
Research Notes for Chapter 7* 
 

Chapter 7 is our first chapter on safe scheduling, and indeed, to our knowledge, it is the 

first chapter on safe scheduling in any textbook. For this reason, our research notes for 

this chapter are extensive. We cover both historical background and advanced theoretical 

results (including some proofs that we omitted in the chapter). We mention some open 

research questions as we go and conclude with a brief list of additional open research 

questions. We also provide a simple expression for the minimum of d + γE(T) when 

processing time is lognormal (and γ > 1). Finally, the reference list is relatively extensive, 

but emphasizes early publications. Because this is not our last chapter on safe scheduling, 

we elaborate on some of these issues later, especially in Chapters 11 and 18 and their 

research notes.  

 

HISTORICAL BACKGROUND 

 

All safe scheduling models are stochastic. In its purest form, stochastic scheduling is 

based on the assumption that processing time distributions are known. This assumption is 

not as strong as one might think. First, it is often possible to use historical data to obtain 

such distributions. For instance, Trietsch, Mazmanyan, Gevorgyan and Baker (2010) 

demonstrated that the lognormal distribution fits project activity times obtained in a field 

study. Furthermore, they validated its use in representing such activity times based only 

on information available during the scheduling stage. Even if there is absolutely no 

historical data, decision makers must make decisions somehow, and their beliefs and 

estimates can be translated to distributions. Bayesian statistics is predicated on the ability 

of decision makers to assess such distributions at least implicitly. 

 

Due Date Setting in Queueing Systems 

 

 A relatively early study that involves due date setting with safety time is Wein 

(1991). He analyzes sequencing and due date assignment rules within a multiclass M/G/1 

queueing framework (i.e., with exponential time between arrivals, general processing 

time distribution and one machine/server). He also reports experimental results, but only 

for the more iconic M/M/1 system, where processing time is exponential too. The 

objective is to minimize weighted flowtime either subject to a prescribed service level or 

subject to a constraint on mean weighted tardiness. That is, he addresses our two main 

safe scheduling approaches. One of his main conclusions is that setting due dates 

correctly to match the desired service level or mean tardiness constraints is more 

important than selecting the best sequencing rule. Nonetheless, the findings also indicate 
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that MDD performs either best or close to best relative to other sequencing rules such as 

MST, EDD and SEPT. (We discuss experimental results of this sort much more 

extensively in Chapter 15.)  

 

Models with Machine Breakdowns 

 

 Throughout the coverage of safe scheduling in the text, our focus is on the pure 

stochastic environment, with probabilistic processing times. But randomness in 

processing times could also arise because equipment breaks down and unscheduled 

maintenance must be carried out. Breakdowns can lead to similar problems as stochastic 

processing times, and in single-machine problems the two sources of randomness have 

comparable effects (e.g., see Zhou and Cai, 1997; Ng et al., 1999). Nonetheless, in more 

complex models, the situations are intrinsically different. For example, if we have 

parallel machines then a breakdown in one may lead to rescheduling jobs from that 

machine to other machines, but not necessarily a difference in processing times. Indeed, 

there is an extensive literature on reactive scheduling, which in most expositions, 

postulates that disruptions (typically machine breakdowns) will occur. In that research, 

the necessary probabilistic information describes the occurrence of breakdowns and the 

distribution of repair times, while processing times remain deterministic or at least 

sensitive to the effects of disruption in deterministic ways. In that situation, the task is to 

adapt the schedule to the effects of the disruption. Some of the key papers in this area are 

due to Leon, et al. (1994), Mehta and Uzsoy (1998), and McKay et al. (2000). Although 

this line of research can be considered as addressing stochastic problems, it is 

substantively different from pure stochastic scheduling and beyond the scope of our text. 

(Our implicit assumption is that a sequence that is determined with sufficient safety time 

is as likely to remain valid after a machine breakdown as it would be after a longer than 

expected processing time due to any other cause. To the extent this assumption is invalid, 

and indeed it may be problematic in multi-machine models with long repair times, 

research is required to address safety subject to machine breakdowns. The difficulty is in 

considering the interactions between safety time and reactive scheduling issues.)  

 

Robust Scheduling 

 

 Another related line of work is robust scheduling. Whereas the phrase was used in 

seminal work by Leon et al. (1994) and by Daniels and Kouvelis (1995), robust 

scheduling does not have a standard definition. Some papers associate robust scheduling 

with "predictability" but then have difficulty quantifying what that means and often end 

up using surrogate measures (Leon et al., 1994; Mehta and Uzsoy, 1999). Daniels and 

Carillo (1997) extended the notion of robustness and defined -robustness as maximizing 

the probability that the performance measure will be at least as good as a given target; 

that is akin to satisfying chance constraints. (Compare to Corollary 6.1, originally proved 

by Banerjee 1965.) Other papers associate robust scheduling with insulating the schedule 

from disruptions, so their work is perhaps more appropriately classified as belonging to 

the literature on reactive scheduling (Mehta and Uzsoy, 1998, and Bollapragada and 

Sadeh, 2004). Still other papers, such as those stimulated by Daniels and Kouvelis 

(1995), use a definition of robustness that adopts the minimax regret criterion from 



decision theory (i.e., minimizing the difference between the realized outcome and the 

best outcome that could have been achieved with hindsight). This definition does not use 

probability distributions, so it does not lead to stochastic scheduling problems of the type 

we address. Another common assumption we make is that all necessary decisions are 

made in advance. This process is sometimes called off-line scheduling, or predictive 

scheduling, as distinguished from reactive scheduling. At the risk of confusing off-line 

scheduling with problems where all jobs are released at time zero, it may also be called 

static, because the sequence itself is static rather than subject to dynamic changes. To 

keep our focus manageable, we limit our scope to predictive scheduling with stochastic 

processing times. In this approach, the complete schedule is determined at time zero, 

before the realizations of any processing times are known, but the complete schedule may 

call for releasing a job at some future date. Predictive scheduling is often preferred to 

dispatching in practice because it increases predictability in an uncertain environment. 

Finally, even if dynamic sequencing changes are desirable, it is usually beneficial to at 

least start with a good predictive schedule that serves as a basis for dynamic change. 

Having said that, recent surveys of scheduling-related research that lies beyond our 

definition of pure stochastic scheduling may be found in Aytug et al. (2005), Black et al. 

(2006), Herroelen and Leus (2005), and Kouvelis and Yu (1997). 

 

Fuzzy Logic for Control and in Scheduling 

 

 Another alternative that has been proposed for stochastic scheduling is the use of 

fuzzy logic. Fuzzy logic has provided a major breakthrough for control problems 

involving dynamic continuous adjustment of parameters; that is, fuzzy logic is a very 

practical approach for controlling adjustable processes. Indeed, fuzzy controllers often 

provide amazing results, such as the ability to balance two or even three sticks on top of 

each other. Interestingly, one of the practical strengths of fuzzy controllers is that they 

don’t require precise information about the system. Rather, they adjust by feedback and 

simple rules provided by experts. In that framework, the system state is represented by a 

fuzzy measurement: its degree of membership in various relevant sets. For example, the 

system may be assessed as 80% a member of the "hot" set and 30% "high speed." 

Combination sets such as "hot and high speed" can also be defined (because sometimes 

the best response to a combination is different from the sum of the best responses to the 

components). In our case, suppose the membership in this combination set is 10%. The 

controller then has to select a response from a set of available options, and it can do so 

with probabilities that reflect the relative membership. In our example, it can select the 

response fitting "hot" (one designed to reduce the temperature) with a probability of 

0.8/(0.8 + 0.3 + 0.1) = 2/3, the response of reducing speed is selected with a probability 

of 0.3/1.2 = 1/4, and the response appropriate for "hot and fast" is selected with a 

probability of 1/12. This adjustment-selection process repeats frequently, so the controller 

is likely to switch between responses frequently, always based on current feedback. In 

this framework, membership functions are used to measure membership, on a scale 

between 0 and 100% for each set (80%, 30% and 10% in our example). The role of 

membership functions, again, is to guide the probability with which the controller will 

take a particular adjustment step. If the adjustment is wrong, the system is likely to slide 

towards an undesirable state, and its membership in the set that caused the wrong 



decision is reduced. At the same time, its membership in a set that requires reversing that 

adjustment increases. During such a slide, the membership profile changes, and the 

probabilities of the various responses change. Thus, in effect, membership functions can 

be used to guide effective feedback control.  

 Perhaps due to its spectacular success in continuous control, fuzzy logic has also 

been promoted for scheduling problems. Proponents of this approach claim that it is more 

capable of addressing practical needs. For example, the following quote: "instead of 

optimising average behaviours like in stochastic scheduling, fuzzy techniques rather aim 

at finding robust fault-tolerant schedules where all the constraints are satisfied to some 

extent, with a sufficient level of confidence." (Dubois et al. 2003; emphasis added). In 

effect, they propose to model the extent to which constraints are met by membership 

functions. There is no known way to construct such membership functions from data, 

however, and in the scheduling context they are inherently subjective. (By contrast, in 

control applications, the same experts who provide the adjustment rules can also help 

adjust the membership functions until the controller operates well.) The objective of 

maximizing membership is thus another example of using a surrogate measure and does 

not promote objectivity. Furthermore, sequencing problems, by nature, cannot be 

"dynamically adjusted" to optimality by a quick succession of potentially conflicting 

responses based on real-time feedback. Instead, they require discrete choices that cannot 

be changed in the short run. Nonetheless, we fully agree that solutions "where all the 

constraints are satisfied … with a sufficient level of confidence" are desirable. Our 

position is that safe scheduling models address this need directly and more objectively. 

 

Safe Scheduling in the Context of the Alternative Approaches 

 

 In the text, rather than cover robust scheduling, or go into even more esoteric 

approaches such as fuzzy logic, we adopt the Bayesian approach and the use of models 

that include safety time (implicitly or explicitly). Our main justification for this decision 

is that robust scheduling models still require equally heroic assumptions about processing 

times and the nature of disruptions, but they yield results that are less powerful than those 

we obtain. Furthermore, in the pursuit of robustness, some robust scheduling models 

completely ignore the level of the primary performance measure. Other models consider 

solutions that are efficient in the sense that they trade off the primary performance 

measure with robustness. However, this approach is inherent in safe scheduling, because 

it treats total cost as a function of both the mean and the variance of the primary 

objective. In effect, small variance implies robustness. By assumption, robustness is 

important for the purpose of allowing managers to manage risk, and we address this 

problem head-on and more effectively with safe scheduling models. For example, we 

accommodate risk-averse decision makers by including the quadratic tardiness element in 

(RN5.1), which we repeat here: 

f(S) = ∑
n

j 1 [I(j)(wjFj + ujδ(Tj) + αj Ej + βjTj + γjTj
2) + (1 − I(j))vj]   (RN5.1) 

 

Stochastic counterparts of the models incorporated within (RN5.1) automatically balance 

the cost of safety with the primary performance measure.  



 Whereas the economic approach to safe scheduling promotes robustness, chance-

constrained models can reduce robustness unless care is exercised. This is rarely an issue 

when service-level targets are high but there is no inherent requirement in the approach 

that forbids low targets. If the magnitude of tardiness counts, but we use service-level 

targets for convenience, we run the risk that a few jobs will be very tardy and incur large 

economic costs. For instance, in Chapter 15 we discuss classic simulation results for job 

shops that demonstrate this type of behavior when sequencing by SPT. By favoring short 

jobs we achieve schedules that tend to have fewer tardy jobs but tardy jobs are liable to 

be very tardy and thus such scheduling exhibits good performance in terms of satisfying 

chance constraints but bad performance in terms of minimizing economic costs. A 

particular danger exists when shop performance is measured by the fraction of tardy jobs, 

and yet the magnitude of tardiness counts. If so, once a job is counted as tardy there is no 

incentive to finish it at all, and tardiness thus increases without control (Spearman and 

Zhang, 1999). In our chance-constrained models with due dates as decisions, however, 

we assume jobs are performed in the correct order regardless of tardiness. Again, this is a 

concern in cases where the real economic damage increases with tardiness; e.g., it would 

not be a problem if tardy jobs are indeed useless (as in missing a boat). In this 

connection, recall that we address cases where jobs should only be performed if they are 

sufficiently likely to be on time by the stochastic U-problem. 

 

Safe Scheduling and Stochastic Inventory Models 

 

 Both approaches to safe scheduling—stochastic feasibility under chance 

constraints and minimizing economic costs—have roots in inventory theory and both can 

be applied to time-setting with or without sequencing decisions. Historically, perhaps 

because inventory models are not analogous to sequencing models, time-setting models 

came first, whereas sequencing considerations were not addressed until much later. The 

seminal paper on stochastic inventory models is Arrow, Harris and Marschak (1951). In 

Section 3 of their paper they consider a rather general formulation of what they call the 

static problem, which involves ordering stock on a non-periodic basis. This formulation 

includes the case of piecewise linear penalties, where overage costs are associated with 

holding too much inventory and shortage costs are associated with preparing too little. In 

addition, they allow a fixed shortage element. For completeness, we transform their main 

result (Equation 3.8) into our terms. In their paper the amount stocked is denoted by S (or 

S* if optimal), and we replace it by dj (or dj*). They use the terms c and b0 to denote 

components of αj (i.e., c + b0 = αj) and the terms B and a (where a > c + b0 = αj) to denote 

components of αj + βj (i.e., B + a = αj + βj). They also use some terms that are not 

applicable to scheduling (such as a term that reflects a quantity discount in purchasing). 

In our terms, their Equation 3.8 is then the following optimality condition, 

 

   0*)](1)[(*)(  jjjjjj dFdfu    (RN7.1) 

 

In addition, the following second order condition is required, 

 

0*)()(*)('  jjjjj dfdfu   

 



where f'(dj*) is the derivative of the density function, f(dj*). (This second order condition 

is guaranteed for the critical fractile model due to its convexity.) Although the critical 

fractile result is clearly a special case obtained when uj = 0, the authors do not present it 

explicitly. Instead, they show the optimal solution for the special case where βj = 0. In 

that case, (RN7.1) yields f(dj*) = αj/uj, provided the density function is decreasing at dj* 

(to satisfy the second order condition). This solution is not guaranteed to exist, however 

(in which case dj* = 0). Another model they addressed involves dynamic reordering 

policies, including calculations involving maximization of net present value. (Safe 

scheduling models with net present value calculations may be developed, and indeed 

there are some project management results that take discounting into account, but to our 

knowledge, models that discount the costs and the benefits of safety time have not been 

developed yet.) 

 The critical fractile model, however, has earlier roots in the first Operations 

Research text by Morse and Kimball, originally published by the US Navy as Report 

OEG 54 in 1946.* When applied to stock levels (rather than to time), the critical fractile 

model is often referred to as the newsboy model; or, in more modern terms, as the 

newsvendor model. On page 32 of the report, Morse and Kimball solve the stocking 

problem of a newsboy who purchases newspapers for 2 cents each and sells them for 3 

cents subject to random demand with a specific distribution (Poisson). The objective is to 

maximize the expected profit, which in this case is equivalent to minimizing the expected 

regret. The newspapers serve as an example for any single perishable stock item with 

possible overage and shortage costs. Morse and Kimball stressed that the newsvendor 

should not necessarily stock to meet the expected demand (in their example, a smaller 

stock is optimal), but they stopped short of presenting the critical fractile result explicitly. 

 

Safe Scheduling and Stochastic Programming 

 

 In addition to the connection to stochastic inventory models, there is also a 

historical connection to the two main approaches to stochastic programming. The first 

paper about stochastic programming—Dantzig (1955)—took the economic approach. 

That approach also lies at the core of the utility approach to game theory (von Neumann 

and Morgenstern 1944), which preceded Dantzig’s work. In this approach, reality is 

represented by a set of scenarios, also known as states of nature, with given probabilities. 

Indeed, our use of a stored sample is tantamount to listing several equally-likely states of 

nature, so one can trace our approach to these roots. Whereas von Neumann and 

Morgenstern focus on maximizing utility, our economic approach is based on minimizing 

disutility. Nonetheless, there is no significant difference between the two approaches. For 

example, Equation (RN5.1) can be viewed as a constant (∑
n

j 1 vj) from which we subtract 

the minimal possible total cost, thus maximizing net utility. Dantzig’s technical focus is 

on problems with two stages where the decisions in the first stage, together with the state 

of nature that is revealed later, form the basis of the decisions in the second stage. (The 

same structure can be extended to more than two stages, but it becomes much less 

tractable.) Dantzig’s model—although originally presented as a version of linear 
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programming—is known as stochastic programming with recourse because at the second 

stage, we have the ability to adjust to the now-revealed state of nature. Within the text, 

we use a very simple form of recourse, namely our second-stage decision is to begin the 

next job immediately or wait, and we can present it in advance in the form of a release 

date for each job (a decision variable). In other words, we can cast our approach as 

stochastic programming with recourse. In general, however, more complex recourse may 

be useful in stochastic scheduling models. For example, we may reschedule the 

remaining jobs as information about the state of nature is revealed during processing of 

the first few jobs. That is, while performing a schedule we can collect information about 

processing times, update our information for the remaining processing (potentially 

including updated processing time distributions), and use the updated information 

dynamically to reschedule the remaining jobs. Such dynamic models may constitute a 

fruitful area for future research, but not much has been done along these lines yet. The 

other main stochastic programming approach heralds the stochastic feasibility approach 

by employing arbitrary (or exogenously dictated) chance constraints. The earliest 

important publication in this area is Charnes and Cooper (1959). A related earlier paper is 

Charnes et al. (1958). However, in these seminal papers, neither Dantzig nor Charnes and 

his collaborators addressed scheduling specifically.  

 

Safe Scheduling and Utility Functions 

 

 We now return to the issue of achieving robustness by an appropriately chosen 

economic cost function. von Neumann and Morgenstern (1944) introduce the first 

theoretical model that attempts to represent human choice in the face of uncertainty as the 

minimization (or maximization) of an expected value. It is useful to look at this model as 

determining the value of a lottery ticket that yields a random return. For small repetitive 

lotteries the expected dollar amount returned is a sufficient measure because over the 

long run, after many repetitions of the lottery, the average return will not differ by much 

from the expected value. But the authors recognized that when it comes to large returns—

including large possible losses—the expected value no longer reflects typical human 

preferences. It is generally recognized that most people are risk averse: a large loss is 

more important to them than an equally large gain. In contrast, decision makers who are 

happy with the basic expected-value approach are risk neutral (and people may also 

actively seek risk—especially when the potential losses involved are tolerable whereas 

the potential gains are impressive). For example, buying insurance is rational for a risk-

averse person who shuns large losses (although on average the insurance company pays 

out less than the premium), but the same person may also buy a lottery ticket for a small 

amount that produces great wealth with a very small probability, although the expected 

monetary gain is again negative. von Neumann and Morgenstern suggested the use of 

nonlinear utility functions to model such behavior. For example, if the utility function is 

concave—e.g., logarithmic with the return—then the marginal utility of the return is 

monotone decreasing (e.g., increasing a small return by one dollar has more utility than 

increasing a large return by one dollar). In our context, a risk-averse decision maker 

would want protection from very large tardiness at a rate that is proportionally higher 

than for small tardiness. But we chose to look at penalties rather than at positive returns, 

so a risk-averse decision maker will have a convex increasing penalty function such that 



the marginal penalty of an increase in tardiness will be increasing. In other words, if we 

use the expected value to compare schedules, we should find a way to incorporate risk-

aversion into our loss functions. Adding a nonnegative quadratic tardiness cost element to 

our generic loss function achieves this end. The quadratic element, or more generally any 

strictly convex increasing function of tardiness, penalizes high tardiness at a 

proportionally higher rate and thus discourages large tardiness. Concentrating on the 

relevant part of (RN5.1), under the assumption that job j must be performed, 

 

gj(Tj) = ujδ(Tj) + αj Ej + βjTj + γjTj
2);   uj,αj, βj, γj > 0 

 

the element γjTj
2 serves this purpose. Emphatically, we do not include a quadratic penalty 

for lateness, but rather for tardiness only. In other words, if lateness is negative, the 

quadratic element is not in play. With this option in mind, we can see that minimizing 

expected penalties is a quite general approach. Although we will not use such a convex 

increasing element in most of our coverage, it is important from a theoretical point of 

view to understand that by optimizing expected penalties we are not automatically 

assuming risk neutrality.  Furthermore, risk-averse decision makers can penalize tardiness 

at a higher rate than that selected by risk-neutral decision makers facing the same cost 

structure. To recap, because we can address risk aversion by the utility function approach, 

we do not need to address it by robust scheduling models.  

 

Early Safe Scheduling Models for Given Sequences 

 

 Returning to the newsvendor model, Britney (1976) adopts it for project activities. 

Although he addresses a project with n activities—a much more complex environment 

than the single machine case, which we discuss further in Chapter 18—he essentially 

allocates to each activity its own safety time. Thus, in effect, he uses a single operation 

approach; i.e., his model is even simpler than the single-machine n-job model. The 

working assumption is that if the activity does not complete on time, it causes problems 

downstream that can be adequately modeled by the activity’s individual tardiness cost, 

whereas if an activity is early the activities that must follow it wait for their originally 

scheduled release date. Thus, each activity acquires a Parkinson processing time 

distribution (Appendix A). This makes possible the use of the basic newsvendor model 

for each activity individually. Models that extend the newsvendor model to n jobs 

without ignoring the interactions between them did not emerge until the mid-1980s. One 

stream of research concerns models akin to those we discussed in the chapter: suppose we 

have to perform n activities in series (in a supply chain or project context). We may refer 

to each of the n activities as stages, but the model is essentially equivalent to processing n 

jobs on a single machine with a makespan objective. Assuming independent processing 

times, this model is analyzed independently by Yano (1987 and 1987a), Sarin and Das 

(1987) and Das and Sarin (1988). An alternative model involves parallel inputs that feed 

a single project or assembly, and we refer to it as the assembly coordination model 

(ACM). The ACM was introduced independently several times, including Ronen and 

Trietsch (1988), Kumar (1989) and Chu et al. (1993). Trietsch and Quiroga (2004) 

compiled and slightly extended these results. Hopp and Spearman (1993) addressed the 

ACM, but with a step tardiness cost. Yano (1987b and 1987c) studied simple 



combinations of parallel and serial operations, namely the case of a single activity 

following or succeeding two parallel activities. Trietsch (2006) extends the newsvendor 

model to projects with n activities and any network structure (including the serial and 

parallel structures as special cases and without requiring stochastic independence). We 

discuss more general cases in Chapters 11 (stochastic flow shops) and 18 (projects). 

Wilhelm and Wang (1986) also address the need for safety time in assembly operations 

without involving sequencing decisions. Because they do not involve sequencing 

decisions, we may refer to such results as fixed-sequence safe scheduling models.  

 

Early Safe Scheduling Models with Sequencing Decisions 

 

 To our knowledge, the first published safe scheduling model that involved 

sequencing decisions was due to Balut (1973), and it dealt with maximizing the number 

of stochastically feasible jobs with normal independent processing times; i.e., it used the 

chance constraint approach. Balut’s model was later shown to be NP-hard so his 

proposed solution—a straightforward extension of Algorithm 2.1—is not guaranteed to 

produce the optimal solution (Kise and Ibaraki 1983). To date, the only known tractable 

cases of the U problem with chance constraints are those that involve stochastically 

ordered processing times: Akker and Hoogeveen (2008) identify several such instances 

that could all be solved by a straightforward extension of Algorithm 2.1; Trietsch and 

Baker (2008) show additional cases solvable by this algorithm. They also demonstrate 

that algorithm 7.1 applies in general when processing times are stochastically ordered. 

(We provide that proof later.) As mentioned in the Research Notes of Chapter 2, 

Algorithm 2.1—which is based on EDD as the initial order—is also known as the Moore-

Hodgson algorithm, because Moore (1968) attributes it to Thom Hodgson. Moore’s own 

algorithm is based on testing increasing subsets of the jobs in SPT order, sequencing 

them by EDD, and rejecting the last (longest) job upon any tardiness in the subset. This is 

essentially the structure of Algorithm 7.1 as well: the only difference is that Algorithm 

7.1 must resort to the feasibility check instead of relying on EDD to test each subset. 

Algorithm 2.1 is more efficient (it takes O(n log n), whereas Moore’s original algorithm 

requires O(n2)), so the less efficient algorithm was essentially ignored for the last 40 

years. But in the stochastic context it becomes valid again when due dates and service 

level targets are not agreeable.  

 Publications that use the economic approach to safe scheduling and involve 

sequencing as well as scheduling did not appear until the 1990s. Slightly earlier, Cheng 

(1987) studied setting due dates for independent processing times where setting a late due 

date incurs a convex increasing due-date cost (e.g., a linear earliness charge αj) and an 

increasing function of quadratic E/T penalty (i.e., an increasing function of E[Lj
2]). One 

can argue, however, that this is not a proper E/T model but rather a model that includes 

earliness and squared lateness. In effect, it penalizes earliness twice whereas tardiness is 

only penalized once. As a result, the model actively discourages earliness and favors 

tardiness: the optimal service level cannot exceed 50%. For this model Cheng observed 

some cases are optimized by SEPT, but he did not present a generally applicable 

sequencing rule. We may note in passing that if we were to only penalize E[Lj
2], then the 

optimal sequence would be in increasing variance order and the optimal due dates would 

match the expected completion times. Furthermore, it is straightforward to generalize this 



insight for the weighted case. Most other published models on E/T costs assume linear 

earliness and tardiness penalties or linear earliness and fixed tardiness penalties. 

Furthermore, with the exception of special cases (as discussed in the chapter), the state of 

the art in solving all these models is by heuristics, mainly based on adjacent pairwise 

interchanges or on dispatching with greedy selection of the next job. Within this group, 

Trietsch (1993) generalized the results of Ronen and Trietsch (1988) to the optimal 

scheduling of flights into and out of a hub airport. In this setting, the main "machine" is 

the airport (which imposes safety gaps between landings or takeoffs) and the jobs are 

flights. Flights may form blocks and within each block API can reduce the total cost. This 

model involves precedence constraints—outgoing flights cannot depart until their 

passengers arrive on incoming flights—and is generally more akin to project scheduling 

then to single-machine scheduling. Soroush and Fredendall (1994) presented three 

heuristics for sequencing n jobs on a single machine with independent normal processing 

times, given due dates and piecewise linear E/T penalties. However, they do so subject to 

a policy of continuous operation (i.e., no active release dates are utilized). As we saw in 

Chapter 5, in the deterministic version of this problem blocks are useful and indeed it can 

be shown that blocks may be useful in the context studied by Soroush and Fredendall, but 

further research is required for this case. Golenko-Ginzburg et al. (1995) use a 

dispatching approach to sequencing a job shop with chance constraints where the next job 

is selected from the available jobs greedily; i.e., such that API between the available jobs 

cannot lead to improvement. Soroush (1999) addressed a model similar to that of Soroush 

and Fredendall (1994), but where due dates are decisions (and idling is still not allowed). 

He found that sorting by σj
2/(αj + βj)φ(zj*)—as we discussed in Section 7.6—is especially 

effective for this problem. Portougal and Trietsch (2006) showed that this particular 

heuristic is asymptotically optimal, and no fundamentally different sorting heuristic can 

be asymptotically optimal. We repeat these results below. They also identified tight 

bounds for the objective function. Baker and Trietsch (2009) extended these results to a 

case that combines the E/T cost with the flowtime cost. We repeat these results below as 

well. Laslo et al. (2008) use the approach of Golenko-Ginzburg et al. to select jobs in a 

job shop with normally distributed independent processing times with the objective of 

reducing E[αj Ej + βjTj + ujδ(Tj)]. 

 

 

ADVANCED RESULTS 

 

In this section we compile and slightly enhance results from Trietsch and Baker (2008), 

Portougal and Trietsch (2006) and Baker and Trietsch (2009). One purpose is to provide 

proofs missing in the chapter and discuss some additional results. Another objective is to 

illustrate some safe scheduling proof techniques, some of which go beyond those 

required for typical deterministic models. To date, several such approaches have been 

used to derive theoretical safe scheduling results. Here we discuss the ones that are most 

applicable to the basic single-machine model. These often involve asymptotic optimality 

of either the deterministic counterpart solution or of some function of both the mean and 

the variance of each job. Proofs may rely on stochastic dominance and the use of limiting 

assumptions (such as normality and independence) at least as a start. One way to weaken 

the independence assumption is to replace it by linear association. This essentially relies 



on Theorem 6.7 and other similar results given in Appendix A.4. In this section we also 

provide a new simple expression for the minimum of d + γE(T) when processing time is 

lognormal (and γ > 1). 

 

Algorithm 7.1: Proof of Optimality 

 

We begin with the optimality of Algorithm 7.1. We rely on stochastic dominance and on 

Theorem 6.7. Recall that Algorithm 7.1 tests jobs in SEPT sequence by the feasibility 

check and rejects the longest job whenever the subset tested is not stochastically feasible. 

Before proving the main result, we require a lemma that helps determine which job to 

reject when necessary. Although we do not show that the extension of Algorithm 2.1 is 

optimal for agreeable due dates and service level targets, that result can be proved by 

using the same lemma (as shown by Trietsch and Baker, 2008). 

 

 

Lemma RN7.1.   Assume we are given a sequence of n jobs with stochastically-ordered 

and linearly-associated processing times, with fixed due dates. 

Suppose that we must reject exactly m out of the first k jobs (where 1 ≤ 

m ≤ k < n) and that our objective is to minimize the number of 

stochastically tardy jobs among the last (n − k) jobs in the sequence. 

Then it is optimal to reject the m stochastically largest jobs.  

 

 

Proof. 

 

»» Assume first that processing times are independent. Let X, Y, V, W, and S be 

independent random variables. If X ≥st Y and V ≥st W, then X + V ≥st Y + W (Ross, 1996). 

Similarly, S + X ≥st S + Y and S − X ≤st S − Y. Therefore, the sum of the processing times 

of the m largest jobs is stochastically larger than the sum for any other m jobs, and the 

sum of the processing times of the remaining (k − m) jobs is stochastically smallest 

among all possible such subsets. Accordingly, the completion time of each of the (n − k) 

jobs that follow is stochastically minimized. Therefore, rejecting the m stochastically 

largest jobs maximizes the service levels of those (n − k) jobs and thus minimizes the 

number of stochastically tardy jobs. Finally, by Theorem 6.7, the stochastic dominance 

relationships we obtained for the independent case still prevail for linearly associated 

processing times. ««  

 

 

Theorem RN7.1. Algorithm 7.1 minimizes the number of stochastically-tardy jobs when 

processing times are stochastically-ordered and linearly associated.  

 

 

Proof. 

 

»» At stage k, the algorithm addresses the first k jobs in SEPT order, and we denote this 

set as S[k]. Let B[k] = {b[1], …, b[mk]} be the subset of S[k] accepted by the algorithm, 



where mk = |B[k]|. The theorem is true if and only if B[k] is optimal for all k. We proceed 

by induction on k; i.e., we first establish that the theorem is correct for S[1]; then, for k ≥ 

2, we assume it is correct for S[k − 1] and prove that it must be correct for S[k]. 

 For k = 1, the algorithm accepts Job 1 if and only if it is feasible, so B[1] must be 

optimal for S[1].  For  k  ≥  2, the algorithm performs a feasibility check for {b[1], …, 

b[m(k − 1)], k}.  If this set is feasible, then  B[k]  =  {b[1], …, b[m(k − 1)],  k} and because 

B[k − 1] is optimal by assumption and |B[k]| > |B[k − 1]|, B[k] must be optimal. So 

assume the set {b[1], …, b[m(k − 1)], k} is not feasible and trace the feasibility check on 

{b[1], …, b[m(k − 1)], k}. If any jobs are feasible in the last positions, mk, m(k − 1), …, we 

can ignore them because they cannot cause infeasibility in an earlier job. By the assumed 

infeasibility we know that there exists a set of j ≥ 1 jobs, which includes job k, none of 

which is feasible in position j. By feasibility of B[k − 1] we know that it is sufficient to 

remove one of these jobs. Furthermore, jobs (k + 1), (k + 2) …, n that will subsequently 

be examined by the algorithm are stochastically larger than job k (and thus larger than 

each of the j − 1 remaining jobs), so none of them will be feasible in one of the first j − 1 

positions without displacing at least one of the existing jobs from B as well. We now 

invoke Lemma RN7.1 to select job k, which is indeed the job that the algorithm will 

reject. Hence, as we start with an optimal B[k − 1] and take the optimal next step, the 

resulting B[k] must also be optimal. «« 

 

Using Algorithm 7.1 as a Heuristic 

 

 Notice that stochastic ordering is required because we rely on Lemma RN7.1. 

Therefore, if we use Algorithm 7.1 when processing times are not stochastically ordered, 

the algorithm becomes a heuristic. It is likely, however, that it is a more effective 

heuristic than the direct extension of Algorithm 2.1 unless due dates and service levels 

are agreeable (in which case the two algorithms always yield the same sequence but 

Algorithm 7.1 is less efficient). Whereas Moore’s original algorithm requires O(n2) 

calculations, Algorithm 7.1 cannot rely on EDD within each subset so it requires O(n3) 

(the feasibility procedure is O(n2) and it has to be invoked O(n) times). Yet when due 

dates and service level targets are agreeable, we can find a solution in O(n log n) time, 

exactly as in Algorithm 2.1. At the time of this writing, testing the effectiveness of this 

heuristic is an open research question. To resolve this question, it would be important to 

select examples that do not tend to be approximately stochastically ordered. For example, 

selecting processing times with similar coefficients of variation is likely to yield 

deceptively good results. By the same token, in environments with similar coefficients of 

variation the heuristic is likely to be effective.  

 

The Stochastic E/T Problem 

 

Consider the objective of minimizing the expected E/T cost with independent, normally-

distributed processing times, as given by (7.4), which we now repeat,  

 

 E[f(S)] = ∑ n

j 1 [(αj + βj)sjφ(zj*)]  (7.4) 

 



Our next task is to prove the asymptotic optimality of sequencing by sorting by 

nondecreasing ratio of σj
2/(αj + βj)φ(zj*), with ties broken in favor of the smallest σj. 

While doing that, we also develop a similar result for the [suboptimal] approach of not 

using safety time. In this case, instead of (7.4) we obtain 

 

 E[f(S)] = ∑ n

j 1 [(αj + βj)sjφ(0)]  (RN7.2) 

 

Here, instead of sorting by σj
2/(αj + βj)φ(zj*) we should sort by σj

2/(αj + βj)φ(0). Define bj 

= (αj + βj)φ(zj*) or (αj + βj)φ(0), depending on which objective we address; the objective 

is then given by Σbjsj in both cases. We show that sorting by σj
2/bj is asymptotically 

optimal for either definition of bj. As noted in the chapter, optimizing for the two versions 

of bj may yield different sequences. However, if all optimal service levels are equal (that 

is, when αj/βj = α/β for all j), the two objectives are optimized by the same sequence 

because zj* = z* for all j, and the expressions in (7.4) and (RN7.2) are then proportional 

to each other. In the following development, until further notice, we require strictly 

positive variances. However, it is clear that to minimize (7.4) or (RN7.2), activities with 

zero variance should always be scheduled first, which would also be the sequence in 

which our sorting rule would place them, so practically this is not restrictive.  

 Within our context, bj is effectively a weight, because (7.4) and (RN7.2) can be seen 

as weighted sums of sj elements. This interpretation might lead us to adapt the SWEPT 

approach to this case by using σj/(αj + βj)φ(zj*) or σj/(αj + βj)φ(0) (i.e., σj/bj) to sort the 

jobs. Indeed, Soroush and Fredendall (1994) proposed this sorting rule (but without 

treating due dates as decisions) and later the σj/(αj + βj)φ(zj*) version was one of two 

sorting rules tested by Soroush (1999), but it was often found inferior. Much of our 

coverage here focuses on showing why sorting by the other rule, σj
2/bj, is better. In a 

nutshell, the advantage follows because as we add variance elements to the sequence, the 

marginal contribution to sj becomes approximately proportional not to σj but to σj
2. 

Because it is the marginal contribution that counts, the advantage of sorting by σj
2/bj 

increases as we add jobs. That is, the advantage is associated with the asymptotic 

optimality of this rule. Thus, what we need to show is not only that this rule is 

asymptotically optimal, but also that the other rule is not asymptotically optimal. 

 To recap from the chapter, let f(S*) denote the objective function value with the 

optimal sequence, S* (for any given objective), and let f(SH) be the value associated with 

a heuristic. We say that the heuristic is asymptotically optimal if, in the limit, as n → ∞ 

[f(SH) – f(S*)]/f(S*) → 0. One of the fundamental techniques in analyzing safe scheduling 

with objectives like (7.4) under stochastic independence is to analyze in two steps: one 

involving variances and the other concerning standard deviations. As long as we assume 

stochastic independence, the first step of such analysis is often tractable because 

variances are additive. In our present context we use this approach as follows. In step 1, 

we look at Σbjsj
2 or parts thereof. In step 2, we consider our true objective function, Σbjsj. 

At stage j, we can draw the contribution of job [j] to the objective function as a rectangle 

with a basis of b[j] starting at Σk=1,...,j−1b[k], and with a height of sj
2 at step 1 or sj at step 2. 

That is, the x-axis is used for b[j], cumulatively, and the y-axis for the variance or the 

standard deviation of the completion time, as the case may be. We refer to the domain of 

the variables of step 1 as the b-σ2 domain, and to those of step 2 as the b-σ domain. 

Figure RN7.1 depicts the two domains for b[1]=1.5, b[2]=0.5, b[3]=0.75 with σ2=2.25, 1, 



and 2 respectively. The true (step 2) objective function is the area below the (lower) steps 

depicting the b-σ domain, and the step 1 objective function is the area below the higher 

steps. Lemma RN7.2 is instrumental for using the results of step 1 to draw conclusions 

for step 2.  

 

 
 

Figure RN7.1. The Objective Function in the b-σ and b-σ2 Domains 

 

 

 

Lemma RN7.2: Let a, b, q, r > 0 satisfy a(q2+r2)  bq2, then for any s  0  
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Proof.  
 

»» Denote  
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Clearly, Δa > Δb, a(q2+r2)  bq2 if and only if a(q2+r2)/bq2  1, so if we can show Δa/Δb > 

(q2+r2)/q2 the lemma will be proved (because (q2+r2)/q2  b/a). Multiplying Δa by 

leads to the following [circular] expression 

and similarly 

Therefore, 

Because Δb < Δa, 

and the lemma follows. «« 

 

 To demonstrate the relevance of the lemma to our problem, we now show that it 

leads to a sufficient condition for the sorting rule to resolve correctly the order of 

adjacent jobs. It is intuitively clear (and we also show formally later) that if bi ≥ bj and σi 

≤ σj, with at least one inequality strict, and jobs i and j are adjacent, then job i should 

precede job j. In such case we say the weights and standard deviations (variances) are 

agreeable. But when weights and variances are not agreeable, it is less clear which should 

come first. The lemma shows that if the sorting rule places a job with a larger variance 

after a job with a smaller variance, then this order is correct (as long as the jobs are 

adjacent). Because the condition is not necessary, however, the lemma does not guarantee 

the correct order when the sorting rule places the job with the larger variance first. To 

cast the lemma as that sufficient condition, we first rewrite it in the following equivalent 

form:  
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If q2/a ≤ (q2+r2)/b then aΔa > bΔb 

 

Next, interpret a as min{bi, bj}, b as max{bi, bj} (so a ≤ b), q2 as min{σi
2, σj

2}, q2+r2 as 

max{σi
2, σj

2}, and s as the standard deviation of the completion time of the preceding 

jobs. Temporarily, combine the two jobs to one job with a weight given by the sum of the 

weights (i.e., a + b) and a variance given by the sum of the variances (i.e., 2q2 + r2). The 

contribution of the combined job to the objective function (7.4) or (RN7.2) is 

 
222 2)( rqsba   

 

If we sequence the job with the lower variance first, the true contribution of the two jobs 

is obtained by subtracting aΔa from this expression, whereas if we place the job with the 

higher variance first we should subtract bΔb. The rewritten lemma states that the former 

gain is larger if q2/a ≤ (q2+r2)/b. But if q2/a ≤ (q2+r2)/b then the sequence suggested by 

our rule is indeed to place the low variance job first (and in case q2/a = (q2+r2)/b, our tie-

breaker still places the job associated with q2/a first). That demonstrates the sufficient 

condition. To show that the heuristic may place a large job too early, consider a 2-job 

example with standard deviations of 1 and 2 and weights 1 and 5. The heuristic places the 

second job first because 4/5 < 1/1, but the optimal sequence is the reverse, because s = 0. 

(The heuristic sequence would be correct, however, for s > 0.716.) 

 If we define Δj as the increment of the standard deviation when we add job j to a 

set of preceding jobs with standard deviation s, the proof also shows a connection 

between Δj, which belongs to the b-σ domain, and σj
2, which belongs to the b-σ2 domain. 

For large enough s, we obtain the following approximation for Δj (and a similar 

expression applies for Δi).  
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This approximation explains the advantage of using σ2 for sorting instead of using σ.  

 There are two basic cases where the heuristic produces optimal solutions. One is 

when all σj are equal to each other and the sequence calls for non-increasing b[j]. The 

other is when all bj are equal to each other, and the sequence calls for non-decreasing σ[j]. 

The proof of the latter result is incorporated within the proof of a more general sufficient 

condition (Theorem RN7.3), which generalizes these two basic cases. We prove the 

former now. 

 

 

Lemma RN7.3.  When σj
2 = σ2 for all j, the optimal sequence is by non-increasing bj 

(non-decreasing σ2/bj). 

 

  

Proof.  
 



»» Without loss of generality, let σ2 = 1 ( j), so the variance of the completion time of 

job [j] is j. The contribution of job [j] to the objective function is proportional to b[j] j
0.5. 

By allocating the larger (smaller) bj to the smaller (larger) standard deviation we 

minimize the sum. «« 

 

 Next, consider a relaxation of the problem by allowing preemption. Specifically 

suppose we can partition each job to fractions and sequence all fractions of all jobs in any 

order, letting each part have its own due date. Any such partition must preserve the total 

weight of the job, bj, and the total variance, σj
2. Furthermore, the parts must be 

statistically independent of each other, or the partitioned problem will not be an instance 

of the original problem. To meet these conditions, a fraction f of job j is allocated a 

weight of fbj (that is, E/T cost rates of fαj and fβj) and a variance of fσj
2. Thus the total 

variance of the parts job j is σj
2 and the total weight is bj. 

 

 

Lemma RN7.4. The relaxed problem is solved optimally without utilizing any 

preemption by the sequence σ[1]
2/b[1]  σ[2]

2/b[2]  ...  σ[n]
2/b[n]. 

 

 

Proof.  
 

»» To any required degree of accuracy, it is possible to partition all jobs to fractions with 

the same variance across the board. After the partition, by Lemma RN7.3, we should 

place the fractions with the smallest σj
2/bj first. Since every fraction of job j has the same 

ratio σj
2/bj as the job itself, this can be done without preemption, and the sequence is 

established. «« 

 

 On the one hand, the objective function value of the relaxed problem, when using 

the job fractions instead of the original jobs for the calculation, is strictly lower than the 

true objective function. Therefore, it can serve as a lower bound. To see this, consider 

that only the last fraction of each job attracts the correct expected early-tardy cost, 

whereas the first fraction of a job incurs a lower cost (because it has a lower standard 

deviation). On the other hand, if we calculate the objective function using the original 

jobs in the optimal relaxed sequence, we obtain a feasible value (which is not guaranteed 

to be optimal) for the un-relaxed problem. Therefore, it provides an upper bound for the 

optimal solution. To prove that the heuristic is asymptotically optimal we show that as 

the number of jobs increases the difference between the lower and upper bounds becomes 

negligible in comparison to the lower bound. But we also want to show that other 

heuristics are not asymptotically optimal. For this purpose, we first derive a more general 

convergence property.  

 Consider the relaxed problem but without actually allowing preemption. That is, 

each job is partitioned to many subjobs with the same variance everywhere, but the parts 

of each job—although they acquire individual due dates—are kept together in the 

schedule as strings. (A string is a set of jobs that must be adjacent to each other in the 

sequence.) In general, we cannot tell in advance how finely we must partition each job to 

achieve equal variance in all fractions of all jobs. So, we must assume the worst case and 



use infinitesimal fractions. Therefore, for any relaxed solution the b-σ2 depiction of the 

objective function is not a set of adjacent rectangles with increasing heights, as the true 

objective function. Instead, it is a set of adjacent trapezoids, with their upper boundaries 

constituting a continuous piece-wise linear function (see Figure RN7.1). We refer to the 

latter as the relaxed function. In contrast, the true function is a step function. To draw the 

relaxed function, start at the origin and connect it to the point (b[1], σ[1]
2) by a straight 

segment. At stage j (j = 2, ..., n) connect the points (b[j − 1], s[j − 1]
2) and (b[j], s[j]

2) by a 

straight segment. The result is a piecewise linear function (and it is convex for step 1 of 

the optimal relaxed solution because the slope of the segment drawn in stage j, σ[j]
2/b[j], is 

monotone non-decreasing). The triangles captured between the step function and the 

relaxed function represent the difference between the lower bound and the associated 

feasible solution (in the b-σ2 domain). As Figure RN7.1 demonstrates, the transformation 

of the relaxed function to the b-σ domain is neither piecewise linear nor convex, but the 

curvature decreases with σ. In that domain, the objective is measured by the area below 

the graph, so the area captured between the functions is the difference between the 

relaxed and the true objectives.) 

 

 

Lemma RN7.5.  Let all job parameters be sampled independently from a multivariate 

distribution with a finite covariance matrix and such that 0 < δ < σj < ∞ 

for all j. Denote the objective function of the relaxed problem with n 

jobs (partitioned to small parts) in some given sequence by fn and let Fn 

be the true objective function. Then, as n → ∞, (Fn − fn)/Fn → 0 (i.e., 

fn/Fn → 1). 

 

  

Proof.  
 

»» Let sB
2 denote the variance of the set of jobs preceding job j (and if job j is the first in 

the sequence then sB
2 = 0). Let sj = [sB

2+σj
2]0.5 be the standard deviation of the same set 

augmented by job j. Finally, let Δj = sj − sB. As we developed within the proof of Lemma 

RN7.2, Δj = σj
2/(2sB + Δj) (there, we have used 2sj − Δj in the denominator, but 2sj − Δj = 

2sB + Δj). The true contribution of job j to the objective function is bjsj. The difference 

between the true and the relaxed contribution of job j to the objective function is given by 

To see this begin with 

 

and apply some algebra starting with σj
2 = sj

2 − sB
2. Except for the first job, this is 

bounded from above by 
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Dividing the upper bound by the contribution of job j, bjsj, we obtain 

For the first job, which is not covered by this expression (unless we interpret division by 

zero as +), the exact ratio is 1/3. By assumption job distribution parameters are drawn 

independently from some multivariate distribution with a finite covariance matrix. It 

follows that the variance series is distributed independently and the variance of the 

variance is finite. Therefore, for large n, the expected value of this bound approaches 

1/2n almost surely. Let ε be any [small] positive value, then, because σj > δ there exists 

some m such that for any j  m, E(σj
2/2sB

2) < ε almost surely. An upper bound on Fn is 

given by adding Σj=1,...,mb[j]σ[j]
2/2s[j − 1] (where s[j − 1] is the standard deviation of the 

completion time of the first j − 1 jobs) to fm. Both Fm and fm are finite, and we can write, 

where sm is the standard deviation of the completion time of the first m jobs and b is the 

average of all bj. By the arguments above, the numerator of the right hand side is an 

upper bound on the numerator of the left hand side, and the denominator of the right hand 

side is a lower bound on that of the left hand side. Therefore the inequality is correct. 

Nonetheless, the limit of the right hand side as n →  is ε, and ε is as small as we wish. 

«« 

 

 

Theorem RN7.2. A sorting heuristic is almost surely asymptotically optimal (i.e., it yields 

an Fn such that as n → ∞ (Fn − Fn*)/Fn* → 0 with probability one) for 

minimizing (7.4) or (RN7.2) if and only if it yields σ[1]
2/b[1]  σ[2]

2/b[2]  

...   σ[n]
2/b[n]. 

 

 

 Proof.  
 

»» By Lemma RN7.4, for this sequence, fn is a lower bound on the optimal solution. 

Therefore, the "if" part is assured by Lemma RN7.5. The "only if" part is by contradiction, 

as follows. Assume an asymptotically optimal heuristic sorting exists that does not satisfy 

the condition, say Heuristic 1, and let Heuristic 0 be any heuristic that satisfies the condition. 

Then there must exist at least two possible jobs, say jobs 1 and 2, such that Heuristic 0 

yields the sequence (1, 2) but Heuristic 1 sorts them in the sequence (2, 1). If no such two 
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jobs exist, then Heuristic 1 must always yield the same sequence as Heuristic 0, and 

therefore it must satisfy the condition that Heuristic 0 satisfies. Denote σ1
2/b1 by C1 and 

similarly let C2 = σ2
2/b2, where C2 > C1. Now consider a set of n jobs where job parameters 

are generated by tossing a coin and selecting a copy of job 1 upon head, and of job 2 upon 

tail. For mathematical convenience we set the probability of head to b2/(b1 + b2) [Otherwise, 

the proof will become more tedious, but any probability except 0 or 1 will do]. As a result, 

the expected total weight of jobs of type 1 equals that of type 2. As we add jobs to the set, 

Heuristic 0 sequences all the job 1 copies first, followed by all the job 2 copies. Heuristic 1 

will do the opposite. We may measure the size of the set of jobs by the total weight, and let 

2b be the size in question. Therefore, we expect a total weight of b to be composed of type 1 

jobs, and the same weight of type 2 jobs. By Lemma RN7.5, for large enough job sets, it is 

enough to compare the lower bound values associated with the relaxed functions of the two 

sequences. In the b-σ2 domain the relaxed function of Heuristic 0 starts at the origin and 

reaches the argument b at a constant slope of C1. It then continues at a slope of C2 until it 

reaches the total weight 2b. The relaxed function of Heuristic 1 starts with the higher slope 

of C2 until b, and then continues with slope C1 until it meets the other function at the point 

(b, b(C1 + C2)). The relaxed objective function value of Heuristic 0 is given by, 

That of Heuristic 1 is given by, 

The difference between the two is, 

It is possible to calculate the exact ratio between the difference and the optimal value (of the 

relaxed solution), and the result is not a function of b. But for simplicity we note instead that 

the ratio between the lower bound of the difference and the upper bound of the Heuristic 1 

result must be a lower bound on the exact result. This ratio,  

is positive and constant for any b, thus contradicting the assumption that Heuristic 1 is 

asymptotically optimal. «« 
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Example: Let b1 = 2, b2 = 3, σ1 = 3, σ2 = 4. For this example, the two elementary 

dispatching heuristics—by weighted standard deviation or by weighted variance—yield 

different sequences (because 3/2 > 4/3, sequencing job 2 first, but 9/2 < 16/3, sequencing 

job 1 first). If we now generate many copies of each job, with a proportion of 60% type 1 

and 40% type 2 (to make the total weights equal), our bound yields 0.0288. An exact 

calculation yields 0.050965. Comparing the true objective function values exactly for  n = 5, 

10, 15, and 100 yields 0.0546, 0.0544, 0.0539, and 0.0517, which confirms the asymptotic 

applicability of the calculation based on the relaxed function to the true one.  

 

Asymptotic Optimality for General Distributions 

 

 Suppose now that jobs are not necessarily distributed normally, but by the 

regularity conditions we imposed no subset of jobs dominates any other subset of the 

same size and all variances are finite. Therefore, for a large enough (but finite) m, the 

completion time of job m + k, Cm+k, approaches the normal distribution as accurately as 

we may wish. In the proof of asymptotic optimality above, assume now that we make m 

large enough to ensure this as well as the previous requirement. So the completion times 

of jobs m through n are all approximately normal for any n > m even if the distributions 

of the jobs are not normal. Therefore, our proof will still hold and our heuristic is 

asymptotically optimal even without the normality assumption. 

 In conclusion, sorting by σj
2/bj, or by a one-to-one function of it, must be part of any 

asymptotically optimal sorting heuristic when processing times are independent, with any 

distributions. In the next section we present a sufficient condition for normally distributed 

processing times that our tie-breaker identifies when it is satisfied, so one can say that our 

heuristic cannot be dominated by any other sorting heuristic. (Of course, we can devise 

polynomial complexity heuristics that may achieve better results, e.g., by employing API to 

obtain a local optimum—which our heuristic does not guarantee unless the sufficient 

condition holds. Nonetheless, such heuristics are not elementary—they depend on the 

relationships between jobs in their current positions—and using our heuristic does not 

exclude their subsequent use. In fact we recommend API among the first few jobs wherever 

the sufficient condition is not satisfied.) 

 

A Sufficient Condition 

 

 

Theorem RN7.3. For independent normal processing times, a sequence that satisfies 

σ[1]
2/b[1]  σ[2]

2/b[2]  ...  σ[n]
2/b[n] and σ[1]

2  σ[2]
2  ...  σ[n]

2 is optimal. 

 

  

Proof.  
 

»» By contradiction, suppose such a sequence, say S, exists but is not optimal. Then there 

is an optimal solution, S*, with at least one pair of adjacent jobs, i and j, such that either 

σi
2 > σj

2 or σi
2/bi > σj

2/bj or both. The existence of S rules out the possibility that either 

σi
2/bi < σj

2/bj and σi
2 > σj

2 or σi
2 < σj

2 and σi
2/bi > σj

2/bj. Therefore, it is enough to consider 

σi
2  σj

2 and σi
2/bi  σj

2/bj with at least one strict inequality. If σi
2 = σj

2, Lemma RN7.3 



applies, so only the case with σi
2 > σj

2 and σi
2/bi  σj

2/bj remains. But, in our discussion 

directly following Lemma RN7.2, we already showed that if the sorting heuristic places 

the job with the smaller variance first then this is strictly advantageous, thus contradicting 

the assumption that S* is optimal when such an S exists. «« 

 

 Formally, Theorem RN7.3 includes as special cases both Lemma RN7.3 and the 

use of non-decreasing σ[j]
2 when bj is constant. Therefore, henceforth we will refer to it as 

the sufficient condition. If the sufficient condition can be satisfied, then, due to the tie-

breaking rule, our sequence is guaranteed to do so. Portougal and Trietsch (2006) provide 

additional bounds and precedence relations that can support a branch and bound solution, 

but because the heuristic is very effective, finding the optimal solution in this case is of 

secondary importance.* If we wish to employ API to improve the sorting heuristic 

solution, however, then it is sufficient to consider pairs where the heuristic places a high-

variance job ahead of a low-variance one. This is especially worthwhile if this job is 

scheduled early (because as s grows large the sorting heuristic is progressively likely to 

provide the correct order).  

 

Trading Off Due-Date Tightness and Tardiness: The Weighted Case 

 

 We now shift our attention to more general cases, which include accounting for flowtime 

as well as E/T costs. We already encountered some results of this genre in the chapter: 

Theorem 7.4 and Corollary 7.1 demonstrated that stochastic ordering is sufficient for the 

optimality of SEPT both for minimizing D subject to stochastic feasibility with a 

common service level or minimizing D + γE(T). The requirement for stochastic ordering 

in this case (and in context of Algorithm 7.1) is perhaps less onerous than it might seem. 

First, as a rule, we recommend the use of the lognormal distribution, and in that case we 

obtain stochastic dominance if the coefficient of variation is constant. As we discuss in 

our Research Notes for Chapter 18, however, that case is likely in practice. As a more 

familiar instance, take the normal distribution. The cdfs of any pair of normal random 

variables with different variances always intersect each other once. Thus we might think 

that Theorems 7.4 and Corollary 7.1 never apply to the normal distribution. However, 

that intersection can occur for a negative value, and we typically ignore negative 

processing times. Therefore, in a practical sense, cases do exist where the normal 

distribution yields stochastically-ordered processing times. One simple example is, again, 

the case of a constant coefficient of variation. Furthermore, for the purpose of Corollary 

7.1 (and Algorithm 7.1), if the target service level is at least 0.5, it is sufficient if the 

stochastic dominance applies when the cdfs are truncated at their medians; i.e., in the 

case of the normal distribution, if E(X) ≤ E(Y) and we wish to know if it is safe to 

sequence X first, then instead of requiring X ≤st Y we require only that max{X, E(X)} ≤st 

max{Y, E(Y)}. If σX ≤ σY, the condition is satisfied. In other words, for the normal 

distribution, when the means and standard deviations are agreeable, SEPT is the optimal 

sequence. In such a case we say that X dominates Y. Such dominance is also sufficient for 

Theorem 7.4, as the next theorem establishes. 

 

                                                 
* If B&B were successful here—as we strongly suspect it should be—it would constitute an example of a 

stochastic problem that can be solved without resorting to stored samples. 



 

Theorem RN7.4:  Suppose the objective is to minimize D + γE(T), with independent 

normal processing time distributions. For any pair of jobs i and j such 

that job i dominates job j (i.e., μi ≤ μj and σi ≤ σj with at least one 

inequality strict), job i must precede job j in an optimal sequence. 

 

 

Proof. 

 

»» Suppose an optimal sequence exists where job i appears in the sequence later than job 

j. By interchanging the jobs, the contribution of job j becomes identical to the former 

contribution of job i whereas the contribution of job i becomes smaller than the former 

contribution of job j. The contributions of any jobs sequenced between the two are also 

reduced. ««  

 

 We now consider a weighted version of the tightness-tardiness trade off model, 

and we show how it relates to the stochastic E/T problem. We introduce weighting 

factors αj > 0, and accordingly our objective becomes: 

 

    ∑ n

j 1 αj[dj + γE(Tj)]    (RN7.3) 

 

The coefficients αj weight the contributions of one job as compared to another, but the 

coefficient γ applies to all jobs because in typical applications, the trade-off of tightness 

for tardiness applies to the entire job set. We assume that γ > 1 and thus deal with 

nonzero due dates. For a given sequence, the optimal due dates for (RN7.3) should still 

satisfy Theorem 7.3 (i.e., satisfy the critical fractile result). The challenge, again, is in 

sequencing. 

 We can transform this problem to an equivalent form. For any realization of the 

completion time Cj, we can write: 

 

  dj = Cj + max{0, dj − Cj} − max{0, Cj − dj}   (RN7.4) 

 

Here, max{0, dj − Cj} is the earliness of job j, denoted Ej, whereas max{0, Cj − dj} is the 

job’s tardiness, Tj. Taking the expectations of both sides of (RN7.4), we obtain  

 

E(dj) = dj = E(Cj) + E(Ej) − E(Tj). 

 

Substituting for dj in the objective function (RN7.3) yields 

 

∑ n

j 1 αj[E(Cj) + E(Ej) + (γ − 1)E(Tj)]. 

 

If we define βj = αj(γ − 1), then we can write the objective function as follows.  

 

  ∑ n

j 1 αjE(Cj) +  ∑ n

j 1 [αjE(Ej) + βjE(Tj)]   (RN7.5) 

 



In this formulation, the earliness and tardiness penalties, αj and βj, are proportional. 

Mathematically, however, the objective function could be generalized by replacing γ with 

γj (i.e., letting βj = αj(γj − 1)), and (RN7.5) would be obtained without a proportionality 

restriction. Trietsch (1993) presents a model where such generalized terms arise. In that 

case the earliness and tardiness rates reflect the time value of passengers, aircraft and 

crews on different flights. In Chapter 18 (pp. 429-433) we present a similar example 

where passenger time value dictates earliness and tardiness costs that are not necessarily 

proportional. Here, however, we continue our analysis subject to the proportionality 

assumption. 

 The first sum in (RN7.5) is equivalent to the expected weighted completion time. 

This sum is therefore the objective of the stochastic weighted completion time problem, 

which is minimized by sequencing the jobs according to shortest weighted expected 

processing time (SWEPT). That is, the optimal sequence for that sum would be 

nondecreasing order of μj/αj. The second sum in (RN7.5) is equivalent to the expected 

earliness/tardiness cost, but with proportional unit penalty costs αj and βj. The second 

sum is therefore a special case of the objective of the stochastic E/T problem, as studied 

above. Our model would thus generalize the stochastic E/T problem if we allowed 

distinct γj values, in which case (RN7.5) would remain unchanged but feature 

independent αj and βj. In our special case, where αj and βj are proportional, the sorting 

rule we discussed for the E/T problem calls for sequencing the jobs according to 

nondecreasing order of σj
2/αj. Thus, we are faced in (RN7.5) with an objective consisting 

of one term that drives sequencing toward shortest weighted mean processing times and 

another that drives sequencing toward smallest weighted variances. 

 One characteristic of the stochastic E/T problem is that the objective function can 

often be reduced by inserting idle time between jobs. For this reason, the stochastic E/T 

problem actually requires an explicit no-idling restriction. However, for (RN7.5), and 

thus also for (RN7.3), the no-idling assumption is unnecessary. We next prove this 

property for the general case, without requiring αj and βj to be proportional for all jobs 

and without requiring normality or stochastic independence. 

 

 

 

Theorem RN7.5.  Suppose the objective is to minimize ∑ n

j 1 αjE(Cj) + ∑ n

j 1 [αjE(Ej) + 

βjE(Tj)]. There exists an optimal solution without inserted idle time. 

 

 

Proof. 

 

»» We prove by contradiction and induction. Assume that some idle time ("delay") of A > 

0 must precede job [n] in the optimal solution. Let C[n] denote the completion time 

including the effect of the delay, and let C'[n] is the completion time when no delay is 

imposed. Then C'[n] ≤st C[n], because the completion time cannot be earlier when the start 

time is delayed. Therefore, if we draw the cdfs of C'[n] and C[n], denoted F'[n](x) and 

F[n](x), there must be a gap between them with an area of A (although this gap is not 

necessarily contiguous). Now draw a perpendicular line through the optimal due date for 

C[n], d[n]* (determined by Theorem 3). This line partitions the gap between F'[n](x) and 



F[n](x) into two non-negative areas, B1, and B2, to the left and right of d[n]*, such that B1 + 

B2 = A. Removing the delay leads to a direct benefit of α[n]A (by reducing α[n]E(C[n])) plus 

β[n]B2 (by reducing β[n]E(T[n])). The cost of removing the delay is an increase in earliness 

penalty of α[n]B1. But α[n]B1 ≤ α[n]A ≤ α[n]A + β[n]B2. Thus, the total cost of removing the 

delay cannot exceed the benefit, and the delay cannot be necessary for optimality. 

Furthermore, we may be able to achieve an additional benefit by adjusting the due date to 

its new optimal value. This argument completes the proof for the last job; for preceding 

jobs, we use induction for jobs [n − 1], [n − 2] etc., noting that removing any delay 

reduces not only the completion time of the imminent job but also that of all subsequent 

jobs. ««  

 

 Numerical experience we reported in Baker and Trietsch (2009) for normally 

distributed processing times (or when there are enough jobs to justify using the central 

limit theorem at least for most jobs) suggests that good sequencing heuristics for this 

problem should take into account the variance as well as the mean of each job. The 

simplest heuristic for this objective sequences the jobs according to nondecreasing values 

of the ratio (μj + σj)/αj. This heuristic, the weighted mean-standard deviation (WMSD) 

rule is very simple and even though our analysis above suggests that we should prefer 

using some function of σj
2 rather than σj, this simpler heuristic is still useful. Nonetheless, 

a heuristic that gives priority to the job with the smallest value of [μj + γφ(z)Δj]/αj is even 

better. It is based on the observation that for any pair of adjacent jobs this sequence is 

optimal when all other jobs are in the same positions. However, that is a dynamic priority 

rule because, as we showed above, if sB is the standard deviation of the completion time 

of all jobs processed ahead of job j then Δj  ≈ σj/2sB. But sB increases dynamically as we 

schedule additional jobs. Thus, a job with high σj may be discouraged in the early 

positions but become attractive later. We refer to this procedure as the weighted pair 

interchange (WPI) Rule. We conducted a set of computational experiments with test 

problems containing weights and the results are summarized in Table RN7.1, reflecting a 

set of 150 test problems. In the table, R reflects random results, SWEPT ignores variance, 

and the last column shows the percentage of cases where the WPI rule achieves optimal 

results. 

 

 Table RN7.1 

Rule R SWEPT WMSD WPI Rule WPI opt 

Suboptimality 32.92% 0.23% 0.03% 0.007% 87.3% 

 

In the table, we see that the randomly-generated sequence fares poorly but the other 

heuristic rules all perform well.  The static priority WMSD rule improves on SWEPT by 

roughly an order of magnitude. The dynamic priority WPI rule improves by nearly 

another order of magnitude and produces optimal solutions in most test problems. 

Furthermore, two of these rules, SWEPT and WPI are asymptotically optimal: the former 

because as n → ∞ variance becomes less important and the latter because except for the 

first few jobs it is likely to coincide with SWEPT, and the difference induced by the first 

jobs can be shown to become negligible as n grows large. In this connection, WMSD is 

not asymptotically optimal because it does not give variance a decreasing weight. 

 



Asymptotic Optimality of SWEPT and WPI 

 

 We adapt the technique of allowing preemption for our derivations. Here, we treat 

a job with weight αj, mean μj and variance σj
2 as a string of αj unweighted jobs, each with 

mean μj/αj and variance σj
2/αj. (This representation is most convenient when weights are 

integers but we can always rescale noninteger weights approximately as integers without 

changing sequencing decisions in any important way.) Above, we showed that using such 

strings yields a lower bound on the expected E/T penalty. We also showed that this lower 

bound is asymptotically equal to the correct value in the sense that the difference 

becomes relatively negligible as n grows. As for the completion time component of 

(RN7.5), it can be shown that using strings in this manner leads to the correct value 

minus a constant.  

 

 

Theorem RN7.6.  Suppose the objective is to minimize ∑ n

j 1 αjE(Cj) + ∑ n

j 1 [αjE(Ej) + 

βjE(Tj)] and that βj/αj ≤ δ < ∞, σj
2/αj ≤ η2 < ∞, and µj/αj ≥ λ > 0 for all j. 

Then, sorting the jobs by µj/αj (SWEPT) is asymptotically optimal.  

 

 

Proof. 

 

»» Rather than provide a complete formal proof, we just show that as n grows large the 

E/T contribution to the objective function becomes relatively negligible. The theorem 

follows because SWEPT optimizes the remaining part of the objective. For convenience, 

we use strings and thus transform SWEPT to SEPT. For any n > 1, assume n − 1 jobs 

have already been sequenced with a mean m(n − 1) ≥ (n − 1)λ and a standard deviation 

s(n − 1) ≤ (n − 1)0.5η. Now consider the contribution of job [n] to the objective function. 

The flow time contribution is αn(m(n − 1) + pj) ≥ αnnλ. For any distribution, it can be shown 

that the contribution of job n to the expected E/T penalty is proportional to sn. In 

particular if we assume that the processing time distributions are normal, or that n is large 

enough to invoke the central limit theorem, then this contribution is given by (αn + 

βn)φ(z*)sn. In our case, (αn + βn)φ(z*)sn ≤ αn(1 + δ)φ(0)η(n)0.5. Taking the ratio of the E/T 

contribution to the flow time contribution we obtain at most αn(1 + δ)φ(0)η(n)0.5/αnnλ = 

(η/λ)(1 + δ)φ(0)/n0.5. But for any admissible δ, η and λ, as n → ∞, (η/λ)(1 + δ)φ(0)/n0.5 → 

0. ««  

 

 Theorem RN7.6 implies that SEPT is asymptotically optimal for the objective of 

minimizing D + γE(T). In the weighted case, where we just showed that SWEPT is 

asymptotically optimal, we also were able to identify better heuristic procedures for a 

limited number of jobs. The best of both worlds, in a sense, is represented by the WPI 

Rule. Not only is this procedure capable of producing an optimal solution in most of the 

cases with few jobs, but it is also asymptotically optimal, as we demonstrate next. To this 

end, note that Theorem RN7.6 implies that in (RN7.5), the expected E/T penalty becomes 

negligible relative to the weighted completion time as n grows large (and this remains 

true for any sequence). So our main task is to show that the WPI Rule is asymptotically 

optimal with respect to the completion time component of (RN7.5). This property is not 



obvious because, relative to SWEPT, the WPI Rule tends to postpone jobs with high 

variance even if their weighted means are small, and thus it may lead to a larger 

completion time component for all subsequent jobs. In our proof, we conservatively 

assume that this is the case; otherwise, asymptotic convergence would occur even faster. 

That is, we show that although the weighted completion time obtained under the WPI 

Rule may be higher than under the optimal sequence, the relative difference is driven to 

zero asymptotically as n grows large.  

 Recall that the WPI Rule sorts jobs by [μj + γφ(z)Δj]/αj, and therefore, we can 

again partition each job into a string of αj unweighted jobs each with the same Δj value 

(given sB, as defined by the preceding string). Strictly speaking, this is not equivalent to 

allocating the variance to the jobs equally, but the difference is asymptotically negligible. 

Furthermore, we don’t need the assumption that the variance is allocated equally because 

the sequencing rule remains intact. Let SWPI denote the sequence obtained by WPI, let S* 

be the optimal sequence. Without loss of generality, index the jobs according to SWPI. For 

some k < n and a sequence S, let S[≤k] denote the subsequence of S from job [1] to job 

[k]. Similarly, let S[>k] denote the subsequence of S from job [k + 1] to job [n], to which 

we refer as the tail; e.g., the tail of SWPI comprises jobs k + 1, k + 2, . . ., n. Let f(S) be the 

objective function value of sequence S, and if the argument is a subsequence—e.g., 

f(S[>k])—then we interpret f as the contribution of the jobs in the subsequence to the 

objective function (i.e., f(S) = f(S[≤k]) + f(S[>k])). A lower bound on f(S) may be obtained 

by considering only the completion time component of the objective function. Let CB
WPI 

and CB* denote the completion times of the batches consisting of the first k jobs under 

sequences SWPI and S*, and similarly let sB
WPI and sB* denote the standard deviations of 

CB
WPI and CB*. With this background we are ready to prove our result more formally. 

 

 

Theorem RN7.7.  Suppose the objective is to minimize ∑ n

j 1 αjE(Cj) + ∑ n

j 1 [αj(E(Ej) + (γ 

− 1)E(Tj))] and that γ < ∞, 0 < δ2 < σj
2/αj ≤ η2 < ∞, and µj/αj ≥ λ > 0 for 

all j. Then, sorting the jobs by [μj + γφ(z)Δj]/αj  is asymptotically 

optimal.   

 

 

Proof. 

 

»» Using strings, we may assume that all jobs have equal weights; so the adapted 

conditions are 0 < δ < σj ≤ η < ∞, and µj ≥ λ. For an arbitrarily small but positive ε, we 

have to show that there exists a value nε such that for any n > nε, (f(S
PI) − f(S*))/f(S*) < ε. 

We start by producing a finite k value (namely kε) for which f(SPI[>k]) < fL(S*[>k])(1 + 

ε/2). Notice that E(CB
PI) and E(CB*) must both exceed λk, whereas both sB

PI and sB* are 

in the range [k0.5δ , k0.5η]. Using η as the upper bound on σ(k + 1) and k0.5δ  as the lower 

bound on sB
PI, it can also be shown that Δ(k + 1) < η2/2k0.5δ. Now select the integer kε such 

that in job (kε + 1), the marginal contribution of the variance to the objective function will 

be at most ε/2 as large as the marginal contribution to the total completion time, μ(k + 1). 

This condition implies Δ(k + 1)γφ(z*) ≤ μ(k + 1)ε/2, and if we  use the upper bound for Δ(k + 1) 

and the lower bound for μ(k + 1) it yields kε = [γφ(z*)η2/δε]2. This choice guarantees that the 

relative marginal contribution of the variances of subsequent jobs will also be below ε/2 



times the marginal contribution of the mean processing time to the total completion time. 

We make the conservative assumption that E(CB
PI) > E(CB*). On the one hand, if we 

measure the completion time cost of the tail starting at CB
PI, it will not be larger than that 

associated with (1 + ε/2) times the value obtained by applying SEPT to the tail of S*. 

This yields an upper bound on the deviation from the optimal expected completion time 

value: we must be within ε/2 of the optimal value. On the other hand, under our 

conservative assumption, for each of the jobs in the tail, there is an additional 

nonnegative contribution to the completion time, (CB
PI − CB*), which may yield a 

difference that tends to grow linearly with n. However, the expected total completion 

time is not smaller than n2λ/2, so that difference can also be driven below ε/2 in the 

relative sense, yielding the required convergence within ε when considering both the 

variance and the completion time together.  «« 

 

WPI with Linearly Associated Processing Times 

 

To our knowledge, there are no published results about the effectiveness of various 

heuristics for the case of linearly associated processing times (let alone general 

processing time distributions without stochastic independence). By studying Section A.3 

in Appendix A, and Theorem A.6 in particular, it can be shown that in the limit the 

individual variance of the jobs matters less than the mean for sequencing decisions, and 

yet the expected E/T penalty does not become negligible. The reason is that jobs are 

subject to a completion time coefficient of variation (cv) that is bounded from below by 

the cv of the common bias element. Thus, we can conclude that SWEPT should remain 

asymptotically optimal for this case. Adapting WPI to this case remains an open research 

challenge. One approach to this problem is to assume all processing times are distributed 

lognormal, use the lognormal central limit theorem and use a basic lognormal common 

factor. In this scheme, the use of a lognormal distribution to present the sum of the 

independent positive processing times is supported by the lognormal central limit 

theorem (Appendix A), but the crux is whether the common bias element can be 

approximated by a lognormal variable too. If we assume that there are multiple small 

causes of bias then their combined effect is indeed approximately lognormal. This is true 

because by the regular central limit theorem the sum of the logarithms of these small 

causes is approximately normal and therefore their product is approximately lognormal.  

 

The Minimal Value of d + γE(T) with Lognormal Processing Time 

 

 Let μ and s be the mean of the lognormal distribution and the standard deviation 

of its core normal (see Appendix A for the relationship between these parameters). For a 

given due date, d, the service level is Φ(z), where z = ln(d/μ)/s + s/2. As we mentioned in 

our Research Notes for Chapter 6, E(T) = μΦ(s − z) − dΦ(−z). By the discussion below 

Equation (RN7.4), d = µ + E(T) – E(E). So E(E) = µ + E(T) – d. Using this result, if d* is 

the optimal due date for minimizing d + γE(T), then, for γ > 1, some algebra reveals that, 

 

d* + γE(T) = µγΦ(s – z*) 

 



 Because the optimal service level does not depend on the distribution, and 

because the service level of a lognormal is determined by its core normal, z* = 

Φ−1((γ−1)/γ). We also obtain d* = exp(m + sz*), where m is the mean of the core normal. 

 

When Are Active Release Dates Useful? 

 

In Theorem RN7.5 we showed a particular case where no idling is needed. In other 

words, we did not require the use of release dates because all jobs start as soon as the 

machine is ready for them. In general, however, active release dates are often justified. 

For example, the problem studied by Trietsch (1993) requires setting release dates for 

outgoing flights and due dates for incoming ones. In such analysis, much depends on the 

true earliness costs. For instance, an underlying assumption behind Theorem RN7.5 is 

that all jobs are available at time zero so we have to pay for their flow time starting at 

time zero. But if we have the option of postponing the induction of job j, we only have to 

pay for its flow time from its release date until its completion. In such case, it is not 

necessary for the flow time cost to be identical to the earliness cost. Thus we obtain a 

more general model. In more detail, if jobs require inputs whose acquisition can be 

postponed and thus reduce costs (e.g., when scheduling a service, customers may be able 

to utilize the time prior to their job start outside the system), then the earliness cost 

should include the time value of these inputs and active release dates become desirable. 

In such cases the release date is used to schedule the arrival of jobs and other inputs for 

the jobs and there is a clear marginal saving associated with postponing them. To clarify 

this distinction, in this section, we study the usefulness of active release dates when the 

objective is given by (RN5.1) and includes flowtime cost. The relevant part of (RN5.1) is, 

  

   f(S) = ∑ n

j 1 [wjFj + αjEj + βjTj]    (RN7.6) 

 

 Recall that in Chapter 2 we defined flow time as the time a job spends in the 

system and we defined rj as the time the job becomes available, so we obtained Fj = Cj − 

rj. Until now, however, we assumed that all jobs are available at time zero. Therefore, Fj 

= Cj, and the relevant part of (RN5.1) is,  

 

f(S) = ∑ n

j 1 [wjCj + αjEj + βjTj] 

 

Comparing to (RN7.5), the only difference is that completion time is weighted by wj 

instead of αj. By the proof of Theorem RN7.5, if wj ≥ αj then release dates are 

unnecessary. (It is often reasonable to assume that wj ≥ αj because the holding costs start 

when jobs become available, i.e., from time zero, whereas wj may also include the 

economic time value associated with being able to quote an earlier (and yet reliable) due 

date to the customer.) We may also conclude that solving properly for wj < αj can require 

setting active release dates and due dates. However, our objective does not account 

directly for the value of machine time. In practice, machine time has positive economic 

value, often addressed as an opportunity cost. In addition, machine time may have to be 

booked in advance for the jobs at hand. Using the index 0 for the machine, if we book it 

from time zero (i.e., r0 = 0) for a period of d0, there is a charge of w0d0 reflecting the 

expected opportunity cost. In other words, w0d0 is the expected alternative profit that we 



forfeit by the booking. If we book too much time, we may be able to salvage the excess 

time later, but we should expect to recoup less than the full booking cost. If we denote the 

difference between w0 and the expected salvage time value by α0, then earliness relative 

to d0 implies a loss of α0(d0 − C0)
+, where C0 equals Cmax (or C[n]). However, if we are not 

ready to release the machine at the end of the booking period, we must forfeit w0 for each 

time unit of tardiness and assess an additional tardiness penalty of β0(C0 − d0)
+, to reflect 

the cost of disruption. For example, because the machine could otherwise have been 

booked, the disruption may cause tardiness later or the need for overtime. Whereas the 

economic cost of a time unit during tardiness, w0, cannot be avoided by changing the 

booking time, the expected disruption penalty is a function of the booking time. Hence 

we obtain an E/T component for the booking with earliness cost of α0 and tardiness cost 

of β0. When we add these costs to our objective we obtain a more general objective, 

 

   f(S) =∑
n

j 0 [wjE(Fj) + αjE(Ej) + βjE(Tj)]  (RN7.7) 

 

Technically, the only difference between (RN7.7) and (RN7.6) can be described as the 

addition of "job 0," which represents the machine. Conceptually, however, in this case we 

know that w0 > α0, and there is therefore a stronger disincentive to include active release 

dates anywhere in the schedule. For any given set of release dates, if we use stored 

sample analysis, d0 is solved by d0 = Cmax(rβ0/(α0 + β0)), where the effect of active 

release dates, if any, is incorporated into the Cmax column. (Similarly, but not identically, 

d[n] = Cmax(rβ[n]/(α[n] + β[n])).) The presence of the machine time element in the 

objective, and the observation that w0 > α0, give rise to a stronger version of Theorem 

RN7.5 (with an essentially identical proof). 

 

 

Theorem RN7.8: For any given sequence and any job [j] in the jth position, if w0 − α0 + 

∑
n

jk [w[k] − α[k]] > 0, then no active release date r[j] can improve the 

performance measure in (RN7.7). 

 

 

Although Theorem RN7.8 gives sufficient and not necessary conditions, it is possible that 

release dates could be desirable when these conditions are not satisfied. Given any set of 

release dates, we already know how to set due dates, but the combined problem of setting 

release dates and due dates requires searching for the release dates and adjusting the due 

dates based on the release dates in such a manner that the service level targets are 

satisfied and the total cost is minimized. The good news is that this problem is still 

convex (for any given sequence), so it is amenable to solution by numerical search. 

Notice, however, that if wj = 0 (for j = 0, 1, …, n), then the optimal release dates should 

be very large. Theoretically, depending on the processing time distributions, the optimal 

release dates and due dates may not even be bounded. But if max{w0, w[n]} > 0, all 

optimal release dates and due dates are finite. So this is not a problem in practice. 

 It is interesting to compare this solution to the Britney (1976) approach, because it 

is quite popular in practice. Under this approach we allocate enough safety time for each 

job individually, without considering its interactions with other jobs, and then set 



subsequent release dates after the allowed processing time for the previous job. Thus each 

job has a Parkinson distribution, and the scheduling is done as if the Parkinson tails do 

not exist. This approach not only wastes machine capacity and delays jobs unnecessarily 

but also fails to deliver the desired service levels: tardiness in an early job may delay 

subsequent jobs in a domino effect. This creates the well-known practical phenomenon 

that earliness is wasted but tardiness accumulates. In other words, using the Parkinson 

distribution recklessly just because it has lower variance exacerbates the waste associated 

with Parkinson’s Law. We discuss this issue further in Chapter 18. 

 

 

SOME ADDITIONAL OPEN RESEARCH QUESTIONS 

 

Whereas we have provided a partial solution to the problem of maximizing the number of 

jobs processed subject to stochastic feasibility, there are many open questions around the 

stochastic weighted and un-weighted U-problem. Within the framework of stochastic 

feasibility, Akker and Hoogeveen (2008) discuss a version of the problem with several 

parallel machines. But even for a single machine, practically no results exist for the 

economic version of the problem. Both dynamic programming and branch and bound are 

likely candidates, but both require testing. Good heuristics are also in short supply at the 

moment. 

 Shifting our attention to models with due dates or release dates as decisions, most 

of the published results to date assume either a fixed tardiness cost or a proportional 

tardiness rate, but rarely both. Exceptions do exist: the original paper by Arrow, Harris 

and Marschak considers both and see also Laslo et al. (2007). Such models require 

further research, however. Studies of models with convex increasing penalty functions 

that can be used to model risk-averseness are also needed. One potential approach is to 

use piecewise linear penalty functions but adjust the rates to obtain the approximately 

correct result for the convex function. This is akin to the iterative use of linear 

programming to solve general convex programming models.  
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