycle times yj become 
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The objective then becomes 
3

1

n
jj

M y
+

=
=∑  (1) 

To formulate the problem of minimising the makespan as a mixed-integer programme, 
we use assignment variables, defined as xij = 1 if job i occupies sequence position j. 
Thus, a set of assignment constraints is necessary to ensure that a full sequence exists, or 
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Here we define xij = 0 for j < 0 or j > n. The problem can thus be posed as the  
mixed-integer programming problem of minimising (1) subject to (2) to (6), with the xij 
variables as binary variables. This formulation contains (n2 + n + 3) variables and  
(5n + 3) constraints. 

A spreadsheet layout for the ten-job problem is shown in Figure 2, with explanations 
provided in Figure 3. The model was built for solution using the Gurobi Engine option in 
Analytic Solver Platform (ASP). ASP is a well-known, spreadsheet-based software 
package used in many undergraduate and graduate courses as well as by practitioners. 
(More information can be found at http://www.solver.com). 

The shaded cells in the display of Figure 2 are the decision variables, and these rows 
and columns would scale with the problem size. (The ten-job problem contains 113 
variables, 100 of which are integers, along with 53 constraints). The specification of the 
ten-job optimisation problem is as follows: 

Objective: S3 (minimise) 

Variables: F3:R3 
 F4:O13 

Constraints: F14:O14 = 1 
 S4:S13 = 1 
 F19 ≤ F3 
 G19:G20 ≤ G3 
 H19:H21 ≤ H3 
 I19:I21 ≤ I3 
 J19:J21 ≤ J3 
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 K19:K21 ≤ K3 
 L19:L21 ≤ L3 
 M19:M21 ≤ M3 
 N19:N21 ≤ N3 
 O19:O21 ≤ O3 
 P19:P21 ≤ P3 
 Q19:Q21 ≤ Q3 
 R19 ≤ R3 
 F4:O13 binary 

Figure 2 Spreadsheet layout of the optimisation model (see online version for colours) 

 

 

Figure 3 Legend for the spreadsheet model in Figure 2 

A4:A13  Job number (1 to n)             
B4:E10  Times for loading (L), unloading (U), and two operations (P1, P2) 
S3  Objective function                      

F3:R3  Cycle times for each of the (n+3) cycles          
F4:O13  Binary "assignment" variables specifying the sequence    
S4:S13  Row sums (=1) for the assignment variables       
F14:O14  Column sums (=1) for the assignment variables     
F2:O2  Cycle number (1 to n+3); also Position in sequence (1 to n) 

F15:O15  Loading times for job in this sequence position     
  SUMPRODUCT(F$4:F$13,$B$4:$B$13), copied to the right   

F16:O16  Time for operation 1 in this sequence position     
  SUMPRODUCT(F$4:F$13,$C$4:$C$13), copied to the right   

F17:O17  Time for operation 2 in this sequence position     
  SUMPRODUCT(F$4:F$13,$D$4:$D$13), copied to the right   

F18:O18  Unloading times for job in this sequence position     
  SUMPRODUCT(F$4:F$13,$E$4:$E$13), copied to the right   

F19:O19  Cycle time required for loading and/or unloading in this cycle 
F20:O20  Cycle time required for operation 1 in this cycle     
F19:O21  Cycle time required for operation 2 in this cycle       
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For the purposes of evaluating the spreadsheet-based model, a set of test problems was 
created, following the H&V experimental design. Three different regimes were covered 
in which processing times were sampled from a discrete uniform distribution. The lower 
limit of these distributions was always 1; the upper limits are shown in Table 1. Scenario 
I represents a balanced case, in which the expected total of loading and unloading times 
matches the expected times on both CNC machines. In Scenario II, the processing times 
dominate, meaning that their expected values are greater than the expected total of 
loading and unloading times. In scenario III, the opposite is true: the processing times are 
dominated by the sum of loading and unloading times. 
Table 1 Parameters for constructing problem instances 

Scenario L A B U 

I 7 11 11 3 
II 7 15 15 3 
III 10 11 11 4 

Ten problem instances were created for each scenario in the H&V experiments. In the 
case of their dynamic programming algorithm, however, solution times are likely to be 
fairly similar for a given number of jobs because the computational effort required by the 
algorithm is driven mainly by problem size. For mixed-integer programming, however, 
that is not the case. As with many combinatorial problems, the computational effort 
depends on the data in a given instance as well as on the problem size and can exhibit 
considerable variability for a given value of n. This characteristic suggests that it may be 
useful to capture median run times as well as average run times, and that larger samples 
are desirable in order to portray the performance of the algorithm. (H&V did not report 
median run times, but we might guess that they were quite close to average run times.) 
Thus, our experiments called for 30 instances for each scenario, or three times the 
number used by H&V. 
Table 2 Comparative results for optimisation 

Problem 
size Dataset ASP average ASP median H&V average 

10 I 0.73 0.72 0.24 
10 II 0.73 0.52 0.20 
10 III 0.58 0.48 0.19 
15 I 16.8 16.7  
15 II 10.4 7.2  
15 III 9.6 3.1  
17 I 380.2 172.8 201.2 
17 II 678.2 69.2 200.6 
17 III 293.0 11.0 202.0 
19 I 922.6 423.7  
19 II 1,543.0 922.7  
19 III 1,213.1 53.7  
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The experimental results are summarised in Table 2, which includes problem sizes of 10, 
15, 17, and 19. Problem sizes of 10 and 17 were used in the work of H&V. Their reported 
average cpu times are reproduced in Table 2. (Their results were based on the use of a 1.6 
Ghz processor versus a 2.9 Ghz processor in the present case.) All reported times are in 
seconds. 

The results in Table 2 show that problems containing ten jobs can be solved in less 
than a second, on average, using either method, but with the dynamic programming 
algorithm providing faster run times. Problems containing 17 jobs are more challenging, 
with both algorithms taking an average of a few minutes. Here, the mixed-integer 
approach often exhibits larger average run times but smaller median run times. 

Also shown in Table 2 are the results for problems containing 19 jobs for the  
mixed-integer approach. Problems of this size were beyond the capability of the H&V 
algorithm. In these experiments, the mixed-integer algorithm was terminated after an 
hour of run time. As a result, in nine of the 90 test problems, the solution procedure did 
not prove optimality, although a closer look demonstrated that in some cases the optimal 
makespan had been found. (In the literature on integer programming, it is sometimes 
observed that codes take longer to prove optimality than to find an optimal solution in the 
first place. That characterisation appears to apply to this formulation, at least as it relates 
to problem sizes of 17 and above). Thus, although there is no formal limit to the problem 
size that can be attacked with mixed-integer formulation, run times may occasionally 
grow quite large depending on the parameters in a specific problem. On the other hand, 
we can observe that in dataset III the run times were often quite short, exhibiting a 
median of less than a minute even for 19-job problems. 

3 Heuristic solutions 

In addition to its mixed-integer optimisation capability, ASP offers a generic evolutionary 
algorithm that has proven effective at solving sequencing problems. Building a 
spreadsheet-based model for this purpose is more straightforward than for mixed-integer 
programming, as evidenced by the model displayed in Figure 4. In the spreadsheet, rows 
1-5 contain the data for a given instance. Row 7 contains the only decision variables, 
which assign jobs to positions in sequence. Rows 8 to 11 rearrange the various processing 
times to follow the sequence specified in Row 7. The cycle times can then be calculated 
in Row 17, along with their sum, thus providing the makespan, captured in cell C17. The 
model specification is as follows. 

Objective: C17 (minimise) 

Variables: D7:M7 

Constraints: D7:M7 = alldifferent 
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Figure 4 Spreadsheet layout of the heuristic model (see online version for colours) 

  

 

Solutions were generated using the genetic algorithm option for the Evolutionary Engine 
in ASP, which is suited to non-smooth models such as this one. The implementation of 
that option is most effective with manual intervention after many, if not all, individual 
runs of the procedure, although the specific intervention may often be subjective. 
However, that mode of iterative solution does not lend itself to the kinds of batch runs 
used earlier in the optimisation experiments. To explore the possibilities using a simple 
batch format, the following procedure was adopted. 

1 Initialise by sequencing the jobs in numerical order. 

2 Run the evolutionary engine using its default parameters and a 10-second time limit. 

3 Re-run the evolutionary engine to see whether its stochastic elements produce an 
improvement. If so, continue to re-run the algorithm. 

4 When a run does not improve the solution, re-initialise the sequence by taking the 
jobs in reverse numerical order, increase the mutation rate, and run the evolutionary 
engine. 

5 Repeat step 3. 

6 Select the better of the solutions generated from the two initialisation procedures. 

The evolutionary engine contains random components. As a consequence, no two runs 
from a given initial sequence can be guaranteed to produce the same final solution. 
Similarly, the automated procedure used here may or may not produce a better solution 
than a flexible, manual implementation. However, this standardised implementation 
likely underestimates the results attainable by manual implementation, which can involve 
many tailored adjustments of the search parameters as well as longer run times. 

The experimental results are summarised in Table 3, based on the same problem 
instances created for the optimisation runs in Table 2. For the evolutionary solver of ASP, 
Table 3 shows the average percentage error in the heuristic solution as well as the number 
of optima produced (out of 30). The average percentage error reported for the H&V 
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heuristics are those for the variation CAGI-S2, which, in the H&V experiments, produced 
the smallest average error in all cases except for dataset I and n = 10 (for which the best 
average among the H&V heuristics was 1.05%). 
Table 3 Comparative results for heuristic solutions 

Problem 
size Dataset ASP error H&V error ASP opt. 

10 I 0.00% 1.25% 30 
10 II 0.00% 1.15% 30 
10 III 0.00% 0.72% 30 
15 I 0.89%  10 
15 II 0.36%  19 
15 III 0.43%  19 
17 I 0.84% 2.18% 9 
17 II 0.44% 0.97% 11 
17 III 0.61% 0.70% 15 
19 I 1.38%  1 
19 II 0.67%  9 
19 III 0.93%  11 

Although the instances were not the same in both studies, it does appear that the 
evolutionary algorithm in ASP tends to provide better performance where comparisons 
are possible. That is, its average suboptimality was lower than that of the CAGI-S2 
heuristic in the six datasets that used common parameters. Noteworthy is that fact that 
optimal solutions to all of the ten-job problems were found by the evolutionary heuristic. 
For larger problems, the evolutionary heuristic produced an average suboptimality that 
increased with problem size, but even on larger problems, the average error remained 
small. For the 270 test problems with n ≤ 17, the worst case error observed for the 
evolutionary heuristic was 2.2%, and it is worth reiterating that this figure likely 
underestimates the algorithm’s potential because of the 10-secnd time limit and the 
simplified nature of the experimental method. 

4 Conclusions 

Special-purpose solution algorithms for challenging sequencing problems have been 
found throughout the literature on scheduling for most of the time it has been an area of 
research interest. However, adapting those algorithms for specific practical purposes can 
itself be a challenging task. In this paper, we reinforce the point that it is sometimes 
possible to avoid the demands of learning, tuning, and coding a highly specialised 
procedure to find solutions. Instead, it is possible to obtain satisfactory results with an 
approach that is both accessible and generic – using spreadsheet-based software with 
general-purpose optimisation capabilities. We used the synchronous flowshop model as a 
case in point and demonstrated the effectiveness of using a mixed-integer programming 
approach (for optimisation) or a standard evolutionary approach (for heuristic solutions). 
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These generic alternatives cannot promise superior performance in every instance, but 
they deserve to be considered seriously as suitable algorithms. 

The results of this type helps bridge the gap between research and practice. A 
spreadsheet-based approach that uses general-purpose optimisation capabilities represents 
a methodology that can work in both settings. For researchers, this methodology 
represents an important candidate for solving computationally demanding problems and 
provides a useful perspective on the computational performance of special-purpose 
algorithms. For practitioners, this methodology allows for faster and easier model 
development, as compared to the use of special-purpose algorithms, and even gives 
practitioners a basis to conduct their own research investigations. Although mixed integer 
programming and evolutionary heuristics are well-established methodologies, they 
deserve serious consideration by both researchers and practitioners. 
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