
Research Notes for Appendix A
*
 

 

Some topics introduced in Appendix A require elaboration. First, regarding the Parkinson 

distribution, our text introduces the probability model and the distribution name for the 

first time. Gutierrez and Kouvelis (1991) study the stochastic effects of Parkinson’s Law 

based on hypothesized mathematical models of work expansion behavior that might 

apply. They then compare the expected project completion time under various 

combinations of due date setting rules and work expansion models. Hasija, Pinker and 

Shumsky (2010) describe a complementary model that focuses on capacity rather than 

individual task times but captures a similar phenomenon. The Parkinson distribution is 

based on a simpler hypothesis than work expansion: earliness is hidden. Our empirical 

results so far support this hypothesis. Trietsch, Mazmanyan, Gevorgyan and Baker (2010) 

introduces a more general definition whereby only a fraction of early jobs are subject to 

the Parkinson effect.  We elaborate in the next section, to complement our coverage of 

the original, pure Parkinson, version.  More important than the name, the properties of 

the Parkinson distribution have not been studied extensively yet. One such property is 

intuitively clear: relative to the core random variable by itself, the Parkinson distribution 

decreases the variance but at the expense of increasing the mean.
†
 For the pure version, 

we already stated this result—without proof—in the Appendix itself. Here, we prove it 

for the general version. The proof of the lognormal central limit theorem is another 

unpublished result, due to Mazmanyan, Ohanyan and Trietsch (2008). Essentially, it boils 

down to a simple observation that in the limit the lognormal becomes normal, so the 

regular central limit theorem applies. However, they also showed that the lognormal 

central limit theorem tends to provide a better approximation than the normal for the sum 

of a few strictly positive random variables, especially if the random variables are skewed 

to the right (as per our generic assumption). We repeat these results for completeness. 

The use of linearly-associated lognormal processing time distributions is just emerging. 

Trietsch (2005), the original paper on their application to project processing times, did 

not utilize the lognormal central limit theorem. That refinement—due to Trietsch, 

Mazmanyan, Gevorgyan and Baker (2010)—was actually motivated by our text. We also 

discuss how to use the Parkinson distribution in simulation. Preliminary evidence 

suggests the need to take account of correlations between the parameters involved. For 

instance, the probability of earliness being unreported seems to be strongly correlated 

with the common factor of the linear association, so each simulation run should select 
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correlated values for these parameters (averages are not sufficient). We present one way 

to do that. Finally, we elaborate on the issue of stochastic dominance and we show that 

lognormal variates with the same s but different m parameters are stochastically ordered 

in the likelihood ratio sense, which implies stochastic ordering in the regular sense.  

 

The Parkinson Distribution 

 As in our text, but with a slightly different notation, we define the pure Parkinson 

distribution as 

 

  X = max{q, Y}  

 

where X is the random variable we can observe and Y is a core random variable that we 

can observe directly only if it exceeds the constant q. Recognizing that in practice some 

early realizations are observable, let pE denote the probability that Y ≤ q and let pP denote 

the probability that Parkinson’s Law applies to an early processing time. Thus, if Y ≤ q 

then with a probability of pP we obtain X = q and with the complementary probability, (1 

− pP), we obtain X = Y ≤ q. By assuming that these probabilities apply independently to 

different processing times, we obtain the general form of the Parkinson distribution. 

Another way to write this is 

 

  X = max{Q, Y}  

 

where Q is a random variable such that if Y ≤ q, an event with probability pE, Q = q with 

conditional probability pP; otherwise, Q = Y. Finally, the pure Parkinson distribution is a 

special case with pP = 1, whereas regular random variables can also be modeled as a 

special Parkinson case with pP = 0. 

 

Bounding the Variance of the Parkinson Distribution 

 Our purpose is to prove that under the Parkinson distribution V(X) ≤ V(Y) but 

E(X) ≥ E(Y) (and if one of the inequalities is strict, the other is also strict). We start with 

the pure version (pP = 1) and we first prove a more general result for order statistics. Let 

{Xi}i = 1, …, n be a set of random variables and denote their expected values, variances and 

cdfs by µi, σi
2
 and Fi(x), respectively. Without loss of generality, assume µ1 ≤ µ2 ≤ … µi ≤ 

µ(i + 1) ≤ … µn. Define the complementary function Hi(x) = 1 − Fi(x) for all i and any 

admissible x. Let {X[i]}i = 1, …, n be the corresponding set of order statistics defined for 

samples with n realizations from the set {Xi}i = 1, …, n (one from each Xi). Specifically, X[1] 

= min{Xi} and X[n] = max{Xi}, so we may use the notations min and max for X[1] and X[n]. 

Our task is to prove the following theorem: 

 

 

Theorem RNA.1:  Σi = 1, …, nσ[i]
2 ≤ Σi = 1, …, nσi

2
. 

 

  

We stress that we are not requiring stochastic independence and—unlike the case in basic 

order statistics analysis—we are not assuming that all distributions are identical. 

Conceptually, we may think of a sample with r independent repetitions of n realizations, 
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one from each member of the set {Xi}i = 1, …, n, then as r → ∞ this conceptual sample 

represents the set precisely in the sense that the empirical distribution of the ith column 

converges to Fi(x). If we add n new columns in which we place the sorted values of each 

repetition, the empirical distribution of the (n + i)th column converges to F[i](x). The 

Theorem states that the sum of the variances associated with each of the added columns 

cannot exceed the respective sum in the unsorted sample. That is, by sorting the sample 

from smallest to largest and then considering the distributions of the sorted values we 

reduce the total variance in the system. It is easy to verify that equality is guaranteed if all 

Fi(x) (and thus also all Hi(x)) are non-overlapping (in such a case the sorted columns of 

the conceptual sample are identical to the original columns). But otherwise the inequality 

is strict.
*
  

 

 

Corollary:  σmin
2, σmax

2 ≤ σmin
2 + σmax

2
 ≤ Σi = 1, …, nσi

2
 ;  for any n ≥ 2. 

 

  

We first prove the special case n = 2, to which we refer as Theorem RNA.1a (we will use 

the modifier "a" to denote this special case in general). This case is actually sufficient to 

show that the pure Parkinson distribution yields a lower variance at the expense of a 

higher mean. The following lemma is true by definition, because we are dealing with 

order statistics: 

 

 

Lemma RNA.1: Fmin(x) ≥ max{Fi(x)}i = 1, …, n ≥ min{Fi(x)}i = 1, …, n ≥ Fmax(x) for any 

admissible argument x. 

 

  

That is, Xmin is stochastically smallest and Xmax is stochastically largest. For the n = 2 

case, Lemma RNA.1 suggests that both F1(x) and F2(x) are restricted to the envelope 

between Fmax(x) and Fmin(x).  

 

 

Lemma RNA.2a: For n = 2, µmin
2 + µmax

2 ≥ µ1
2 + µ2

2. 

 

  

Proof. 

 

»» Define δ = µ1 − µmin and notice that δ ≥ 0 by Lemma RNA.1. Because µ1 + µ2 = µmin + 

µmax we also obtain µmax = µ2 + δ. Substituting µ1 − δ for µmin and µ2 + δ for µmax, µmin
2
 + 

µmax
2
 = µ1

2
 + µ2

2
 + 2δ(µ2 − µ1 + δ). But µ2 ≥ µ1 (by assumption) so 2δ(µ2 − µ1 + δ) ≥ 0. 

(If we were to reverse the assumption that µ2 ≥ µ1 then Lemma RNA.1 would imply that 

δ ≥ µ1 − µ2, and Lemma RNA.2a would still hold.)  «« 

 

                                                 
*
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 The following lemma states that the total second moment of the set of 

distributions does not change by sorting. It is a basic result in the field of order statistics 

for any moment, and indeed we have already used the same result for the first moment in 

our proof of Lemma RNA.2a (by stating that µ1 + µ2 = µmin + µmax). It is easy to see it in 

terms of the conceptual sample where sorting does not change the actual realizations that 

we square.  

 

 

Lemma RNA.3: Σi = 1, …, nE(Xi
2) = Σi = 1, …, nE(X[i]

2). 

 

  

For n = 2, 

 

 

Lemma RNA.3a: Let X1 and X2 be independent random variables with finite variances, 

then E(Xmin
2) + E(Xmax

2) = E(X1
2) + E(X2

2). 

 

 

 

 

Theorem RNA.1a: Let X1 and X2 be independent random variables with finite variances, 

then σmin
2 + σmax

2 ≤ σ1
2 + σ2

2. 

 

  

Proof. 

 

»» By Lemmas 2a and 3a, σmin
2
 + σmax

2
 = E(Xmin

2
) − µmin

2
 + E(Xmax

2
) − µmax

2
 = E(X1

2
) − 

µ1
2 

+ E(X2
2
) − µ2

2
 − 2δ(µ2 − µ1 + δ) = σ1

2
 + σ2

2
 − 

 
2δ(µ2 − µ1 + δ) ≤ σ1

2
 + σ2

2
.  «« 

 

 To extend the proof of Theorem RNA.1a to Theorem RNA.1 (for any n), using 

Lemma RNA.3, it is sufficient to show that Σi = 1, …, nµi
2
 ≤ Σi = 1, …, nµ[i]

2
 (which effectively 

generalizes Lemma RNA.2a). To that end we invoke the conceptual sample and we use a 

particular sorting process that starts with the original sample (as in columns 1 through n), 

ends with the fully sorted sample (as in columns n + 1 through 2n), and such that Σi = 1, …, 

nµi
2
 as defined for the columns during the process is monotone increasing. To that end, 

we define the adjacent column partial interchange (ACPI) in the context of a conceptual 

sample: for columns i and (i + 1), compare the realizations one by one (from repetition 1 

to repetition r), exchange any pair for which the entry in column i strictly exceeds that of 

column (i + 1), and update µi and µ(i + 1). As a result µi decreases by some positive value δ 

and µ(i + 1) increases by the same value. Recall that the initial sample is sorted so that µi ≤ 

µ(i + 1) and after the ACPI the same relationship is strengthened. Hence, by the arguments 

we used to prove Lemma RNA.2a,  µi
2 + µ(i + 1)

 2 must also increase. To complete the 

proof observe that by performing the ACPI o(n2) times we can obtain the fully sorted 

sample. 

 To prove that the pure Parkinson distribution reduces the variance, it is sufficient to 

use the version of the corollary for n = 2. Of the two elements in the pure Parkinson 
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distribution, q has a variance of zero so the variance of the maximum—the pure 

Parkinson random variable itself—is bounded from above by the variance of the core 

element minus the variance of the minimum. Showing that the mean must increase is 

trivial (unless Pr{Y ≤ q} = 0, in which case neither the mean nor the variance change). 

 Finally, to extend the proof to the more general case (0 ≤ pP ≤ 1), we slightly adapt 

the ACPI procedure as applied to the two columns representing Y and q. Instead of 

exchanging for every instance where the entries are in the wrong order, we now take a 

side lottery with a probability of pP to decide whether to perform the exchange. 

 

The Lognormal Central Limit Theorem for Positive Random Variables
*
 

 In practice, the central limit theorem is often invoked for the convolution of few 

independent random variables by a normal approximation. The fact that the normal 

approximation is appropriate for the sum of a very large number of independent random 

variables is interpreted as permission to use it for a small number of random variables. 

This may be justified by necessity, but in scheduling applications—where all processing 

times are nonnegative—we can do better by using the lognormal approximation instead 

of the normal. Among popular distributions, the lognormal distribution is unique because 

it satisfies elementary conditions that convolution of a small number of continuous 

nonnegative random variables must satisfy. Yet it converges to the normal when the 

number of random variables grows large, in which case we know that the normal 

approximation is appropriate. Therefore, one can use it as the basis of an alternative 

central limit theorem for nonnegative random variables. 

 Let X denote the convolution of n ≥ 2 independent, nonnegative and continuous 

random variables with positive means and finite coefficients of variation. We may refer 

to these random variables as components. If we denote the mean of component j by μj and 

its variance by σj
2
, then it is well known that the mean and variance of X, μX and σX

2
, are 

given by μX = Σμj and  σX
2
 = Σσj

2
 (due to statistical independence). We do not require the 

components to be identically distributed, but they must satisfy the regularity conditions of 

the central limit theorem (CLT); i.e., when n → ∞, no single component should dominate 

the convolution. Equivalently, we require that as n → ∞, μj/μX → 0 and σj
2
/σX

2
 → 0 for all 

j. Denote the density function of X by fX(x) and that of component j by fj(x). Whereas fj(0) 

> 0 is allowed (e.g., if the component is distributed exponentially), we can show by a 

limiting argument that, because n ≥ 2, fX(0) = 0. For small n, if the components have very 

high coefficients of variation, the coefficient of variation of X may also be high (although 

it must tend to zero when n grows large). Finally, when n → ∞, the CLT should apply. 

We list these observations as three conditions: 

 

(i) fX(x) = 0 for x ≤ 0, 

 

(ii) σX/μX is unbounded, 

(iii) as n → ∞, fX(x) → 





















 


2

2

1
exp

2

1

X

X

X

x






. 

                                                 
*
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The vast majority of conventional distributions do not satisfy all three conditions. The 

normal distribution is disqualified by (i), because the normal random variable may be 

negative. When the probability of a negative realization becomes sufficiently negligible, 

the normal does not comply with (ii) either; for instance, if we require the probability of a 

negative realization to be below 0.00135, cv ≤ 1/3 is necessary. Once we limit ourselves 

to nonnegative random variables, distributions that satisfy condition (i) often violate 

condition (ii). Conversely, most distributions that satisfy condition (ii), such as Weibull 

or gamma, violate condition (i) because they rely on fX(0) > 0 in cases with high σX/μX. 

The most notable exception is the lognormal. We show that it satisfies all three 

conditions.  

 Condition (i) is satisfied by the lognormal distribution because as x → 0
+
, ln x → 

−∞. Condition (ii) is satisfied because in the lognormal case cv is unconstrained. To show 

that condition (iii) is satisfied, all the following claims are subject to the stipulation that n 

→ ∞. By the law of large numbers, cv = σX/μX → 0 (because μj > 0 and σj/μj is finite for 

all j). But s
2
 = ln(1 + cv

2
) so as cv → 0, s

2
 → cv

2
 and, equivalently, s → cv. Also, for any 

x in the support of the distribution, x/μX → 1 almost surely. Therefore, xs → σX and thus 

2xs →  2X . It remains to show that (ln x − m)/s → (x − μX)/σX. We can write x = 

μX(x/μX), so ln x = ln μX + ln(x/μX). But x/μX → 1 so ln(x/μX) → (x − μX)/μX. Recall that m 

= ln μX − s
2
/2 and s

2
/2 → 0, so m → ln μX. Substituting these values for ln x and m we 

obtain (ln x − m)/s → (x − μX)/sμX. Finally, sμX → σX, thus completing the proof. 

 

Table RNA.1: The relative MAD of k-Erlang and Chi-Square approximations with k d.f. 

Erlang Case   Chi-Square Case   

k= Normal Lognormal Ratio d.f. Normal Lognormal Ratio 

1 0.314351 0.123926 0.394229 1 0.599782 0.202787 0.338102 

2 0.159869 0.070044 0.438132 2 0.314351 0.123926 0.394229 

3 0.107003 0.048841 0.456447 3 0.212118 0.089476 0.421823 

4 0.08038- 0.037492 0.466434 4 0.159869 0.070044 0.438132 

5 0.064357 0.030422 0.472708 5 0.128215 0.057551 0.448865 

6 0.053658 0.025595 0.477011 6 0.107003 0.048841 0.456447 

7 0.046008 0.022090 0.480143 7 0.091803 0.042421 0.462083 

8 0.040266 0.019429 0.482526 8 0.080380 0.037492 0.466434 

9 0.035798 0.017341 0.484399 9 0.071483 0.033589 0.469893 

10 0.032223 0.015657 0.485909 10 0.064357 0.030422 0.472708 

12 0.026857 0.013112 0.488196 12 0.053658 0.025595 0.477011 

14 0.023024 0.011278 0.489844 14 0.046008 0.022090 0.480143 

16 0.020147 0.009894 0.491089 16 0.040266 0.019429 0.482526 

18 0.017910 0.008813 0.492062 18 0.035798 0.017341 0.484399 

20 0.016120 0.007945 0.492843 20 0.032223 0.015657 0.485909 

25 0.012897 0.006375 0.494257 25 0.025784 0.012599 0.488656 

30 0.010748 0.005323 0.495205 30 0.021490 0.010541 0.490507 

40 0.008062 0.004002 0.496395 40 0.016120 0.007945 0.492843 

50 0.006450 0.003206 0.497112 50 0.012897 0.006375 0.494257 

75 0.004300 0.002142 0.498073 75 0.008599 0.004267 0.496156 

100 0.003225 0.001608 0.498555 100 0.006450 0.003206 0.497112 

150 0.002150 0.001073 0.499040 150 0.004300 0.002142 0.498073 

200 0.001613 0.000805 0.499284 200 0.003225 0.001608 0.498555 
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 To illustrate the efficacy of using the lognormal approximation, Mazmanyan, 

Ohanyan and Trietsch test it for the k-Erlang distribution with various k. They report the 

mean absolute deviation (MAD) of the lognormal approximation, as a fraction of the 

mean, and compare it with that of the normal distribution. The results are given in the 

first four columns of Table RNA.1. By the table, it is evident that the relative MAD of the 

lognormal approximation is at most 50% of the normal’s in this case (i.e., the 

approximation is at least two times better). Furthermore, it is even more advantageous 

where it counts most, for small k. Very similar results apply for the chi-square 

distribution, as shown in the subsequent columns of the table. Due to the larger variance 

of the chi-square distribution, convergence seems to be exactly twice as fast for the 

Erlang case. Thus, the lognormal approximation avoids violating conditions (i) and (ii) 

and outperforms the normal sizably for low k values. It also outperforms the normal 

approximation for high k values for which the normal is highly unlikely to violate 

condition (i) in practice. On the one hand, when using the lognormal approximation for 

symmetric components, if the normal approximation is sufficiently unlikely to yield a 

negative result then the advantage goes to the normal (because a symmetric result is 

advantageous in that case). On the other hand, however, typical nonnegative random 

variables are usually skewed to the right in practice.  

 

Estimating the Parkinson Distribution Parameters and Using it in Simulation 

 The results we present here are based on Trietsch et al. (2010). First, we need a 

way to tell whether the Parkinson distribution provides a reasonable approximation for 

typical processing times in our past projects. Then, if the fit appears adequate, we need a 

way to use the information available from historical (complete) projects to generate 

plausible Parkinson distributions for new projects. We assume that Y—the internal 

random variable—is lognormal, and we have a history of several activity times that are 

linearly associated with a common factor that is also a random variable. There are two 

approaches to model the common factor. One, which is convenient when there is 

sufficient data, is to fit a lognormal distribution to the common factor data (which can 

then be used in simulation). An alternative is to use the empirical distribution provided by 

history (without fitting any theoretical distribution to it). Below we focus on the 

alternative. Recall that if processing times are actually independent we obtain a special 

case of linear association with a constant common factor. Hence our assumption is 

essentially a decision to test and account for correlation by basic linear association.  

 We assume that a history of K projects is available and, as our first step, we wish 

to validate that these projects fit the Parkinson distribution with a common factor model 

reasonably well. The second step is to estimate distributions for new projects, which can 

then be used for simulation. For validation, for each project we treat the other K – 1 

projects as "history." As a result, we obtain for each project a simulated distribution, and 

we can associate its actual completion time with a probability (cdf value). The set of K 

probabilities thus obtained can be tested statistically and thus provide validation for the 

model. An early version of Trietsch et al. (2010) reported that this approach was 

successful for a set of nine projects that exhibited the pure Parkinson distribution (with pP 

= 1). In the current version, the authors analyze a smaller data set, with five projects, 

using the general Parkinson distribution. They report that this application passes the 

validation test as well. (In the first version, written before the generalized definition was 
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proposed, one of the projects could not be analyzed by data from the others because it 

had an excessive pP, whereas the other projects in the family could be analyzed as if pP 

were 0.) These data were given in very crude units: all estimates were in months (which 

the authors interpreted as four weeks) and with one exception, all realizations were given 

in weeks (the exception took three days, which was interpreted as half a week). Hence, 

further research and validation—preferably by others—is necessary. With this caveat, the 

analysis indicates that parameters such as pP and pE are highly correlated. Similarly, in 

the nine-project case, the authors observe a strong correlation between the common factor 

and the coefficient of variation of Y. Even more complex correlations cannot be ruled out. 

(Such correlations must be taken into account explicitly in subsequent simulations.) For 

the pure Parkinson case we can estimate the coefficient of variation of logY, and the 

logarithm of the common factor by using regression for activities with Y > q. We sort 

ratios in increasing order; that is, the activity with the j-smallest ln(p/e) of project k is 

denoted by the index jk.  Omitting the error term, if this activity is tardy we obtain for it 

the equation  

 

   
jk

jk

kjkk
e

p
szb lnˆ)(n̂l        (1) 

 

where—using Blom's scores—zjk = Φ
−1

[(j − 0.375)/(nk + 0.25)] (the z-value for which the 

standard normal distribution cdf yields a probability of (j − 0.375)/(nk + 0.25)), bk is the 

common factor, and sk is the slope. ln(bk) and sk are the parameters of the lognormal 

distribution of pjk/ejk that we usually denote by m and s. That is, we treat the transformed 

values ln(pjk/ejk) as our dependent variables, and we obtain estimators for their mean and 

standard deviation, ln(bk) and sk. In this analysis we assume that all non-tardy activities 

are "on time" and thus they are useless for the purpose of estimating the parameters of Y. 

In the general Parkinson case we can also use similar equations for strictly early 

activities. That requires an adaptation, however, because the effective sample size from 

which the strictly early activities are drawn is smaller than nk: for strictly early activities, 

instead of using zjk = Φ
−1

[(j − 0.375)/(nk + 0.25)], we have zjk = Φ
−1

[(j − 0.375)/((1 − 

pP)(nk + 0.25))]. If the regression line thus obtained fits all the strictly tardy and strictly 

early activities reasonably well (with a high R
2
 value and with residuals that appear 

random and normal), we can accept the model and proceed to step 2, using it in 

simulation. Trietsch et al. (2010) report a reasonable fit. 

 To simulate the Parkinson with linear association for a new project, we can now 

rely on the distribution obtained by all K historical projects. A simple and effective way 

to do that for a small K is adopted in that paper. Working in the logarithmic transform 

space, if the mean bias, slope and pP parameters of project i are denoted by  mi, si, and pPi, 

and we wish to simulate project k by a stored sample with r rows, then we use the 

parameters mi, si, and pPi of the ith project in [ni / ∑ i ≠ k ni]r of these rows. By using the 

parameters of each project i ≠ k in the history together (as a block), we automatically 

account for any empirical correlation in the data. Essentially, what we are doing here is 

using an empirical copula to model any correlation that might exist among the 
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components of our multivariate distribution.
*
 A modification that requires further 

research is to discount older projects so that the effective copula we are using favors 

recent projects. This could be desirable because it is possible that users will learn to 

reduce their average bias as a result of measuring it routinely, which our system does. If 

so, old projects’ common factors should be given lesser weight. 

 

On Stochastic Orders and the Lognormal Distribution 

 The subject of stochastic orders is very rich (e.g., see Shaked & Shanthikumar 

1994), and in the text we limited ourselves to the two most basic and useful examples, by 

expectation and in the regular stochastic sense (≤ex and ≤st). We noted that ≤st implies ≤ex. 

In our Research Notes for Chapter 6 we introduced the strongest stochastic dominance 

form, ≤as, where the dominance occurs with probability 1 (that is, almost surely). We 

noted that ≤as implies ≤st. Yet another form of stochastic dominance is by likelihood ratio, 

denoted ≤lr, and in terms of strength it lies between ≤st and ≤as; that is, ≤as implies ≤lr, 

which in turn implies ≤st. We say that X ≤lr Y if fX(t)/fY(t) is monotone nonincreasing in t, 

where fX(t) and fY(t) are the density functions of X and Y when X and Y are continuous, or 

mass functions when they are discrete (in which case t = 0, 1, ...). In this context, we 

interpret division of a positive number by zero as +∞. For example, it is easy to show that 

if X and Y are exponential such that µX ≤ µY, then X ≤lr Y. We now show a similar result 

when X and Y are lognormal with the same cv (i.e., with the same s). Without loss of 

generality, assume µX < µY and t > 0. We obtain 
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Y

X

X
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






 

 

   
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
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



 
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  








 
2

2

2

lnlnlnlnln2
exp

s

st YXYX 
 

 

2/)/ln(

2
)],,(exp[),,(ln

)/ln(
exp s

YXYX
YX YXtsgsgt

s












  

 

                                                 
*
 As summarized by the Wikipedia, a copula is a function linking marginal variables into a single 

multivariate distribution. If we take a sample from a copula that represents a multivariate distribution with 

correlations among its components, we obtain a collection of points in the relevant space that form cloud 

shapes reflecting the correlation structure. To visualize this, consider a sample of heights and weights of 

men. One might expect some correlation between the two components, so the copula would have higher 

density in the neighborhood of a diagonal line with a positive slope (similar to a regression line). 
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where g(s, µX, µY), which does not depend on t, is given by 

 

2

2

2

)/ln(
)]ln([),,(

s
ssg YX

YXYX


   

In the derivation, we utilize the identity a
2
 – b

2
 = (a + b)(a − b) and the fact that sums 

(differences) of logarithms are logarithms of products (ratios). Because µX < µY and s
2
 > 

0, ln(µX /µY)/s
2
 < 0. In addition, exp(g) is a positive constant, so we obtain a monotone 

nonincreasing function of t, as required. 
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