
Research Notes for Chapter 4* 

 

After discussing sources for the results in Chapter 4, we present four techniques that we 

did not include in the chapter. Next, we present more details about dominance 

relationships for the Tw-problem and we discuss the effects of adding precedence 

constraints. Our objective is to encourage further research on those issues. (In Research 

Notes for Chapter 6 we discuss the stochastic version of the problem, with the same 

objective.) We also discuss asymptotic optimality and the related concept of asymptotic 

convergence. An important requirement in testing heuristics involves the design of 

appropriate test sets, so we explore that issue, too. We also provide the optimal values of 

the 12 test problems that we use in the chapter. 

 

Some sources and credits 

 

Dispatching: Beyond the results we reported in the chapter, the WMDD heuristic 

has been tested with simulation experiments, in both static and dynamic scenarios, 

and it has performed very well relative to other heuristics (Kanet and Li, 2004). The 

test based on an exact generalization of MDD was proposed by Rachamadugu 

(1987). We edited Rachamadugu’s test slightly to match the format of SWPT. On 

the one hand, this test could be replaced by a straightforward API comparison. On 

the other hand, it is valuable as a basis for more powerful results, such as the 

property that if all jobs are tardy under SWPT then SWPT is optimal. We discuss 

other examples later. 

 

Simulated annealing: The seminal SA work is Kirkpatrick et al. (1983). They 

discuss the basic insight that underlies SA, namely, the similarity between 

statistical mechanics and combinatorial optimization. The specific example that 

provides the most useful analogy is the annealing of solids (hence the name, 

simulated annealing). If the cooling regime is too fast (as in quenching), material 

will freeze into an inefficient state (with defects, or high energy). The analogy in 

optimization is settling for a low-quality local optimum. By contrast, a slow, 

controlled cooling regime leads to a low-energy state without defects, analogous to 

a good solution. The authors then describe the application of the main SA idea to 

the design of computer chips (which is a very complex combinatorial optimization 

problem) and to the traveling salesperson problem. A more detailed treatise of SA 

for combinatorial optimization is provided by Van Laarhoven and Aarts (1987). 
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Tabu search: The seminal work in this area is Glover (1989) and (1990a), although 

by the time these papers were published, quite a few applications of TS had already 

been completed based on earlier working papers. A very accessible introduction to 

TS is given by Glover (1990b). This is a useful source for readers who want to gain 

a more thorough introduction to the subject. It covers important issues related to TS 

that we did not cover, such as aspiration criteria that make it possible to override a 

tabu and the use of long-term memory. In addition, there is a more thorough 

discussion of various types of tabu moves and the ideal size of a tabu list. TS is not 

specific to scheduling, but Glover (1990b) cites at least one scheduling example. 

 

Genetic Algorithms: Like TS and SA, GA is not specific to scheduling. Work in 

this field flourished after the publication of Holland (1975), which might therefore 

be considered an early and important milestone in the development of GA. 

Nonetheless, the main GA ideas were explored by various research groups starting 

in the 1960s. We refer the readers to Wikipedia for the history of GA. Important 

scheduling applications of GA seem to have appeared starting in the mid 1980s. 

Specifically, in 1985, papers addressing the job shop and the traveling salesperson 

problem, as well as a paper on bin-packing (which is closely related to parallel 

machine scheduling) were presented at the 1st International Conference on Genetic 

Algorithms, at Carnegie-Mellon University (Grefenstette, 1985). We are not aware 

of earlier publications of GA in scheduling, but there is such a vast literature in this 

field that it is difficult to say with certainty that the 1985 proceedings are indeed 

first. 

 

Beam search 

 If we were to implement a branch and bound algorithm as in Chapter 3 but 

without using any bounds, the tree of partial schedules would eventually generate all n! 

complete sequences. Proceeding from the initial node, level k would contain all partial 

sequences of size k. Thus, for an n-job problem, level 1 would contain n partial 

sequences, level 2 would contain n(n – 1), level 3 would contain n(n – 1)(n – 2), and so 

on. Thus, the tree would get wider at each level, becoming quite wide by the time it 

reaches the final level. 

 Beam search is a means of searching the tree in heuristic fashion, without 

allowing the width of the tree to become excessive. Beam search limits the number of 

partial sequences considered at each level to a given number b, called the beam width. 

Usually, the parameter b is a relatively small number, so that partial sequences may have 

to be discarded in order to keep within the beam width. A key requirement is a means for 

selecting partial sequences to retain at any level. Typically, we compute a lower bound 

for each partial sequence and keep only those with the b best bounds. In a sense, these are 

the most promising partial sequences, and it makes sense to "bet" that they will lead to 

the best complete solution. However, there are no guarantees that the best bounds 

encountered early in the search eventually lead to optimal solutions, so the algorithm is 

ultimately a heuristic procedure. It is also possible to generate upper bounds for each 

branch, using construction or dispatching heuristics. Such upper bounds might also be 

used for selection, but there is no guarantee that they would lead to optimal solutions, 



either. Morton and Pentico (1993) discuss such options in some detail, but we are not 

aware of explicit research comparing them in practice. 

 By limiting the width of the tree to b, the computational complexity of the search 

becomes polynomial—O(bn3) or higher, depending on the exact design. By discarding 

some partial sequences at each level, we may the search away from the optimum. Thus, 

the quality of the solution depends on whether we can find a way to select the b branches 

so that they are likely to include the optimal or a near-optimal solution.  

 

 

 

ALGORITHM RN4.1 

Beam Search 

 

Step 1. Select the beam width b. Let k = 0, and initialize the search with the empty 

partial schedule. 

 

Step 2. Increase k by 1. Let b' denote the number of partial schedules available from 

the previous level (for k = 1, b' = 1). Generate and evaluate the b'(n − k + 1) 

possible new partial schedules. If these are complete schedules, identify the 

best one and stop.  

 

Step 3. Select the best b partial schedules to pursue further and return to Step 2. 

 

 

  

 

Example RN4.1. Consider a problem containing n = 5 jobs with known processing times 

and due dates. 

 

 Job j 1 2 3 4 5 

 pj 2 3 1 6 4 

 dj 11 7 5 10 6 

 

 

 Consider the T-problem for the data in Example RN4.1. For tactical reasons, we 

adopt a simple version of the algorithm, in which we evaluate a partial sequence simply 

by calculating its total tardiness. We construct the sequence from the last position 

forward, and we use b = 2. 

 At level 1, for the last sequence position, there are five job candidates. They 

generate tardiness values as shown in parentheses when they complete at time 16: 

 

XXXX1 (5)     XXXX2 (9)     XXXX3 (11)     XXXX4 (6)     XXXX5 (10)   

 

The two best partial sequences are XXXX1 and XXXX4, so we keep those and discard 

the others.    



 At level 2, there are four job candidates for the next to last position, for both of 

the two partial sequences. Again, total tardiness values are shown in parentheses. 

 

XXX21 (12) XXX31 (14) XXX41 (9) XXX51 (13)      

XXX14 (6) XXX24 (9) XXX34 (11) XXX54 (10) 

 

The two best partial sequences are XXX14 and either XXX41 or XXX24. However, there 

is no advantage to continuing with XXX41 because it contains the same scheduled jobs 

as XXX14 but with higher total tardiness. So we select XXX14 and XXX24. 

 At level 3, the candidates are as follows. 

 

XX214 (7) XX314 (9) XX514 (8) 

XX124 (9) XX324 (11) XX524 (10) 

 

The two best partial sequences are XX214 and XX514. At level 4, there are two 

additional partial sequences for each of these: 

 

 X3214 (7) X5214 (7) X2514 (8) X3514 (8) 

 

Retaining the two best partial sequences and completing them, we obtain the two 

solutions 5-3-2-1-4 and 3-5-2-1-4, both of which achieve T = 7 (which is optimal here). 

 For illustration, we solved the 20-job test problems using different choices of beam 

width and a lower bound comparable to equation (3.5). The results are reported in Table 

RN4.1, which also reproduces the results for three basic construction procedures 

discussed in the chapter. 

 

Table RN4.1 

   Optimizing Average Maximum 

 Algorithm Frequency Ratio Ratio 

Greedy 0 of 12 1.22 1.39 

Insertion 0 of 12 1.20 1.44 

WMDD 4 of 12 1.02 1.10 

Beam search (b = 2) 0 of 12 1.21 1.38 

Beam search (b = 5) 0 of 12 1.19 1.34  

Beam search (b = 10) 0 of 12 1.18 1.34 

 

 At least for this test data, the results indicate that the performance of beam search is 

roughly comparable to that of the simplest heuristic methods, and the choice of beam 

width does not make much of a difference.  

 As with other heuristic procedures, there is no guarantee that beam search will find 

an optimal solution. Two critical tactics are the beam width (a wider beam is safer but 

also more time consuming) and the mechanism for evaluating partial schedules. In 

Example RN4.1 and in the computational comparison, we used relatively simple 

evaluation mechanism. A more ambitious version of the algorithm would compute more 

powerful lower bounds with the hope of improved performance. In addition, because 

WMDD performed much better in our experiments, we could use WMDD within the 



beam search to produce tight upper bounds. Then, using these upper bounds to evaluate 

the candidates, the results would likely improve relative to Table RN4.1. (Incidentally, in 

Example RN4.1, where WMDD reduces to MDD, it, too, achieves the optimal value of 

7.) 

 

Dynasearch 

 Consider the pair interchange (PI) neighborhood in a single machine environment. 

There are exactly n(n − 1)/2 neighbors for each permutation sequence; that is, O(n2). A 

similar observation applies for the all insertion (AI) neighborhood. Dynasearch belongs 

to a small set of known heuristics that attempt to cover much larger neighborhoods, but 

still require only a polynomial effort per step to do so (Congram et al., 2002). In the case 

of dynasearch, the neighborhood size is (2n−1 − 1); that is, O(2n). Nonetheless, the search 

effort per step is O(n3). That is, it takes O(n3) to identify the best immediate neighbor out 

of O(2n) candidates. By contrast, in PI we enumerate all the immediate neighbors that we 

can check. As a result, more permutations are directly accessible and the potential for 

finding a good local minimum is higher. In addition to searching a large neighborhood, 

the authors attributed part of the reported success to using iterated searches. In iterated 

search, instead of generating multiple seeds randomly, new seeds are generated from the 

best known current solutions. To this end, kicks are used to perturb a solution sufficiently 

to allow searching a new neighborhood without returning to the former sequence. 

Conceptually, such kicks are similar to mutations in GA. In the particular case of the Tw-

problem reported by Congram et al., use is also made of problem specific speedups 

(shortcuts) that may not apply in other applications, but the reported results are 

competitive even without those shortcuts. We now briefly describe the basic 

neighborhood, without multiple seeds and without shortcuts, and how it is searched 

efficiently from a given initial sequence. 

 The basic dynasearch neighborhood is embedded in a regular PI neighborhood. 

Unlike simulated annealing or tabu search, dynasearch utilizes the steepest descent in 

each step, and stops when no improving moves are available. However, at each single 

step, dynasearch considers not only single PI steps but also combinations (series) of PI 

steps, provided that if jobs [i] and [k] are interchanged and i < k, there is no other 

interchange involving job [j] for any i < j < k. For instance, if we start with the sequence 

1-2-3-4, we can move to 2-1-4-3 in one step (by performing PIs on 1&2 and 3&4), but 

we cannot interchange 1&3 and 2&4 in one step, because 2 is between 1&3 and because 

3 is between 2&4. In other words, to reach 3-4-1-2 requires two steps. Similarly, 4-3-2-1 

is not a direct neighbor because 1&4 are interchanged so 2&3 should retain their original 

order. When all interchanges are compliant, we say that they are independent. A single 

step can involve any number of independent exchanges. As a result, the single best PI 

may have to be given up in favor of two or more individually less attractive interchanges 

that are better when combined. For example, if the single best PI involves a job that is 

between two jobs that are part of the best combination, the single best PI will not be made 

in that step.  

 To identify the best combination of independent interchanges in polynomial time, 

an efficient dynamic programming (DP) approach is invoked. The procedure has n stages, 

corresponding to jobs in the seed order: in stage k we consider the subset of jobs {[1], . . . 

, [k]}. For convenience, assume that the jobs are indexed by their current sequence, that 



is, j = [j] for all j. For subset {1}, we just record the tardiness contribution of job 1 when 

it is actually scheduled first. Next, we consider the subset {1, 2}, and compare the total 

tardiness contribution with and without interchanging the two jobs. We record the 

decision and the minimal total contribution of this subset. When we add job 3, we have 

three options.  

 

 Leave the subset {1, 2} as before (with or without an interchange) and just append 

job 3 at the end. In such case, the total tardiness contribution is obtained by adding T3 

to the minimal total tardiness of subset {1, 2}.  

 Interchange jobs 1 and 3 thus obtaining the partial sequence 3-2-1. In such case we 

calculate the total tardiness directly.  

 Interchange jobs 2 and 3, thus obtaining the partial sequence 1-3-2. The total 

tardiness of this option is the previously recorded total tardiness of the preceding 

subset, {1} plus the total of 2 and 3 (in their interchanged order and starting after 1 

completes).  

 

Given the three feasible options, we select the best for subset {1, 2, 3}, and we record the 

decision and the total tardiness of the subset. At this stage we have information for three 

subsets, {1}, {1, 2}, and {1, 2, 3}. We note that sequences 3-1-2 and 2-3-1 cannot be 

considered in stage 3. As for the two sequences 1-2-3 and 2-1-3, we automatically 

consider the better one by appending 3 to the end. Generally, by the time we consider job 

k, we have the optimal values and decisions for all subsets {1}, {1, 2}, . , {1, 2, . ,  j − 1}, 

{1, 2, . ,  j − 1,  j}, … , {1, 2, … ,  j − 1,  j, … ,  k − 1}. We now consider interchanging 

job k with each one of the preceding jobs (which requires O(n) steps). When we consider 

the interchange with job j (for j > 1), we use our recorded information to calculate the 

contribution of the subset {1, 2, … , j − 1} and add the total tardiness contribution of the 

subset  {j, … , k} in the specific sequence k-(j + 1)- … -(k − 1)-j, starting at the 

completion time of subset {1, 2, … , j − 1}. After performing this calculation for job n, 

we have the information we need to select the best combination of PIs, thus completing a 

step. We then repeat the process for the new sequence. The search stemming from the 

original seed stops when no single PI exists that achieves an improvement over the 

former series of interchanges. (Thus, the final sequence is locally optimal not only in the 

dynasearch neighborhood but also in the PI neighborhood.) 

 Several sources, including Congram et al. (2002) and Congram (2000), also 

discuss other dynasearch neighborhoods. In particular, an enhanced dynasearch 

neighborhood allows insertions in addition to PIs. For instance, the sequence 3-1-2 

cannot be considered at stage 3 in the basic dynasearch neighborhood, but it becomes 

eligible in the enhanced neighborhood by inserting job 3 in the first position. Similarly, 

the sequence 2-3-1 is eligible by inserting job 1 after job 3. More generally, in this 

enhanced dynasearch neighborhood, at stage k, in addition to the basic options, we now 

also allow job [k] to be inserted in the jth sequence position, provided it is followed by 

jobs [j], [j + 1], [j + 2], … , [k − 1] in that order, with no other job between any two of 

them. Similarly, any job j can be inserted right after job [k] provided jobs [j + 1], [j + 2], 

… , [k − 1], [k], [j] are then scheduled in the particular order given here, with no other 

jobs between any two of them. Grosso et al. (2004) test this enhanced neighborhood. 

They achieve even better results for large problems, but the approach is slightly slower 



for smaller instances. Nonetheless, the time required to achieve an excellent level of 

performance is very short for both neighborhoods, so the speed issue is somewhat 

academic. For instance, Grosso et al. report matching the best known results [by then] for 

125 different 100-job instances within 3 seconds per instance, on average (on a 800 MHz 

PC). They also reported that very extensive runs failed to improve on those formerly best 

known results. Fifty-job instances require about half a second. Recall from our Research 

Notes for Chapter 3 that it took up to nine hours of CPU time on a 3.5-fold faster 2.8GHz 

PC to obtain proven optimal solutions for these same problems by the state-of-the-art 

method (Pan and Shi, 2007). Furthermore, Pan and Shi report that those formerly known 

best results turned out to be optimal. That is, dynasearch is not only a highly efficient 

heuristic but also an extremely effective one.  

 We conclude our discussion of the dynasearch results with two notes. First, it is 

also possible to use insertion instead of PI rather than as an enhancement. However, 

Grosso et al. report that this tactic provided no advantage in their experiments. Second, 

they also report that in their tests, a multi-start approach worked better than the iterated 

search (with kicks) that Congram et al. recommended. The question why the two 

experiments led to such different conclusions with respect to this choice may justify more 

research attention. 

 In both the basic dynasearch neighborhood and the enhanced one, the restriction 

to independent steps is necessary to allow finding the best combination for any subset in 

polynomial time. In terms of the basic case, we would not be able to simplify the 

calculation involving the interchange of j and k by only considering the sequence k-(j + 

1)- … -(k − 1)-j without independence. Another key requirement is that the effect of 

independent PIs on the objective function should be additive or have some other form 

amenable to DP recursive analysis (but such forms seem irrelevant here). For instance, 

consider the problem of scheduling n jobs on parallel machines, without preemption, to 

minimize makespan (see Chapter 9). It is possible to specify an optimal solution by list 

scheduling, which essentially employs a permutation to load the machines. The next job 

in the list is loaded as early as possible on the first free machine. Hence the problem boils 

down to finding the best permutation, and we might be interested in employing 

dynasearch to do that. However, the effect of independent PIs is not additive in this case. 

To wit, consider a two-machine, parallel machine makespan problem. Suppose that job pj 

values are also indices, and that we start with the sequence 7-6-5-4-3-2-1. The makespan 

is 14, and it is optimal. Suppose we interchange jobs 5 and 4, then the makespan does not 

change. So the net effect of that PI is 0. Likewise, interchanging 1 and 2 has no effect. 

But performing both interchanges together leads to a makespan deterioration of 1. These 

two interchanges are independent by our current definition, but the effect of two 

independent interchanges is not additive (0 + 0 ≠ 1). In effect, these so-called 

"independent" PIs are not entirely independent in the parallel machine environment.  

Hence, it would not be possible to apply the PI dynasearch neighborhood directly. More 

precisely, the DP at the heart of dynasearch would no longer be applicable with its 

present structure and complexity. Similarly, one might think that the PI dynasearch 

neighborhood could be applied to permutation flow shops with a makespan objective (see 

Chapter 10), but again the question is whether the effects of independent PIs are additive. 

If we define the effect of a PI as the change it induces in the makespan, it is easy to 

construct counterexamples with as few as two machines and four jobs showing that such 



changes by independent PIs are not additive. Because job shops generalize flow shops, 

they too would be difficult to address. Finally, on the one hand, our pessimistic analysis 

here relates to the particular dynasearch neighborhood, not to the possibility of ever 

finding neighborhoods with exponential size that can be searched with polynomial effort. 

On the other hand, to our knowledge, all published exponential neighborhoods that can 

be explored in polynomial time relate to various single machine problems, such as the Tw-

problem itself and the traveling salesperson problem (TSP), which we introduce formally 

in Chapter 8. (We also discuss it briefly next.) 

 

Ant Colony and Neural Networks 

 We presented genetic algorithms as an approach that mimics nature. Likewise, 

simulated annealing was inspired by natural systems. Another nature-imitating heuristic 

approach that has been suggested for combinatorial optimization is the ant colony 

approach (Colorni et al., 1996). It is easiest to describe this approach for the TSP 

problem. The TSP requires a salesperson to visit n cities and return to base in the total 

shortest possible cycle. The TSP cycle can be specified by a permutation, prescribing the 

sequence in which the cities are visited (and such that the final connection is from [n] 

back to [1]). The associated decision problem is NP-complete in the strong sense. The 

source of the difficulty is that the total distance traveled depends on the sequence. 

(Nonetheless, as we already discussed briefly in our Research Notes for Chapter 3, the 

state-of-the-art TSP solver—Concorde—can handle very large instances effectively by a 

branch and cut approach.) Assume now that many ants start autonomously at various 

nodes that represent the cities and each solves the problem by itself, but it also knows 

where the other ants have been traveling most often. (In nature, ants mark their routes by 

scents—pheromones—so they can actually sense where other ants have traveled 

recently.) An ant selects the next city to visit at random, but it is more likely to select a 

near city and it is more likely to select a path that many other ants have used. The 

mechanism that emerges is a learning process that reinforces short and popular 

connections and eventually discards paths that are not used. So far, the evidence is that 

this approach works best when combined with other heuristics; e.g., one might add local 

search rules that enforce local optimality. With such enhancements, which are essentially 

tantamount to combining heuristics, ant colony is capable of achieving excellent results 

(den Besten et al., 2000). However, the computation time required for that purpose is 

several orders of magnitude higher than with other heuristics such as dynasearch; see 

Grosso et al., for a direct comparison between their dynasearch results and those of den 

Besten et al. 

 Yet one more heuristic approach that is based on nature involves the use of neural 

networks. By virtue of emulating the way a brain operates (at least as far as prevailing 

theories suggest), the potential of neural networks is promising (Agarwal et al. 2003, 

Agarwal et al., 2006, Colak and Agarwal 2005, and Gupta et al. 2000). Inherent 

similarities exist between the neural network and the ant colony models: both involve 

selection of strong connections that have been reinforced by previous experience. 

 

Cross-Entropy 

 In general, the same heuristics that apply in deterministic scheduling can often be 

directly implemented for stochastic scheduling. But some heuristics are specifically 



related to stochastic issues. In this connection, there are important stochastic approaches 

for deterministic problems and there are stochastic methods that are specifically relevant 

to stochastic models. The simplest example of a stochastic approach to a deterministic 

model is the use of random sampling. We also saw in the chapter that it is useful to bias 

the sampling process. More complex approaches include specific heuristics designed to 

perform biased random sampling effectively. This subject is also known as importance 

sampling. Cross-entropy (CE) is a strongly related approach. Suppose we select the best 

10% of many randomly selected sequences and we observe that a particular job is first in 

a disproportionately large fraction of them. It then stands to reason that this job is in a 

sense a good candidate for the first position. We may therefore assign a higher 

probability for this job in biased sampling. The process could be repeated after running 

many instances based on this biased sampling, and so on. The CE approach is based on 

this idea. More details can be found in Rubinstein and Kroese (2004) and other references 

given below. The cross-entropy approach is also applicable to stochastic inputs in some 

cases. Using it for stochastic scheduling is a promising research area. For example, it has 

been used to estimate the probability of exceeding buffers in queueing networks, which is 

related to safe scheduling (de Boer et al., 2004). 

 

Generating Dominance Properties for 1 | | ΣwjTj 

 In this section we discuss precedence relationships for the basic Tw-problem. In 

the next section we consider the effect of mandatory precedence constraints, which 

extend the problem to one that has not yet received much attention in the literature, 

namely 1 | prec | ΣwjTj. For distinction, we refer to dominance relationships as optional 

constraints, because we can choose to generate and impose them or to ignore them. 

Effective optimization algorithms work better with precedence constraints, so such 

results are potentially useful and we present them because they justify further research. 

Such research is needed not only for generating new ways to identify optional constraints 

but also for validating known relationships that are yet untested. 

 As discussed in our Research Notes for Chapter 3, Emmons (1969) provided the 

foundation for work on dominance relationships for the last four decades, for both 

unweighted and weighted cases. In the most recent work along these lines, Kanet (2007) 

methodically derived several such conditions, new and old. To describe that work, we 

start by reproducing some results from Chapter 3. In this section, we assume that the 

integers i and j satisfy i < j, but there is no predefined ordering between i and k or 

between j and k. Recall that p(J) represents the sum of processing times in set J, X 

denotes the set of all jobs, Aj denotes all jobs known to succeed job j in at least one 

optimal sequence, Aj' = X − Aj is the complement (which includes job j itself), Bk is the set 

of jobs that precede job k in at least one optimal sequence, and Bk' is the complement (so 

job k  Bk'). Whereas it is convenient to use both types of sets, recall that Aj and Bk are 

mirror images of each other. Specifically, if job k  Aj then job j  Bk. Conversely, if job 

k  Aj' then job j  Bk'. In addition to jobs j and k, sets Aj' and Bk' include elements whose 

relationship with j and k (respectively) has not been resolved.  The purpose of Theorem 

3.3 is to enable moving job k ≠ j from Aj' to Aj. We reiterate that as we resolve such 

relationships it may become possible to resolve others that could not have been resolved 

initially. Our starting point is Theorem 3.3. Adding the conditions noted in the chapter, 

under which it can be extended to weighted problems, we obtain,  



 

 
Theorem RN4.1. In the Tw-problem, there is an optimal schedule in which job k follows 

job j if one of the following conditions is satisfied: 

  (a) wj ≥ wk, pj ≤ pk, and dj ≤ max{dk, p(Bk) + pk}; 

  (b) wj ≥ wk, dj ≤ dk, and dk ≥ p(Aj') – pk; 

  (c) dk ≥ p(Aj'). 

 

 

Condition (c)—which generalizes Theorem 3.2—simply states that if job k can be last in 

Aj' without tardiness, there is no benefit in scheduling it earlier, and thus there is an 

optimal schedule in which job k follows job j. Recall from our discussion in Chapter 3 

that, in the unweighted case, condition (a) is a direct generalization of Theorem 2.8. 

Adding the condition that wj ≥ wk can only increase the benefit of following the 

prescribed order. For future reference, we note that unless pj/wj ≤ pk/wk, condition (a) 

cannot be satisfied.  

 Kanet (2007) studies the possible ways in which each of three fundamental tactics 

can demonstrate that job k should follow job j, thus adding job k to Aj. We first discuss 

the first two tactics. For two jobs j and k with no known relationship, schedule job k at the 

end of the current set Bk (and thus, automatically, before job j, because we know that job j 

 Bk) and schedule job j just before the current Aj, at the very end of Aj'. Observe that 

there must be at least two jobs, including j and k, in {Aj'∩Bk'} (i.e., between the 

completion time of Bk and the start time of Aj), or we would already know how the jobs 

are related. Furthermore, for these two tactics there is no need to consider any schedule in 

which job k is scheduled earlier. Symmetrically, we need not consider any schedule in 

which job j starts later. Denote the set of jobs between k and j by H (i.e., H = {Aj'∩Bk'}\{j, 

k}). If H is empty, we can decompose our problem to three consecutive parts: Bk, {j, k}, 

and Aj. After solving each part separately, we obtain an optimal schedule. In such a case, 

we can sequence {j, k} by trial and error or by (4.2) and thus also resolve whether k  Aj 

or Bj, but that resolution becomes purely academic. Partitioning the problem that way 

cannot but be advantageous as well. The more challenging assumption is that H is not 

empty. At this stage we can check whether job j is tardy. If job j is not tardy, then it is in 

Ak (this result is intuitive, but we prove it later). Otherwise, the first tactic studied by 

Kanet for this structure involves interchanging the two jobs. In this case, we assume pj ≤ 

pk. The assumption is necessary to ensure that the effect on H will not be detrimental, 

thus allowing us to ignore it. The second tactic is inserting job k just after job j, which 

cannot be detrimental for H even if pj > pk. The moves used by both tactics decrease 

tardiness for job j but may increase it for job k. By comparing the cost of increasing 

tardiness for job k to the benefit of decreasing tardiness for job j, Kanet identifies 

sufficient conditions for allowing the move. A simple example is if Cj ≤ dk, so job k 

would not be tardy if inserted after job j and therefore we can safely add job k to Aj. That 

case boils down to Theorem RN4.1c. The third move starts with job j sequenced at any 

time before job k, but after p(Bj) and before all the jobs in {Aj⋃Ak}—that is, job j must 

start before p(X) − [p(Aj⋃Ak) + pk]. Here, sufficient conditions are sought for showing 

that inserting job k in any position before job j cannot improve our objective. If so, job k 

 Aj. Now revisit the case where job j is not tardy at the end of Aj', where we claimed that 



{j}  Ak. If we interchange the names j and k, the two jobs start in the order we want to 

establish. Because the later job is not tardy, moving it to any earlier position, including 

any position before the earlier job, cannot improve the objective. So the third tactic 

proves the claim. Finally, once we add job k to Aj, by any relevant condition, all the jobs 

in Ak can now be considered also in Aj and all the jobs in Bk can be added to Bj.  

 As we indicated already, Kanet’s results have not been tested yet, although some 

of them generalize or even repeat formerly known results that, as such, have been tested 

before. Therefore, to evaluate how powerful they are in reducing computation time and 

increasing the size of solved problems, we need empirical testing. When doing that, we 

should find not only whether all the new conditions are useful but also the best order for 

testing.*  

 It is possible to add mandatory constraints to the problem before starting the 

analysis. For instance, if job j must precede job k due to a mandatory constraint, we start 

the analysis with initial sets that satisfy j  Bk and k  Aj. But doing so is not identical to 

just adding mandatory constraints to independently identified optional ones because 

optional constraints may change as a result of mandatory constraints; for instance, they 

may contradict each other. 

 We now present unpublished results of the same genre (also untested). Although 

these results can and should be treated as complements of published ones, we ignore most 

connections. To start, we reproduce Rachamadugu’s test, (4.2), for two adjacent jobs, j 

and k, that start at time t. Job j can come first if, 
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where si
+ is given by (di − t − pi)+; i.e., si

+ is the slack when positive, and zero otherwise.† 

Define the latest start time without tardiness of job i by LSi = (di − pi). Then we may 

rewrite (4.2) as follows: job j precedes job k if they are adjacent to each other and, 
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Equivalently, define a difference function, gjk(t), such that if gjk(t) ≥ 0 then job j can 

precede job k when they are the next two jobs starting at time t. That is, 
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We refer to the relationship between two adjacent jobs, such as j and k, that start at time t 

and for which gjk(t) ≥ 0 as stable, and if all consecutive pairs are stable at their start time, 

                                                
* See Exercise 2.6 but notice that here it is conceptually possible that one of the tests can predict several 

others, thus rendering them redundant. In Chapter 10, we discuss dominance tests for three-machine flow 

shops that exemplify this point.  
† In general, sequencing algorithms that use slack are sometimes subject to problems associated with 

Theorem 2.7. But one way to ameliorate that effect is to use slack only if it is positive, and zero otherwise, 

as is the case here. With that structure in place, slack is not used for sequencing tardy jobs. 



we say the sequence is stable. Suppose both jobs j and k can complete on time in either 

order (when they start at time t), then both orders are stable. Stability is really just an 

indication of local optimality, so we can pose a simple proposition, 

 

 
Proposition RN4.1 At least one stable sequence is optimal. 

 

 

By the proposition, the set of stable sequences is dominant, and from now on, we limit 

our attention to it. Both by the structure of (4.2) and by Theorem RN4.1a, SWPT is 

highly relevant to our problem. Define the basic order by SWPT, with ties broken by LSj, 

and remaining ties broken by SPT (any further ties must be between essentially identical 

jobs and may be broken arbitrarily). Without loss of generality, we henceforth assume 

that all jobs are indexed by the basic order. If jobs k and k+1 are identical, we can 

arbitrarily set (k + 1)  Ak (and thus also k  Bk+1), without risk of suboptimality. 

Recalling that i < j, by (4.2), it is clear that if jobs i and j are considered for scheduling 

next to each other and i is already tardy, then i can come first (the left element is at most 

pi/wi and the right at least pj/wj so the ordering is assured by SWPT). One consequence is 

that it is sufficient to define gij(t) for 0 ≤ t ≤ LSi. Beyond LSi the function would be 

nonnegative; i.e., in such a case, we can safely schedule by the basic order. For that 

reason, for any pair of potential adjacent jobs there exists a time, vij (≤ LSi), such that for 

any t ≥ vij job i can precede job j when they are adjacent. (In the rare event that, for two 

non-identical jobs, pi/wi = pj/wj and LSi = LSj, the tie-breaker in the basic order definition 

implies that pi < pj. In such a case we obtain vij = 0. We specified that tie-breaker for this 

reason.) We can also decree that job i precedes job j if neither of them will be tardy as a 

result. That is, when no tardiness is involved, we refer only to the order i → j as stable. 

Proposition RN4.1 remains valid after this restriction on the set of stable sequences: that 

is, the best stable sequence in the restricted set is optimal.  

 Rachamadugu used (4.2) recursively to demonstrate that if all jobs are tardy when 

sequenced by SWPT, then SWPT is optimal. Because the argument is recursive, if it 

applies to the first k jobs but not later, we can still sequence the first k jobs first. 

Effectively, then, we can remove them from the problem. As explained in Chapter 3, such 

removal requires adjusting all due dates by subtracting the total processing time of these k 

jobs; we also reduce the index of all remaining jobs by subtracting k. Thus, without loss 

of optimality, we assume that we checked these conditions in a preprocessing step and 

therefore no such jobs exist. That is, LS1 > 0. It is possible in an optimal sequence for a 

high-index job, say j, to directly precede a low-index job, say i, even if it causes 

tardiness, but only up to a limit. That may happen if by scheduling job j first, we avoid 

large tardiness in this job at the expense of a sufficiently smaller tardiness in job i. When 

that is the case, we must have gij(t) < 0 for some 0 < t < LSi. If so, LSi + max{pj} is an 

upper bound on the start time of job i, when it follows a job with a higher index. We can 

calculate sharper bounds by explicitly considering all possible preceding jobs, j, as we 

discuss next. 

 By inspection, it is clear that gij(t) is a piecewise linear function with a breakpoint 

at LSj. For our purpose, this breakpoint is only important if 0 < LSj < LSi. If so, sj
+ 

becomes zero there, whereas si
+ remains positive. Also, gij(LSi) ≥ 0 (by SWPT, because i 



< j). To simplify our presentation, we henceforth assume LSi, gij(LSi) > 0, but our 

conclusions remain intact if LSi ≤ 0 (which is operationally equivalent to LSi = 0) or 

gij(LSi) ≥ 0. Because gij(t) is piecewise linear, gij(t) = 0 is only possible for an argument t 

in the range we consider if gij(0) < 0 or gij(LSj) < 0 (or both). Furthermore, if gij(LSj) < 0, 

then LSj < LSi and an argument t such that gij(t) = 0 must exist such that LSj < t < LSi, and 

the derivative of gij(t) is positive there. If gij(0) < 0, the same observation applies but, if 

LSj < LSi and gij(LSj) > 0 the argument t resides between 0 and LSj. In both cases there is 

exactly one such argument and the derivative is positive at this argument. If gij(0) > 0 and 

gij(LSj) > 0 or LSj ≥ LSi, no such argument exists. Recall that we defined vij such that after 

t ≥ vij job j should not precede job i directly. We now see that either vij = 0 or it is given 

by the argument t for which gij(t) = 0 and the derivative is positive. Now consider the 

special case where gij(0) > 0 but gij(LSj) < 0 (which also implies LSj < LSi). In this case, vij 

> LSj but between 0 and LSj there must be another argument t for which gij(t) = 0, such 

that gij(t) is decreasing in the neighborhood. When such a value exists, we call it u'ij. 

Otherwise, we define u'ij = 0. Our definitions satisfy the following conditions: 

 

 (i)  0 ≤ u'ij ≤ vij ≤ max{0, LSi} 

 (ii)  if u'ij > 0 then gij(u'ij) = gij(vij) = 0 and u'ij < vij 

 (iii)  gij(t) ≤ 0 if and only if 0 ≤ u'ij ≤ t ≤ vij ≤ LSi.  

 

Recall from previous discussion that if both jobs can be on time in basic order, that is, if t 

≤ min{di − pi, dj − pi − pj}, we prefer to perform job i first. To reflect that we now define 

the value uij as the earliest time for which we must consider the possibility that j can 

precede i and still comply with Proposition RN4.1. We calculate it by  

 

 uij = max{min{di − pi, dj − pi − pj}, u'ij}  

 

Computing uij and vij for all i < j is straightforward. We can store all these values in 

advance in two n  n upper triangular matrices, or in a single full matrix where we store 

the vij values above the diagonal and the uij values below the diagonal. We refer to that 

matrix as the stability matrix. By Proposition RN4.1, we restrict ourselves to sequences 

where i always precedes j when they are adjacent unless uij < t < vij. When vij = 0, job j 

needs not be considered directly before job i in any schedule. 

 We can now strengthen Rachamadugu’s observation that if jobs are tardy under 

SWPT then SWPT is optimal. Consider job 1 in the basic order. If all v1j = 0, then job 1 

must be first, or it would have to follow a job that should, or at least could, have followed 

it instead. In such a case we can schedule job 1 first and remove it from further 

consideration. Furthermore, suppose the relationships among the first k jobs are not clear 

but for any i ≤ k < j, mini{vij} = 0, then jobs 1, 2, . . ., k should be scheduled first, in some 

order. In that case, the problem is effectively decomposed to scheduling the first k jobs 

and the next n − k jobs afterwards. Similarly, suppose vjn = 0 for all j, then job n cannot 

be stable anywhere except in the last position and it can be scheduled last and removed 

from further consideration. Furthermore, job 1 may only follow job k directly if job k 

starts at some time t that satisfies 0 ≤ u1k ≤ t < v1k < LS1. Let V(m) denote the set of jobs k 

> m for which vmk > 0. Therefore T1 ≤ maxkV(1){v1k + pk − LS1} < pk (for the same k). A 

similar expression applies for job 2, with one exception: job 2 may have to follow job 1 



even if it causes higher tardiness in job 2 than would be allowed if job 2 were to follow a 

job with a higher index. Therefore, T2 ≤ max{maxkV(1){v1k + pk + p1 + p2}, maxkV(2){v2k 

+ pk  + p2}} − d2. Job 3, in turn, also has a similar limit on its tardiness, but in this case 

with two exceptions: it may have to follow job 2 (regardless of whether job 2 follows job 

1) and it may have to follow job 1. By such analysis we can bound the maximum 

completion time of all jobs, recursively. This is potentially useful as long as the bounds 

are below p(X). Furthermore, we can create analogous bounds on the earliest start time of 

jobs n, (n − 1), (n − 2), etc. Let U(m) denote the set of jobs k < m for which vkm > 0. A 

schedule in which job n starts before minkU(n){ukn} cannot satisfy the stability 

requirement and may not be considered. Job n − 1 may precede job n directly in some 

stable sequences, but otherwise it should not start before minkU(n−1){uk,n−1}, etc. If for 

some integers a and b the earliest start time of job (n − b) exceeds the latest completion 

time of job a, then jobs 1, 2, . . ., a all precede jobs (n − b), (n − b + 1), . . ., (n − 1), n. 

Furthermore, for pairs of jobs that do not quite satisfy that condition, such as job a and 

job (n − b − 1), or job (a + 1) and job (n − b), the bounds may still be useful for tests 

associated with either one of the first two tactics defined by Kanet. In such case, their role 

is equivalent to the roles of Bk and Aj' in restricting the times at which jobs j and k are 

scheduled. 

 At least for presentation purposes, assume that the problem is solved by branch 

and bound, scheduling forward.* Thus, at some stage of the scheduling process we will 

have a partial schedule, PS, which is a set of jobs scheduled to start at time 0 and 

complete at time p(PS). The number of potential branches following PS can be reduced if 

we construct a set of precedence relationships for the set of schedulable jobs, {X − PS}. 

Furthermore, we know with certainty that an optimal sequence exists that is stable. 

Therefore, we can restrict our attention to compliant sequences. For efficiency, it is 

desirable to be able to perform all the necessary calculations for this task at time 0, so that 

we will not have to regenerate conditions for every possible PS. The stability matrix can 

serve this purpose very well. We just limit our attention to unscheduled jobs and we 

subtract p(PS) from each uij and vij value and set them to zero if they become negative. 

One way to proceed is to branch first on jobs 1, 2, . . ., k subject to the condition that they 

can be directly followed by some job. For job k this implies that there exists at least one 

value j > k such that vkj ≤ pk, or one value j < k such that ujk ≤ pk ≤ vjk. When no such j 

exists, job k cannot be first. 

 We explored the efficacy of these insights by incorporating them into a heuristic 

procedure. The first step, starting with job 1, is to schedule as many consecutive jobs as 

possible without tardiness. This can be done in EDD order. Suppose we fit k jobs in this 

manner, and therefore job k+1 is either tardy itself or causes tardiness downstream. We 

know that job k+1 can fit right after the previous k jobs, in which case it will be tardy but 

it will follow a job with a lower index (which can be stable). But we may also try to insert 

job k into the latest position where it can be on time (it cannot be stable earlier), or later. 

If the total weighted tardiness decreases by such an insertion, we adopt the best one and 

move on to job k+2, etc. The worst case complexity of the heuristic is O(n2); i.e., a very 

low polynomial. To see this, suppose we already scheduled m jobs and our task is either 

to place the next job in its correct place by EDD (if there is no tardiness yet)—which we 

                                                
* Readers may wish to compare our structure to that of Algorithm 14.1, which applies to the more general 

job shop (page 334).  



can choose to treat as an insertion—or to insert the next job in the best position possible 

(after tardiness manifests). Place job m+1 in the last position and instead of direct 

insertion move it earlier by a series of O(m) APIs. Each API takes constant time and the 

combined effect of the series is given by the sum of the individual effects. As we go 

along, we can also note the best position identified so far, so later we can return to it 

directly. As we have to repeat this procedure n times, and O(m) = O(n), the total 

complexity is O(n2). We tried the heuristic on the two test problems that fared worst 

under WMDD. It cut the suboptimality in one from 10% to 4% and in the other from 7% 

to less than 1%. On the one hand, there is no need for such a heuristic as we can achieve 

better results by basic neighborhood searches, as well as advanced ones (such as 

dynasearch). On the other hand, a fair assessment of the heuristic would pitch it only 

against O(n2) or better alternatives, and in this arena its performance seems promising. 

Nonetheless, our testing was not sufficient for drawing firm conclusions so this question 

requires further research. Having said that, recall that we were not primarily motivated to 

find a new heuristic solution but rather we aimed to explore the efficacy of our new 

insights. Thus, the most important conclusion of this analysis is that it reinforces the 

notion that local stability conditions can be used to achieve good results for the whole 

sequence.  

 We note again that job 1 can be scheduled first if v1j = 0 at time 0 for all j. This 

test can also be carried out for the unscheduled job with the lowest index as part of an 

optimizing algorithm. As branching progresses, we may find that for a particular branch 

(and thus a particular PS) the next few jobs in basic order can safely be added to the 

branch serially. This event is actually quite likely in problems where the due dates are 

such that it is clear that quite a few jobs must be tardy. Another likely event is that no 

unscheduled job can be appended to PS at the end and be stable with respect to the last 

job in PS. Such a branch can be fathomed. Similar observations may apply to jobs in the 

last positions, but they would likely be more important for scheduling backwards. Only 

experimentation can reveal, however, if checking such conditions is beneficial. 

Furthermore, we just explored the tip of the iceberg in terms of opportunities to develop 

(4.2) to more general dominance properties. To clarify, Kanet (2007) probably exposed 

the most useful relationships that can be developed for two jobs j and k that have partial 

sets of known predecessors and followers and are scheduled appropriately. As noted 

before, it is likely that the jobs will be separated by a set (denoted H) of intermediary 

jobs. Recall that it was necessary to represent the effect of an exchange on H by a bound. 

Developing (4.2), however, is based on the idea that we may be able to characterize 

conditions under which the jobs in H actually encourage exchanging jobs j and k or 

where we can show that some of the jobs in H could (and should) be added to the given 

sets of predecessors and successors instead. 

 

Adapting Search Heuristics to the Solution of 1 | prec | ΣwjTj 

 Next, we consider a generalized version of the Tw-problem with precedence 

constraints. This problem is currently open. The two versions, with and without 

precedence constraints, are closely related because we can always choose to treat optional 

relationships as mandatory. However, the presence of mandatory constraints may change 

the calculations and details involved in identifying optional constraints. For example, 

take the unweighted case. It may be that a job that gets a low priority and is assigned a 



late position under the conditions of Theorem RN4.1 is the predecessor of a job that 

would, by itself, acquire an earlier position. Then it is likely that the priority of the 

predecessor job should be increased, but it is also likely that the successor will be 

delayed. Some of the existing relationships can still be derived using mandatory 

constraints to start the process of adding new relationships. However, the results we 

developed above by studying (4.2) require modification or may not work with mandatory 

constraints. Nevertheless, a more important question in practice is whether neighborhood 

search techniques that currently provide the best practical approach to the Tw-problem can 

be adapted to 1 | prec | ΣwjTj, and if so, how? In this section we propose ways to make 

such heuristics avoid searching infeasible sequences without losing the opportunity to 

find the optimal solution. If future experience demonstrates that search heuristics, such as 

dynasearch, can benefit from incorporating precedence constraints, mandatory or 

optional, then we can choose to include them even when they are all optional.  

 In Chapter 17 we present a modified API search that maintains precedence 

constraints and is thus applicable for any API neighborhood search for the Tw-problem 

with constraints. The general idea is simple: if we try to move a job (called an activity in 

the project context) to a position earlier than a predecessor, we may also have to move its 

predecessors. If a set of precedence relationships has been identified by previous analysis, 

then we treat them as hard constraints. The modified API approach can be generalized for 

the insertion neighborhood without any conceptual difficulty. We can also define a 

modified PI between unrelated jobs as a double insertion. Suppose that we want to 

interchange jobs i and k, currently in that order. We can safely assume that these jobs are 

unrelated, or the interchange can simply be aborted. Let G denote the set of jobs that 

precede job i, let H denote the set of jobs strictly between jobs i and k, and let J denote 

the jobs that follow. In other words, the current sequence is G-i-H-k-J and without 

precedence constraints, a PI would involve a move to G-k-H-i-J. When constraints are 

imposed, we still restrict modified insertion or modified exchange to the set {i, H, k}, 

leaving both G and H scheduled as before. If any job in Ai⋃Ak resides in J, our restriction 

to {i, H, k} guarantees that it will still follow its predecessor. A symmetric observation 

holds for any jobs in {Bi⋃Bk}∩G. Consider the (possibly empty) subset of jobs in H that 

belong to Ai, namely Ai∩H, and the subset of jobs in Bk∩H, the known predecessors of k 

within H. These two subsets must be unrelated in the sense that no job in the former is a 

predecessor of any job in the latter (or jobs i and k would be related too). The modified PI 

can start by inserting the jobs in {Bk∩H, k}—in their original order—just after G (thus 

automatically forbidding k from taking the first position after G unless Bk∩H is empty). 

Another, similar, insertion step moves the jobs {i, Ai∩H} to a position just before J, again 

maintaining the original order of jobs within Ai∩H, with job i preceding the others. The 

result is a legal modified PI that is guaranteed to be feasible if jobs i and k are unrelated. 

Another point, relevant to dynasearch, is that after this exchange, any set of exchanges 

strictly within G or strictly within J would be independent from the change we just 

described within {i, H, k}. Thus, it is conceptually possible to address 1 | prec | ΣwiTi by 

modified dynasearch (with the basic or the enhanced neighborhood definition). The open 

question is how efficient and effective such a search may be. If the dominance conditions 

actually make the search easier (and they certainly reduce the number of feasible 

sequences, which should help), then it may be useful to generate them when they are 



optional. Otherwise, we still need to account for mandatory constraints, and we just 

demonstrated how that might be done. 

 Finally, it is interesting to study the efficacy of GA in the presence of precedence 

constraints. As it turns out, GA is inherently adapted to incorporating precedence 

constraints, but we have to be careful with mutations. Recall that under the standard 

method of generating offspring, except for mutations, they maintain the job sequence of 

at least one parent. Therefore, if two parents obey the constraints, so do their offspring. 

However, general mutations can violate precedence. Thus, in the case of GA, it might be 

useful to adapt the structure of mutations so that they will not violate constraints. Such 

adaptation essentially boils down to limiting mutations to modified moves. 

 

Asymptotic optimality 

 A heuristic is asymptotically optimal if, as n grows large, the relative difference 

between the heuristic solution and the optimum becomes negligible. More formally, let 

f(S*) denote the objective function value with the optimal sequence, S*, and let f(SH) be 

the value associated with a heuristic. We say that the heuristic is asymptotically optimal 

if, in the limit as n → ∞, [f(SH) – f(S*)] /  f(S*) → 0. When we can prove that a heuristic 

is asymptotically optimal, then in a sense we can say that it is a good heuristic. Such 

proofs typically require regularity conditions on job characteristics, however. We are 

especially interested to know whether a relatively simple construction heuristic meets that 

test. If such a heuristic is asymptotically optimal, then we can typically solve large 

problems to near-optimality, while we can address medium problems by supplementing 

the construction heuristic with neighborhood search techniques and obtain optimal or 

near-optimal results. Small problems are inherently easier, so in a practical sense we can 

say that such a problem is solved for any size. We discuss several instances of 

asymptotically optimal heuristics later in the text, both for deterministic and stochastic 

problems. However, we do not know of any existing asymptotically optimal heuristic for 

the tardiness problem (which is one of the reasons it is a good problem to pursue in our 

first chapter on heuristics). In particular, the following example demonstrates a case 

where the MDD heuristic is far from asymptotically optimal, at least when no regularity 

conditions are imposed: instead, as n → ∞, [f(SH) – f(S*)] /  f(S*) → n / 2. The source of 

this example—Della Croce et al. (2004)—provides similar examples designed to expose 

the weaknesses of other popular heuristics as well, so this should not be interpreted as 

specific criticism of MDD.  

 

Example RN4.2  Consider an (n + 1)-job single-machine minimal tardiness instance 

with p1 = d1 = n; p2 = … =  p(n + 1) = 1; d2 = … =  d(n + 1) = n + ε, where 

ε is a strictly positive value but as small as we may wish (and we will 

assume ε is infinitesimal).  

  

Recall that we define the modified due date of job j at time t to be 

  

dj' = dj'(t) = max{dj, t + pj} 

 

In the example, for t < ε, job 1 has the minimal modified due date; e.g., d1'(0) = n 

whereas dj'(0) = n + ε for any j > 1, so job 1 will be selected as the first job. The total 



tardiness in this case is n2 / 2 − n /2 − nε /2, instead of the optimal total tardiness of n, 

obtained by placing job 1 last. For large n and infinitesimal ε, the error ratio is n /2, 

which is unbounded. The suboptimal solution would remain unchanged even if we were 

to conduct an API neighborhood search, but it would be corrected with any of the more 

advanced search methods that we presented. The potential failure of API in this case is 

not surprising because MDD always yields a solution that is locally optimal in the API 

neighborhood. Perhaps the most important practical conclusion from Example RN4.2 is 

that combinations of heuristics tend to be more robust than any single heuristic.  

 

Testing Heuristics 

 In spite of the existence of fabricated worst-case examples that yield such 

disappointing results, there is no question that heuristics are necessary. For that reason, 

researchers and practitioners in sequencing and scheduling need to be able to develop, 

test and apply heuristics. For most practitioners, the aim is not originality but 

effectiveness. Hence, they can select from the existing arsenal the best heuristic or 

combination of heuristics for the actual conditions they wish to address. In doing so, they 

may prefer to use off-the-shelf software (e.g., the Evolutionary Solver). Here, however, 

we focus more on developing and testing new heuristics as a research endeavor. Just 

inventing a new heuristic is only the beginning. The next task is to demonstrate that the 

heuristic is in some sense sufficiently superior to justify using it instead of, or in addition 

to, existing solutions. This requires extensive testing. A key question is the quality of the 

test problems on which the heuristic is tested (Baker 1999). This is the point at which 

many efforts founder.  

 To test and compare heuristics for a particular practical application, we may be 

able to use realistic data sampled from the production floor. To the extent that the sample 

is representative not only of the present but also the future, the result is then good for the 

application. But for a heuristic to be considered competitive in general, it should be tested 

on instances known to be difficult. Test conditions where the problem is trivial should be 

avoided. For instance, if we use problems with agreeable due dates and processing times 

even the simplest heuristic (say EDD or SPT) will yield optimal results. Instead, we 

should attempt to find conditions under which the solution procedure is most severely 

challenged. Accordingly, in the chapter we used test problems that are known to be 

difficult (relative to their size). Indeed, those problems were developed as part of research 

into the question what constitutes a difficult instance for the weighted tardiness model. 

Thus we can be relatively confident that the heuristics will work reasonably well in 

practice, too. Hall and Posner (2001) discuss the issue of selecting non-trivial test sets for 

any objective. Here we elaborate a bit on the difficulty of various instances of the T-

problem.  

 Early results about this issue appeared in Srinivasan (1971), Wilkerson and Irwin 

(1971) and were later refined by Baker and Martin (1974). Two insights motivate these 

results. We might guess that the performance of a heuristic depends on how many jobs 

are likely to be tardy. If no jobs are tardy, we can produce the optimal solution with EDD 

sequencing. If all jobs must be tardy, we can produce the optimal solution with SPT 

sequencing. Thus, we might expect that problems are most difficult to solve when some, 

but not all, of the jobs are likely to be tardy. A simple way to operationalize that notion is 

to say that problems are most difficult when the due dates, on average, lie neither at the 



beginning nor the end of the schedule. A second insight relates to the dispersion of the 

due dates. If they are spread widely around a given average, then it may be easier to 

sequence jobs so that individual due dates are met, as compared to a case where the due 

dates are clustered. We start by describing how we might create samples reflecting some 

of these predefined characteristics, and then we discuss the resulting difficulty of the 

results. 

 Define the tardiness factor, denoted t, as the fraction of the jobs likely to be tardy. 

The tardiness factor is usually a parameter of the data-generating process. Let µp denote 

the mean of the distribution from which samples are taken and let µd denote the mean due 

date. Therefore, t = 1 – (µd / nµp). For a desired level of t, set 

 

µd = (1 – t)nµp 

 

In other words, we first decide on a processing time distribution and choose its mean. 

Then, for some desired level t, we calculate µd and sample due dates from a distribution 

with that mean. Next, we define the due-date range, denoted r, as the range of the due 

dates relative to the makespan. Again, for the purposes of generating data, we might 

sample due dates from a uniform distribution on the interval (a, b). This implies 

 

r = (b − a) / nµp 

 

Thus, we decide on a mean processing time, and for a desired value r, we calculate the 

width of the range, (b − a) = rnµp.  Knowing t (above) gives us the mean of the due date 

distribution, so once we know the width of the range, the uniform distribution is fully 

specified, and we can draw samples. Difficult problems—like the ones we have used in 

the chapter—involve tardiness factors of roughly 0.6 to 0.8, along with a tight due date 

range of 0.2. 

 We can see now that there is no conflict between the fact that Example RN4.2 is 

one for which MDD does not work well and that it performed well for a set of test 

problems developed according to such principles. The key to the difference is that the test 

problems were generated according to principles but randomly, whereas a cursory 

examination of Example RN4.2 reveals that it is not likely to be the result of a random 

selection. Asymptotic optimality theorems typically invoke regularity conditions that 

would rule out Example RN4.2. However, we repeat that MDD has not been proven 

asymptotically optimal even when subject to such regularity conditions. 

 

More on Asymptotic Behavior 

 We defined asymptotic optimality for problems with a given number of jobs, n. In 

a dynamic application where jobs arrive at random times on an ongoing basis, a more 

common term is asymptotic convergence. The word "convergence" suggests some 

infinite process, which is indeed the case in such a dynamic environment. However, 

asymptotic convergence is also used for another type of desirable asymptotic behavior for 

problems with a given number of jobs, n. We say that a search heuristic converges 

asymptotically if we can reach an optimal solution by running the search for a sufficiently 

long time (w.p.1). That is, as the number of iterations approaches infinity, we will have 

identified an optimal solution almost surely (but we will not have any proof that this 



solution is indeed optimal). In contrast to asymptotic optimality, this definition makes 

sense only for search heuristics and not for single-pass construction heuristics: the search 

itself constitutes the potentially infinite process that is implied by the term 

"convergence." Whereas asymptotic optimality asks whether a heuristic’s relative error 

becomes negligible for large enough instances (and typically applies to construction 

heuristics), asymptotic convergence asks whether a search heuristic is liable to get stuck 

forever at a local optimum (regardless of instance size). For example, API search is not 

asymptotically convergent because it can get stuck this way. By contrast, random search 

is asymptotically convergent, even when the sampling is biased (as long as all pkj are 

strictly positive so every single permutation has a positive probability of being selected). 

Other heuristics that involve random elements and large enough neighborhoods, such as 

simulated annealing (with a sufficiently slow cooling regime), are also asymptotically 

convergent: given enough time the search will stumble on an optimal sequence. Genetic 

algorithms employ mutations for this purpose, but they do not guarantee asymptotic 

convergence (Ingber and Rosen, 1992). Nonetheless, without exception, any 

neighborhood search heuristic that is used repetitively as per the multi-start policy with 

randomized seeds is convergent. 

 

Concluding Remarks 

 Even among the heuristics that are competitive today, it is difficult to assess 

which approach is "best." Refinements keep being developed and the target—that is, the 

set of problems for which such heuristics are tested—keeps moving. (The examples we 

used in the chapter were selected for pedagogical reasons, but they are no longer even 

close in complexity to the ones current research addresses.)  In this connection, we should 

highlight a distinction between using heuristics well and reporting their merits and 

shortcomings well. There is little doubt that heuristics can and often should be combined, 

sometimes with great synergy. At the very least, running two or more distinct but 

sufficiently fast heuristics and selecting the best result cannot hurt. For instance, just by 

the evidence provided by the two examples we solved, if we were to combine the 

WMDD heuristic with the new heuristic we presented above, the average deviation 

would drop from 2% to 1% or less, and the maximum, from 10% to 4%. Furthermore, 

practically all optimization algorithms involve internal heuristic choices that can 

influence their performance significantly. For instance, the simplex algorithm chooses the 

candidate entering variable that improves the objective function fastest (on a per unit 

basis). But we could also select the candidate variable that improves the objective 

function most in the next step. This rule often leads to the same candidate, but not 

always. Both rules are essentially greedy heuristics, and it took experimentation to decide 

which one to use. Thus, even in developing an optimization platform, we must test and 

use heuristics. Indeed, there is an emerging approach called variable neighborhood 

search (VNS) that essentially tries several neighborhoods for each move and selects the 

best. That creates a single metaheuristic, reportedly a highly successful one (Hansen and 

Mladenović, 2001; Hansen et al., 2006). Hence, combining heuristics is often a 

productive idea, although selecting a good combination is an art. However, the picture is 

less clear with respect to reporting results. There are many potential combinations, and 

each of them involves many seemingly minor implementation decisions that may not be 

minor in fact. Therefore, it would be counterproductive to make broad comparisons 



among such combinations. When a combination of heuristics works well, it may be 

impossible to tell which ingredients should really be credited. For example, in Chapter 14 

we discuss a highly successful state-of-the-art tabu search algorithm for job shops (due to 

Nowicki and Smutnicki, 2005) that involves so many refinements and clever bound 

calculations that we can no longer say with certainty how much of the success is due to 

the tabu search mechanism, or any other ingredient. (For that reason, when we performed 

experiments to evaluate some of the heuristics, we restricted our comparisons to "vanilla" 

applications of the individual heuristics.)  

 With this caveat, three heuristic approaches are frequently mentioned as winners 

in more complex environments: tabu search, simulated annealing and genetic algorithms. 

Of these, TS is reportedly very competitive for job shop makespan minimization, closely 

followed by SA (Vaessens et al. 1996). But for projects, there is evidence that GA may 

be the best choice (Hartmann 2001). Indeed, different approaches may be required for 

different problems in general. Although such results cannot be taken as "final" or 

completely objective, there are possible explanations why one approach is better in the 

project environment and another in the job shop. Specifically, in the job shop 

environment, it is easier to confine the search to feasible solutions that are likely to 

improve upon the current candidate than it is in the project environment. Therefore, 

because GA is likely to produce conforming offspring, it has an edge for projects. We 

suspect that it would perform even better if mutations were to be modified. If so, 

however, then there is room to improve the other approaches for projects by modified 

neighborhoods. Indeed, Fleszar and Hindi (2004) provide partial empirical evidence to 

that effect in the project scheduling context. They use an insertion neighborhood that 

conforms to the modified insertion mechanism we introduced. The heuristic is reportedly 

very successful, but it also involves variable neighborhood search. Thus, again, it is 

difficult to judge how much of their success is attributable to VNS and how much to the 

use of modified search moves. We discuss this point further in the research notes of 

Chapters 14 and 18.  

 

 

Optimal Values of the 12 Test Problems 

 

For readers who might wish to try solving the 12 test problems, we list the optimal target 

function values here.  

 

  #       T   #       T   #       T 

1 78028 5 32370 9 102709 

2 116674 6 47542 10 40232 

3 69558 7 40067 11 47780 

4 32992 8 85800 12 49704 

 

An Excel file containing the problem data can be found among the Data Files on the 

book's website. 
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