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As discussed in the research notes for Chapter 1, the development of stochastic 

sequencing models was slow until the late 1970s. Nonetheless, the basic stochastic 

counterpart models covered in this chapter were discovered earlier. Theorems 6.1 and 6.2 

are due to Rothkopf (1966).  Theorem 6.3 is due to Crabill and Maxwell (1969), who 

were also the first to note that minimizing the maximal expected tardiness is not identical 

to minimizing the expected maximal tardiness. Theorem 6.4 is due to Hodgson (1977). 

Corollary 4.1 was actually published earlier than the theorem itself, by Banerjee (1965). 

We are not aware of earlier sources of Theorems 6.5, 6.6, 6.7 and 6.8. Theorem 6.6 could 

be used in a branch and bound application for finding the sequence that minimizes the 

expected maximal penalty, but research to test whether it is indeed effective for that 

purpose is lacking. A basic linear-association model was proposed by Trietsch (2005), 

and, because it addresses projects, we discuss it in the research notes of Chapter 18. 

Essentially, the results on linear association given in this chapter, Chapter 11 and 

Appendix A were developed to avoid the ubiquitous stochastic independence assumption, 

and yet maintain tractability. Characterizing the cases for which traditional results based 

on stochastic independence can be extended to linearly-associated distributions is an open 

research problem. But Theorem 6.8 is one example where Theorem 6.7 suffices for this 

purpose. In Chapter 7 we present another example, Algorithm 7.1 (see also Theorem 7.1), 

where Theorem 6.7 can be used to expand the conditions of a result from stochastic 

independence to linear association. Extending the analysis to more elaborate associations 

is another area that requires further research.  

 Stored samples are central to our computations for stochastic models. They also 

help us avoid the stochastic independence assumption. Furthermore, in subsequent 

chapters, stored samples are vital to our calculations of safety time. It is therefore 

important to discuss the theoretical underpinnings of this approach. But first, we lay to 

rest a common myth, according to which the use of a stored sample—often associated 

with simulation—is in some sense less precise than the use of analytic models. From a 

practical point of view, the opposite is true. It is the typical analytic model that is more 

divorced from reality. Key to any analytic model is the use of given parameters. But 

where do these parameters actually come from? At best, such parameters are estimated 

from practical samples (which, under a stored-sample approach, could have been used 

directly), and typically the models also involve fitting theoretical distributions to the data 

collected. When fitting distributions, goodness-of-fit tests apply, and if the tests are 

passed, we can say that the fit cannot be rejected. We can never say that the fit is correct, 

however. So there are two sources of potential error in this approach: estimating 

parameters and selecting a distribution. Again, if a real-life sample is given, our approach 
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would not require estimating anything from it: we could often simply use it as our stored 

sample. As a result, we would avoid both the estimation errors and the errors in fitting 

theoretical distributions. An additional advantage, even if we use simulated samples 

(which, admittedly, are not necessarily better representations of reality), is that we don’t 

need strong assumptions, such as stochastic independence. Thus, we achieve more 

realistic representations, and we do not require restrictions designed mainly to achieve 

tractability in analytic models.  

 Analytic models have their value, especially in studying the behavior of stochastic 

systems in a stylized framework that allows seeing fundamental issues more clearly. 

Indeed, we utilize such models in this text, and we do so for that very purpose. But they 

should not always be touted as a better approach for practical problems than using sample 

data. There is a caveat, however. Using a larger stored sample implies longer 

computation times. As a rule of thumb, we can estimate the relative computation time as 

roughly equal to r times that of the deterministic counterpart, where r is the number of 

realizations in the sample. So, if we can estimate distributions well and then use them 

efficiently without relying on simulation, we may be able to solve larger problems than 

we could with a stored sample. For instance, if computation time is proportional to 2
n
, we 

might expect to be able to solve for 10 fewer jobs if we use a sample of 1000 realizations.  

 We now turn to the historical development of stored-sample analysis. For this 

purpose we assume the sample is actually simulated: when the sample is given from real 

data, the issues we now discuss become moot. Essentially, using a sample is a very 

intuitive concept and has probably been reinvented repeatedly, making it difficult to 

identify the first source of this idea. For instance, in Chapter 15 we discuss job shop 

simulations that date back to the 1960s, and they essentially involve the use of stored 

samples. Early applications of computerized simulation, however, did not address 

optimization. Instead, they involved comparison of few alternatives (e.g., sequences) 

presented by the user. For this purpose, they relied on the statistical sampling approach 

combined with artificial generation of samples. In the early days, fast access memory was 

a severe bottleneck, and in many cases, the sample was regenerated for each new test. To 

make such comparisons more precise, it is possible and recommended to regenerate the 

exact same sample for each alternative solution by using the same seed for generating 

random numbers. Furthermore, it is possible to calculate the mean and the variance of a 

sample during the process of generating it without keeping the data in memory or storage. 

When memory is at a premium and storage is expensive, this facility is very attractive. 

The same approach can also be used in sample-based optimization; i.e., it is not necessary 

to actually store the sample. For instance, Gurkan et al. (1994) recommend this approach. 

Today, it is much easier to keep a sufficiently large stored sample in fast access memory, 

so the idea of storing a sample and then using it repeatedly is technically more attractive. 

This is especially true if each stored number is the result of a simulation from a complex 

distribution. For example, in an early experiment, we used a very large stored sample 

with data generated by an Excel distribution function. In that case, it took 75 seconds to 

generate a sample and write it in a spreadsheet; but afterwards it took only 0.2 seconds to 

optimize the precise schedule for it. There were no sequencing decisions involved, or the 

optimization might have taken much longer, but this case demonstrates that using a stored 

sample is a very quick operation relative to generating it—that is, regenerating the same 

sample repeatedly would be highly wasteful.  



 Regardless of whether we store the sample or regenerate it, sample-based 

optimization starts with an assumption (implicit in the main body of our text) that 

processing times are stationary. Processing times are stationary if they do not depend on 

jobs’ start times; i.e., they are independent of the sequence or the schedule. The 

processing times of two jobs may be statistically correlated and yet stationary. For 

optimization, we utilize this stationarity to justify using the same sample under different 

schedules. By contrast, if processing times were a function of their start time (the 

schedule), or the sequence, this approach would require modification. For instance, in 

problems involving highway travel time, the stationarity assumption does not hold 

because travel time tends to be longer during rush hour. In such a case, our use of stored 

samples requires modification. Such modification may involve transformations of the 

distribution as described by Trietsch and Quiroga (2009) in a different context. We also 

use this approach for stochastic crashing in Chapter 18. 

 Two types of optimization are relevant. One is associated with optimizing 

nonlinear functions; e.g., precise scheduling decisions, where the decision variable is 

continuous and the function has a continuous derivative, but stochastic noise is also 

present, necessitating the clever use of samples. Shapiro and Homem-de-Mello (1998) 

discuss such a case with a multivariate normal distribution. For such cases, it makes sense 

to use small samples when we are far from the optimum and larger samples as we 

approach the final solution. Indeed, these authors recommend that approach. A related 

subject is to find the optimal setting of a complex process; e.g., in chemical engineering. 

In this case, the underlying function—say yield—is not known theoretically but must be 

estimated empirically by trial and error. If so, the problem calls for a statistical 

experimental design approach, also known as response surface optimization (RS—see 

Box and Draper, 1987). RS can also be useful when few discrete decisions are involved; 

e.g., whether to use ingredient X or ingredient Y. It is not likely to be useful for 

sequencing decisions involving many jobs, however, because each possible sequence 

would become a special case requiring estimation. Related papers discuss the use of 

stored samples in the context of integer programming—which conceptually can be used 

for sequencing decisions (see Appendix C); e.g., see Kleywegt et al. (2001) and Verweij 

et al. (2003). Nonetheless, for the purpose of making sequencing decisions, there is less 

evidence that it is safe to start the search with a small sample and increase the sample size 

as we approach the final solution. It may be a useful heuristic to do so, but this subject 

requires further research. The state of the art in our context is to use neighborhood 

searches for the optimal sequence. 

 A related approach is pursued by Healy and Schruben (1991). They generate and 

store a sample and then optimize for each repetition separately and select the solution that 

is correct most frequently. This measurement—the frequency at which a sequence is 

optimal—is also known as the optimality index, a term coined by Dodin (1996) in a 

sequencing context. The use of optimality indices may look attractive, but Portougal and 

Trietsch (1998) cautioned that it is not a robust criterion. They demonstrated that 

maximizing the optimality index may favor the selection of schedules whose distributions 

have a low mode but high variance and high mean. Such distributions tend to be superior 

very often—that is why they have high optimality indices—but when they fail, the failure 

is worse than it could have been. The practical conclusion is that if we need to resort to 

heuristics, we are likely to be better off using the deterministic counterpart sequence as a 



basis for scheduling than using a sequence with a higher optimality index. This choice is 

guaranteed to be easier computationally and likely to be at least as good once we take 

stochastic variation into account. 

 Portougal and Trietsch (1998) is also the source of the result cited in Section 6.6 

that if Y ≥st X and Y and X are independent, then Pr{Y ≥ X} ≥ 0.5. (This result can be 

extended to the linearly-associated case by invoking Theorem 6.7.) Therefore, when 

comparing two stochastically-ordered distributions, the one that is stochastically smaller 

will have a higher optimality index. This result is highly intuitive but the proof is not 

immediate. On the subject of stochastic dominance, we should mention that several 

stronger forms of stochastic dominance are often mentioned in the research literature. 

Perhaps the most important one is the strongest possible dominance, where one variable 

dominates the other with probability 1 (w.p.1), or almost surely. If Y is larger than X 

almost surely we can write Y ≥as X. Because dominance w.p.1 implies stochastic 

dominance, every result that can be proved for distributions with stochastic dominance 

also applies for stochastic dominance w.p.1. Suppose that two random variables Y and X 

are independent. If Y ≥as X then the cdf of Y must reach 1 before the cdf of X can exceed 

0. For this reason, independent random variables with this strong dominance between 

them are also described as having non-overlapping distributions. But it is easy to show 

that this dominance does not require non-overlapping distributions when the variables are 

correlated (Ross 1996). For example, if Z is a nonnegative random variable and Y = X + 

Z, then Y ≥as X but the two can have overlapping distributions nonetheless. In fact, the 

assumption of independence is so ubiquitous that sometimes results that are stated for 

non-overlapping distributions could actually be proven for regular dominance w.p.1. 

 

Emerging Research Areas 

 

 A useful research area, suggested by our discussion above, is cataloguing classical 

results that assume independence and classifying them according to whether they can or 

cannot be generalized to linearly-associated distributions. That includes, for example, 

distinguishing between results that require dominance with probability one and those that 

actually require non-overlapping distributions. In general, doing that is a task that 

requires studying in detail a very large number of publications. Whereas some cases 

would be almost immediate to analyze, others may require careful study. In Appendix A, 

among other things, we discuss a case where Theorem 6.7 cannot be used because it 

involves due dates that are not subject to the common bias. Hence, it is clear that not 

every result obtained under the independence assumption can be extended. It would be 

especially useful to devise general rules that can help in making such decisions.  

 We now discuss an important open area of future research that combines stochastic 

analysis with conventional mathematical programming techniques, such as branch and 

bound (B&B) and dynamic programming (DP). We address specifically the stochastic T- 

and Tw-problems, but part of the challenge is to identify additional models that might be 

addressed that way. As a rule, we can apply B&B, DP or Integer Programming to 

practically any stochastic problem by sample-based optimization. For instance, Gutjahr et 

al. (1999) apply B&B within a sample-based optimization framework for the T-problem. 

Similarly, some of the references discussed before involve sample-based optimization by 

various mathematical programming approaches. We also remark that stochastic 



programming with recourse typically utilizes a set of scenarios, which we might as well 

call a sample. Our aim here, however, is to show the applicability of the analytical 

approach for some distributions without a stored sample, and thus achieve more efficient 

computation. To begin, we give a streamlined proof of a slight generalization of Theorem 

6.8. The generalization allows agreeable weights and we address any two jobs. That is, 

we actually prove a generalized version of Theorem 2.8 (see Exercise 2.8g). Theorem 6.8 

is essentially a corollary of our new result. 

 

 

Theorem RN6.1 In the Tw-problem, let the processing times, pj, of all jobs be linearly 

associated, and let jobs 1 and 2 satisfy p1 ≤st  p2, d1 ≤ d2 and w1 ≥ w2, 

then job 1 precedes job 2 in an optimal sequence. 

 

 

Proof. 

 

»» Again, we prove for independent processing times and then invoke Theorem 6.7 to 

cover linear association. In Figure RN6.1, the expected tardiness of a job is depicted as a 

tail to the right of its due date, above the distribution that applies to it and below the 

upper horizontal line of 1. The relevant distributions are either Fk if job k is scheduled 

first (k = 1, 2), or F1+2 if job k is scheduled second. These three distributions also reflect 

any preceding jobs that have already been scheduled, or any jobs scheduled between jobs 

1 and 2. As the figure shows, job 1 is stochastically smaller and has a lower due date, per 

the condition of the theorem. Let TF,d denote the area of the tail above distribution F 

(where F = 1, 2 or 1+2) to the right of due date d (where d = 1, 2). TF,d measures an 

expected tardiness; for instance, T1+2,1 is the expected tardiness of job 1 if it is sequenced 

second and is thus subject to the completion time distribution F1+2.  We start with the 

sequence 1-2, assuming the two jobs are adjacent. By an API, the tardiness cost of job 1 

increases by w1(T1+2,1 − T1,1) ≥ w1(T1+2,2 − T1,2), whereas the tardiness cost of job 2 

decreases by w2(T1+2,2 − T2,2) ≤ w2(T1+2,2 − T1,2). But, because w2 ≤ w1, w2(T1+2,2 − T1,2) ≤ 

w1(T1+2,2 − T1,2), so the gain is bounded from above by a lower bound of the loss and the 

change cannot decrease and may increase the total weighted tardiness. Now allow 

additional jobs (which need not be stochastically ordered) between jobs 1 and 2. If we 

interchange the two jobs, all these intermediary jobs follow a stochastically larger job so 

their expected tardiness cannot decrease. Hence, such jobs cannot provide incentive to 

perform the interchange either. «« 

 



 
 

Figure RN6.1 

 

 Parenthetically, in Chapter 7, we introduce predictive Gantt charts. A predictive 

Gantt chart provides distributions for starting times and completion times and shows due 

date performance graphically. Essentially, Figures 6.2 and RN6.1 incorporate all the 

ingredients of a predictive Gantt chart. Our proof highlights the usefulness of predictive 

Gantt charts for stochastic analysis.  

 To continue, calculating expected tardiness by tail areas can sometimes be 

performed without simulation. For instance, when processing times are normal it is easy 

to obtain distributions such as F1+2 by convolution. In such cases, we can perform API 

tests by comparing the expected weighted cost of the two possible sequences. If job 1 

comes first, the total weighted cost is given by: w1T1,1 + w2T1+2,2 whereas if job 2 comes 

first, the total weighted cost is given by: w1T1+2,1 + w2T2,2. Therefore, job 1 can come first 

if: 

 

w1T1,1 + w2T1+2,2 ≤ w1T1+2,1 + w2T2,2 

 

or  

 

w1(T1+2,1 − T1,1) ≥ w2(T1+2,2 − T2,2) 

 

 This condition can take the place of the WMDD dispatching heuristic that we 

introduced in Chapter 4. Job 1 comes first if it satisfies the condition for any selection of 

another job as job 2. Stochastic dominance is not required. It can also be used within 

branches in a B&B application. 

 We invoked the normal distribution because it is easy to calculate convolutions 

for it and to calculate tail areas thereafter: by (B.14), E(Tj) = σ[φ(w) − wΦ(−w)], where φ 

is the standard normal density function, Φ(w) is the standard normal cdf, w = (d − μ)/σ, μ 

is the mean, and σ is the standard deviation of the processing time. The service level in 

this case is given by Φ(w). Although Φ(w) is elliptic, it is as good as analytic in the 

practical sense (because very precise calculations are available by appropriate series); 

e.g., the Excel function NORMSDIST(w) can be used in calculations. Therefore, it is 

F1 

F1+2 

d1 d2 

F2 

F1 

F1+2 

  

F2 



possible to use the normal tail result for the purpose of solving tardiness problems by 

B&B or for DP.  

 Furthermore, it is equally easy to calculate tail areas for the lognormal 

distribution. Let μ and s be the mean of the lognormal distribution and the standard 

deviation of its core normal (see Appendix A for the relationship between these 

parameters). Define z = ln(d/μ)/s + s/2, which implies a service level of Φ(z). Then it can 

be shown that the expected tardiness is μΦ(s − z) − dΦ(−z). The only problem with the 

lognormal, however, is that we don’t have convenient convolutions for it. Nonetheless, 

there is one important special case for which we can use the lognormal distribution 

without resorting to approximations, and that is when processing times are linearly 

associated but with stochastic variation restricted to the common element, Q. Another 

important case that can be approximated very well is when each element is distributed 

lognormal with the same s, and Q is also lognormal. In that case, we can invoke the 

lognormal central limit theorem (see Appendix A) to obtain approximate convolutions. 

When all processing times are lognormal with the same s, then they are stochastically 

ordered.
†
 In such case, we can also apply Theorem RN6.1. In Trietsch et al. (2010) we 

report that linearly-associated lognormal distributions provided a good fit for processing 

times in two project environments in Armenia. We believe that it should be useful in a 

much wider context as well. Thus, solving for this particular distribution has a validated 

practical application.  

 Returning to our tail-based analysis, one might think that such observations, at 

least with respect to the better-known normal model, would have led to the application of 

B&B or DP to the stochastic T-problem and the stochastic Tw-problem. Nonetheless, that 

does not seem to be the case (except by the sample-based approach that we cited above). 

Thus, we believe that the application of these tools to stochastic scheduling is a ripe area 

for research. Similarly, these stochastic problems can be addressed by various search 

heuristics with little adaptation. For example, the current best search technique for the Tw-

problem seems to be dynasearch (Congram et al., 2002; Grosso et al., 2004). As 

discussed in our Research Notes for Chapter 4, Dynasearch is a neighborhood search 

approach that is based on searching various combinations of pair interchanges and has 

been shown to be much more effective than regular pair-interchange search heuristics that 

consume the same search time. On the one hand, in the deterministic Tw-problem case, 

the fastest application of dynasearch utilizes shortcuts that go beyond just using the 

analogue of Theorem RN6.1. On the other hand, it is conceptually easy to adapt basic 

dynasearch—without shortcuts—to the stochastic version. Specifically, the effects of 

independent PIs are additive, which, as we discussed in RN4, is the main requirement for 

dynasearch to be potentially effective. (By this criterion, dynasearch could also be 

applied to a stored sample.) We may also be able to identify useful shortcuts that apply in 

the stochastic case (including Theorem RN6.1). Thus, the application of dynasearch and 

other search techniques to our problem is highly likely to bear fruit. Nonetheless, it is 

also important to establish the size limit of problems that can be solved to optimality 

(e.g., by B&B or DP), so we should not limit our attention to search heuristics.  

 

 

                                                 
†
 In our Research Notes for Appendix A we show that lognormals with the same s are stochastically 

ordered in the likelihood ratio sense, which is a slightly stronger result. 
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