
Research Notes for Chapter 4*

After discussing sources for the results in Chapter 4, we present four techniques that we

did not include in the chapter. Next, we present more details about dominance

relationships for the Tw-problem and we discuss the effects of adding precedence

constraints. Our objective is to encourage further research on those issues. (In Research

Notes for Chapter 6 we discuss the stochastic version of the problem, with the same

objective.) We also discuss asymptotic optimality and the related concept of asymptotic

convergence. An important requirement in testing heuristics involves the design of

appropriate test sets, so we explore that issue, too. We also provide the optimal values of

the 12 test problems that we use in the chapter.

Some sources and credits

Dispatching: Beyond the results we reported in the chapter, the WMDD heuristic

has been tested with simulation experiments, in both static and dynamic scenarios,

and it has performed very well relative to other heuristics (Kanet and Li, 2004). The

test based on an exact generalization of MDD was proposed by Rachamadugu

(1987). We edited Rachamadugu’s test slightly to match the format of SWPT. On

the one hand, this test could be replaced by a straightforward API comparison. On

the other hand, it is valuable as a basis for more powerful results, such as the

property that if all jobs are tardy under SWPT then SWPT is optimal. We discuss

other examples later.

Simulated annealing: The seminal SA work is Kirkpatrick et al. (1983). They

discuss the basic insight that underlies SA, namely, the similarity between

statistical mechanics and combinatorial optimization. The specific example that

provides the most useful analogy is the annealing of solids (hence the name,

simulated annealing). If the cooling regime is too fast (as in quenching), material

will freeze into an inefficient state (with defects, or high energy). The analogy in

optimization is settling for a low-quality local optimum. By contrast, a slow,

controlled cooling regime leads to a low-energy state without defects, analogous to

a good solution. The authors then describe the application of the main SA idea to

the design of computer chips (which is a very complex combinatorial optimization

problem) and to the traveling salesperson problem. A more detailed treatise of SA

for combinatorial optimization is provided by Van Laarhoven and Aarts (1987).

* The Research Notes series (copyright © 2009, 2010 by Kenneth R. Baker and Dan Trietsch) accompanies

our textbook Principles of Sequencing and Scheduling, Wiley (2009). The main purposes of the Research

Notes series are to provide historical details about the development of sequencing and scheduling theory,

expand the book’s coverage for advanced readers, provide links to other relevant research, and identify

important challenges and emerging research areas. Our coverage may be updated on an ongoing basis. We

invite comments and corrections.

Citation details: Baker, K.R. and D. Trietsch (2010) Research Notes for Chapter 4 in Principles of

Sequencing and Scheduling (Wiley, 2009). URL: http://faculty.tuck.dartmouth.edu/principles-sequencing-

scheduling/

Tabu search: The seminal work in this area is Glover (1989) and (1990a), although

by the time these papers were published, quite a few applications of TS had already

been completed based on earlier working papers. A very accessible introduction to

TS is given by Glover (1990b). This is a useful source for readers who want to gain

a more thorough introduction to the subject. It covers important issues related to TS

that we did not cover, such as aspiration criteria that make it possible to override a

tabu and the use of long-term memory. In addition, there is a more thorough

discussion of various types of tabu moves and the ideal size of a tabu list. TS is not

specific to scheduling, but Glover (1990b) cites at least one scheduling example.

Genetic Algorithms: Like TS and SA, GA is not specific to scheduling. Work in

this field flourished after the publication of Holland (1975), which might therefore

be considered an early and important milestone in the development of GA.

Nonetheless, the main GA ideas were explored by various research groups starting

in the 1960s. We refer the readers to Wikipedia for the history of GA. Important

scheduling applications of GA seem to have appeared starting in the mid 1980s.

Specifically, in 1985, papers addressing the job shop and the traveling salesperson

problem, as well as a paper on bin-packing (which is closely related to parallel

machine scheduling) were presented at the 1st International Conference on Genetic

Algorithms, at Carnegie-Mellon University (Grefenstette, 1985). We are not aware

of earlier publications of GA in scheduling, but there is such a vast literature in this

field that it is difficult to say with certainty that the 1985 proceedings are indeed

first.

Beam search

 If we were to implement a branch and bound algorithm as in Chapter 3 but

without using any bounds, the tree of partial schedules would eventually generate all n!

complete sequences. Proceeding from the initial node, level k would contain all partial

sequences of size k. Thus, for an n-job problem, level 1 would contain n partial

sequences, level 2 would contain n(n – 1), level 3 would contain n(n – 1)(n – 2), and so

on. Thus, the tree would get wider at each level, becoming quite wide by the time it

reaches the final level.

 Beam search is a means of searching the tree in heuristic fashion, without

allowing the width of the tree to become excessive. Beam search limits the number of

partial sequences considered at each level to a given number b, called the beam width.

Usually, the parameter b is a relatively small number, so that partial sequences may have

to be discarded in order to keep within the beam width. A key requirement is a means for

selecting partial sequences to retain at any level. Typically, we compute a lower bound

for each partial sequence and keep only those with the b best bounds. In a sense, these are

the most promising partial sequences, and it makes sense to "bet" that they will lead to

the best complete solution. However, there are no guarantees that the best bounds

encountered early in the search eventually lead to optimal solutions, so the algorithm is

ultimately a heuristic procedure. It is also possible to generate upper bounds for each

branch, using construction or dispatching heuristics. Such upper bounds might also be

used for selection, but there is no guarantee that they would lead to optimal solutions,

either. Morton and Pentico (1993) discuss such options in some detail, but we are not

aware of explicit research comparing them in practice.

 By limiting the width of the tree to b, the computational complexity of the search

becomes polynomial—O(bn3) or higher, depending on the exact design. By discarding

some partial sequences at each level, we may the search away from the optimum. Thus,

the quality of the solution depends on whether we can find a way to select the b branches

so that they are likely to include the optimal or a near-optimal solution.

ALGORITHM RN4.1

Beam Search

Step 1. Select the beam width b. Let k = 0, and initialize the search with the empty

partial schedule.

Step 2. Increase k by 1. Let b' denote the number of partial schedules available from

the previous level (for k = 1, b' = 1). Generate and evaluate the b'(n − k + 1)

possible new partial schedules. If these are complete schedules, identify the

best one and stop.

Step 3. Select the best b partial schedules to pursue further and return to Step 2.

Example RN4.1. Consider a problem containing n = 5 jobs with known processing times

and due dates.

 Job j 1 2 3 4 5

 pj 2 3 1 6 4

 dj 11 7 5 10 6

 Consider the T-problem for the data in Example RN4.1. For tactical reasons, we

adopt a simple version of the algorithm, in which we evaluate a partial sequence simply

by calculating its total tardiness. We construct the sequence from the last position

forward, and we use b = 2.

 At level 1, for the last sequence position, there are five job candidates. They

generate tardiness values as shown in parentheses when they complete at time 16:

XXXX1 (5) XXXX2 (9) XXXX3 (11) XXXX4 (6) XXXX5 (10)

The two best partial sequences are XXXX1 and XXXX4, so we keep those and discard

the others.

 At level 2, there are four job candidates for the next to last position, for both of

the two partial sequences. Again, total tardiness values are shown in parentheses.

XXX21 (12) XXX31 (14) XXX41 (9) XXX51 (13)

XXX14 (6) XXX24 (9) XXX34 (11) XXX54 (10)

The two best partial sequences are XXX14 and either XXX41 or XXX24. However, there

is no advantage to continuing with XXX41 because it contains the same scheduled jobs

as XXX14 but with higher total tardiness. So we select XXX14 and XXX24.

 At level 3, the candidates are as follows.

XX214 (7) XX314 (9) XX514 (8)

XX124 (9) XX324 (11) XX524 (10)

The two best partial sequences are XX214 and XX514. At level 4, there are two

additional partial sequences for each of these:

 X3214 (7) X5214 (7) X2514 (8) X3514 (8)

Retaining the two best partial sequences and completing them, we obtain the two

solutions 5-3-2-1-4 and 3-5-2-1-4, both of which achieve T = 7 (which is optimal here).

 For illustration, we solved the 20-job test problems using different choices of beam

width and a lower bound comparable to equation (3.5). The results are reported in Table

RN4.1, which also reproduces the results for three basic construction procedures

discussed in the chapter.

Table RN4.1

 Optimizing Average Maximum

 Algorithm Frequency Ratio Ratio

Greedy 0 of 12 1.22 1.39

Insertion 0 of 12 1.20 1.44

WMDD 4 of 12 1.02 1.10

Beam search (b = 2) 0 of 12 1.21 1.38

Beam search (b = 5) 0 of 12 1.19 1.34

Beam search (b = 10) 0 of 12 1.18 1.34

 At least for this test data, the results indicate that the performance of beam search is

roughly comparable to that of the simplest heuristic methods, and the choice of beam

width does not make much of a difference.

 As with other heuristic procedures, there is no guarantee that beam search will find

an optimal solution. Two critical tactics are the beam width (a wider beam is safer but

also more time consuming) and the mechanism for evaluating partial schedules. In

Example RN4.1 and in the computational comparison, we used relatively simple

evaluation mechanism. A more ambitious version of the algorithm would compute more

powerful lower bounds with the hope of improved performance. In addition, because

WMDD performed much better in our experiments, we could use WMDD within the

beam search to produce tight upper bounds. Then, using these upper bounds to evaluate

the candidates, the results would likely improve relative to Table RN4.1. (Incidentally, in

Example RN4.1, where WMDD reduces to MDD, it, too, achieves the optimal value of

7.)

Dynasearch

 Consider the pair interchange (PI) neighborhood in a single machine environment.

There are exactly n(n − 1)/2 neighbors for each permutation sequence; that is, O(n2). A

similar observation applies for the all insertion (AI) neighborhood. Dynasearch belongs

to a small set of known heuristics that attempt to cover much larger neighborhoods, but

still require only a polynomial effort per step to do so (Congram et al., 2002). In the case

of dynasearch, the neighborhood size is (2n−1 − 1); that is, O(2n). Nonetheless, the search

effort per step is O(n3). That is, it takes O(n3) to identify the best immediate neighbor out

of O(2n) candidates. By contrast, in PI we enumerate all the immediate neighbors that we

can check. As a result, more permutations are directly accessible and the potential for

finding a good local minimum is higher. In addition to searching a large neighborhood,

the authors attributed part of the reported success to using iterated searches. In iterated

search, instead of generating multiple seeds randomly, new seeds are generated from the

best known current solutions. To this end, kicks are used to perturb a solution sufficiently

to allow searching a new neighborhood without returning to the former sequence.

Conceptually, such kicks are similar to mutations in GA. In the particular case of the Tw-

problem reported by Congram et al., use is also made of problem specific speedups

(shortcuts) that may not apply in other applications, but the reported results are

competitive even without those shortcuts. We now briefly describe the basic

neighborhood, without multiple seeds and without shortcuts, and how it is searched

efficiently from a given initial sequence.

 The basic dynasearch neighborhood is embedded in a regular PI neighborhood.

Unlike simulated annealing or tabu search, dynasearch utilizes the steepest descent in

each step, and stops when no improving moves are available. However, at each single

step, dynasearch considers not only single PI steps but also combinations (series) of PI

steps, provided that if jobs [i] and [k] are interchanged and i < k, there is no other

interchange involving job [j] for any i < j < k. For instance, if we start with the sequence

1-2-3-4, we can move to 2-1-4-3 in one step (by performing PIs on 1&2 and 3&4), but

we cannot interchange 1&3 and 2&4 in one step, because 2 is between 1&3 and because

3 is between 2&4. In other words, to reach 3-4-1-2 requires two steps. Similarly, 4-3-2-1

is not a direct neighbor because 1&4 are interchanged so 2&3 should retain their original

order. When all interchanges are compliant, we say that they are independent. A single

step can involve any number of independent exchanges. As a result, the single best PI

may have to be given up in favor of two or more individually less attractive interchanges

that are better when combined. For example, if the single best PI involves a job that is

between two jobs that are part of the best combination, the single best PI will not be made

in that step.

 To identify the best combination of independent interchanges in polynomial time,

an efficient dynamic programming (DP) approach is invoked. The procedure has n stages,

corresponding to jobs in the seed order: in stage k we consider the subset of jobs {[1], . . .

, [k]}. For convenience, assume that the jobs are indexed by their current sequence, that

is, j = [j] for all j. For subset {1}, we just record the tardiness contribution of job 1 when

it is actually scheduled first. Next, we consider the subset {1, 2}, and compare the total

tardiness contribution with and without interchanging the two jobs. We record the

decision and the minimal total contribution of this subset. When we add job 3, we have

three options.

 Leave the subset {1, 2} as before (with or without an interchange) and just append

job 3 at the end. In such case, the total tardiness contribution is obtained by adding T3

to the minimal total tardiness of subset {1, 2}.

 Interchange jobs 1 and 3 thus obtaining the partial sequence 3-2-1. In such case we

calculate the total tardiness directly.

 Interchange jobs 2 and 3, thus obtaining the partial sequence 1-3-2. The total

tardiness of this option is the previously recorded total tardiness of the preceding

subset, {1} plus the total of 2 and 3 (in their interchanged order and starting after 1

completes).

Given the three feasible options, we select the best for subset {1, 2, 3}, and we record the

decision and the total tardiness of the subset. At this stage we have information for three

subsets, {1}, {1, 2}, and {1, 2, 3}. We note that sequences 3-1-2 and 2-3-1 cannot be

considered in stage 3. As for the two sequences 1-2-3 and 2-1-3, we automatically

consider the better one by appending 3 to the end. Generally, by the time we consider job

k, we have the optimal values and decisions for all subsets {1}, {1, 2}, . , {1, 2, . , j − 1},

{1, 2, . , j − 1, j}, … , {1, 2, … , j − 1, j, … , k − 1}. We now consider interchanging

job k with each one of the preceding jobs (which requires O(n) steps). When we consider

the interchange with job j (for j > 1), we use our recorded information to calculate the

contribution of the subset {1, 2, … , j − 1} and add the total tardiness contribution of the

subset {j, … , k} in the specific sequence k-(j + 1)- … -(k − 1)-j, starting at the

completion time of subset {1, 2, … , j − 1}. After performing this calculation for job n,

we have the information we need to select the best combination of PIs, thus completing a

step. We then repeat the process for the new sequence. The search stemming from the

original seed stops when no single PI exists that achieves an improvement over the

former series of interchanges. (Thus, the final sequence is locally optimal not only in the

dynasearch neighborhood but also in the PI neighborhood.)

 Several sources, including Congram et al. (2002) and Congram (2000), also

discuss other dynasearch neighborhoods. In particular, an enhanced dynasearch

neighborhood allows insertions in addition to PIs. For instance, the sequence 3-1-2

cannot be considered at stage 3 in the basic dynasearch neighborhood, but it becomes

eligible in the enhanced neighborhood by inserting job 3 in the first position. Similarly,

the sequence 2-3-1 is eligible by inserting job 1 after job 3. More generally, in this

enhanced dynasearch neighborhood, at stage k, in addition to the basic options, we now

also allow job [k] to be inserted in the jth sequence position, provided it is followed by

jobs [j], [j + 1], [j + 2], … , [k − 1] in that order, with no other job between any two of

them. Similarly, any job j can be inserted right after job [k] provided jobs [j + 1], [j + 2],

… , [k − 1], [k], [j] are then scheduled in the particular order given here, with no other

jobs between any two of them. Grosso et al. (2004) test this enhanced neighborhood.

They achieve even better results for large problems, but the approach is slightly slower

for smaller instances. Nonetheless, the time required to achieve an excellent level of

performance is very short for both neighborhoods, so the speed issue is somewhat

academic. For instance, Grosso et al. report matching the best known results [by then] for

125 different 100-job instances within 3 seconds per instance, on average (on a 800 MHz

PC). They also reported that very extensive runs failed to improve on those formerly best

known results. Fifty-job instances require about half a second. Recall from our Research

Notes for Chapter 3 that it took up to nine hours of CPU time on a 3.5-fold faster 2.8GHz

PC to obtain proven optimal solutions for these same problems by the state-of-the-art

method (Pan and Shi, 2007). Furthermore, Pan and Shi report that those formerly known

best results turned out to be optimal. That is, dynasearch is not only a highly efficient

heuristic but also an extremely effective one.

 We conclude our discussion of the dynasearch results with two notes. First, it is

also possible to use insertion instead of PI rather than as an enhancement. However,

Grosso et al. report that this tactic provided no advantage in their experiments. Second,

they also report that in their tests, a multi-start approach worked better than the iterated

search (with kicks) that Congram et al. recommended. The question why the two

experiments led to such different conclusions with respect to this choice may justify more

research attention.

 In both the basic dynasearch neighborhood and the enhanced one, the restriction

to independent steps is necessary to allow finding the best combination for any subset in

polynomial time. In terms of the basic case, we would not be able to simplify the

calculation involving the interchange of j and k by only considering the sequence k-(j +

1)- … -(k − 1)-j without independence. Another key requirement is that the effect of

independent PIs on the objective function should be additive or have some other form

amenable to DP recursive analysis (but such forms seem irrelevant here). For instance,

consider the problem of scheduling n jobs on parallel machines, without preemption, to

minimize makespan (see Chapter 9). It is possible to specify an optimal solution by list

scheduling, which essentially employs a permutation to load the machines. The next job

in the list is loaded as early as possible on the first free machine. Hence the problem boils

down to finding the best permutation, and we might be interested in employing

dynasearch to do that. However, the effect of independent PIs is not additive in this case.

To wit, consider a two-machine, parallel machine makespan problem. Suppose that job pj

values are also indices, and that we start with the sequence 7-6-5-4-3-2-1. The makespan

is 14, and it is optimal. Suppose we interchange jobs 5 and 4, then the makespan does not

change. So the net effect of that PI is 0. Likewise, interchanging 1 and 2 has no effect.

But performing both interchanges together leads to a makespan deterioration of 1. These

two interchanges are independent by our current definition, but the effect of two

independent interchanges is not additive (0 + 0 ≠ 1). In effect, these so-called

"independent" PIs are not entirely independent in the parallel machine environment.

Hence, it would not be possible to apply the PI dynasearch neighborhood directly. More

precisely, the DP at the heart of dynasearch would no longer be applicable with its

present structure and complexity. Similarly, one might think that the PI dynasearch

neighborhood could be applied to permutation flow shops with a makespan objective (see

Chapter 10), but again the question is whether the effects of independent PIs are additive.

If we define the effect of a PI as the change it induces in the makespan, it is easy to

construct counterexamples with as few as two machines and four jobs showing that such

changes by independent PIs are not additive. Because job shops generalize flow shops,

they too would be difficult to address. Finally, on the one hand, our pessimistic analysis

here relates to the particular dynasearch neighborhood, not to the possibility of ever

finding neighborhoods with exponential size that can be searched with polynomial effort.

On the other hand, to our knowledge, all published exponential neighborhoods that can

be explored in polynomial time relate to various single machine problems, such as the Tw-

problem itself and the traveling salesperson problem (TSP), which we introduce formally

in Chapter 8. (We also discuss it briefly next.)

Ant Colony and Neural Networks

 We presented genetic algorithms as an approach that mimics nature. Likewise,

simulated annealing was inspired by natural systems. Another nature-imitating heuristic

approach that has been suggested for combinatorial optimization is the ant colony

approach (Colorni et al., 1996). It is easiest to describe this approach for the TSP

problem. The TSP requires a salesperson to visit n cities and return to base in the total

shortest possible cycle. The TSP cycle can be specified by a permutation, prescribing the

sequence in which the cities are visited (and such that the final connection is from [n]

back to [1]). The associated decision problem is NP-complete in the strong sense. The

source of the difficulty is that the total distance traveled depends on the sequence.

(Nonetheless, as we already discussed briefly in our Research Notes for Chapter 3, the

state-of-the-art TSP solver—Concorde—can handle very large instances effectively by a

branch and cut approach.) Assume now that many ants start autonomously at various

nodes that represent the cities and each solves the problem by itself, but it also knows

where the other ants have been traveling most often. (In nature, ants mark their routes by

scents—pheromones—so they can actually sense where other ants have traveled

recently.) An ant selects the next city to visit at random, but it is more likely to select a

near city and it is more likely to select a path that many other ants have used. The

mechanism that emerges is a learning process that reinforces short and popular

connections and eventually discards paths that are not used. So far, the evidence is that

this approach works best when combined with other heuristics; e.g., one might add local

search rules that enforce local optimality. With such enhancements, which are essentially

tantamount to combining heuristics, ant colony is capable of achieving excellent results

(den Besten et al., 2000). However, the computation time required for that purpose is

several orders of magnitude higher than with other heuristics such as dynasearch; see

Grosso et al., for a direct comparison between their dynasearch results and those of den

Besten et al.

 Yet one more heuristic approach that is based on nature involves the use of neural

networks. By virtue of emulating the way a brain operates (at least as far as prevailing

theories suggest), the potential of neural networks is promising (Agarwal et al. 2003,

Agarwal et al., 2006, Colak and Agarwal 2005, and Gupta et al. 2000). Inherent

similarities exist between the neural network and the ant colony models: both involve

selection of strong connections that have been reinforced by previous experience.

Cross-Entropy

 In general, the same heuristics that apply in deterministic scheduling can often be

directly implemented for stochastic scheduling. But some heuristics are specifically

related to stochastic issues. In this connection, there are important stochastic approaches

for deterministic problems and there are stochastic methods that are specifically relevant

to stochastic models. The simplest example of a stochastic approach to a deterministic

model is the use of random sampling. We also saw in the chapter that it is useful to bias

the sampling process. More complex approaches include specific heuristics designed to

perform biased random sampling effectively. This subject is also known as importance

sampling. Cross-entropy (CE) is a strongly related approach. Suppose we select the best

10% of many randomly selected sequences and we observe that a particular job is first in

a disproportionately large fraction of them. It then stands to reason that this job is in a

sense a good candidate for the first position. We may therefore assign a higher

probability for this job in biased sampling. The process could be repeated after running

many instances based on this biased sampling, and so on. The CE approach is based on

this idea. More details can be found in Rubinstein and Kroese (2004) and other references

given below. The cross-entropy approach is also applicable to stochastic inputs in some

cases. Using it for stochastic scheduling is a promising research area. For example, it has

been used to estimate the probability of exceeding buffers in queueing networks, which is

related to safe scheduling (de Boer et al., 2004).

Generating Dominance Properties for 1 | | ΣwjTj

 In this section we discuss precedence relationships for the basic Tw-problem. In

the next section we consider the effect of mandatory precedence constraints, which

extend the problem to one that has not yet received much attention in the literature,

namely 1 | prec | ΣwjTj. For distinction, we refer to dominance relationships as optional

constraints, because we can choose to generate and impose them or to ignore them.

Effective optimization algorithms work better with precedence constraints, so such

results are potentially useful and we present them because they justify further research.

Such research is needed not only for generating new ways to identify optional constraints

but also for validating known relationships that are yet untested.

 As discussed in our Research Notes for Chapter 3, Emmons (1969) provided the

foundation for work on dominance relationships for the last four decades, for both

unweighted and weighted cases. In the most recent work along these lines, Kanet (2007)

methodically derived several such conditions, new and old. To describe that work, we

start by reproducing some results from Chapter 3. In this section, we assume that the

integers i and j satisfy i < j, but there is no predefined ordering between i and k or

between j and k. Recall that p(J) represents the sum of processing times in set J, X

denotes the set of all jobs, Aj denotes all jobs known to succeed job j in at least one

optimal sequence, Aj' = X − Aj is the complement (which includes job j itself), Bk is the set

of jobs that precede job k in at least one optimal sequence, and Bk' is the complement (so

job k Bk'). Whereas it is convenient to use both types of sets, recall that Aj and Bk are

mirror images of each other. Specifically, if job k Aj then job j Bk. Conversely, if job

k Aj' then job j Bk'. In addition to jobs j and k, sets Aj' and Bk' include elements whose

relationship with j and k (respectively) has not been resolved. The purpose of Theorem

3.3 is to enable moving job k ≠ j from Aj' to Aj. We reiterate that as we resolve such

relationships it may become possible to resolve others that could not have been resolved

initially. Our starting point is Theorem 3.3. Adding the conditions noted in the chapter,

under which it can be extended to weighted problems, we obtain,

Theorem RN4.1. In the Tw-problem, there is an optimal schedule in which job k follows

job j if one of the following conditions is satisfied:

 (a) wj ≥ wk, pj ≤ pk, and dj ≤ max{dk, p(Bk) + pk};

 (b) wj ≥ wk, dj ≤ dk, and dk ≥ p(Aj') – pk;

 (c) dk ≥ p(Aj').

Condition (c)—which generalizes Theorem 3.2—simply states that if job k can be last in

Aj' without tardiness, there is no benefit in scheduling it earlier, and thus there is an

optimal schedule in which job k follows job j. Recall from our discussion in Chapter 3

that, in the unweighted case, condition (a) is a direct generalization of Theorem 2.8.

Adding the condition that wj ≥ wk can only increase the benefit of following the

prescribed order. For future reference, we note that unless pj/wj ≤ pk/wk, condition (a)

cannot be satisfied.

 Kanet (2007) studies the possible ways in which each of three fundamental tactics

can demonstrate that job k should follow job j, thus adding job k to Aj. We first discuss

the first two tactics. For two jobs j and k with no known relationship, schedule job k at the

end of the current set Bk (and thus, automatically, before job j, because we know that job j

 Bk) and schedule job j just before the current Aj, at the very end of Aj'. Observe that

there must be at least two jobs, including j and k, in {Aj'∩Bk'} (i.e., between the

completion time of Bk and the start time of Aj), or we would already know how the jobs

are related. Furthermore, for these two tactics there is no need to consider any schedule in

which job k is scheduled earlier. Symmetrically, we need not consider any schedule in

which job j starts later. Denote the set of jobs between k and j by H (i.e., H = {Aj'∩Bk'}\{j,

k}). If H is empty, we can decompose our problem to three consecutive parts: Bk, {j, k},

and Aj. After solving each part separately, we obtain an optimal schedule. In such a case,

we can sequence {j, k} by trial and error or by (4.2) and thus also resolve whether k Aj

or Bj, but that resolution becomes purely academic. Partitioning the problem that way

cannot but be advantageous as well. The more challenging assumption is that H is not

empty. At this stage we can check whether job j is tardy. If job j is not tardy, then it is in

Ak (this result is intuitive, but we prove it later). Otherwise, the first tactic studied by

Kanet for this structure involves interchanging the two jobs. In this case, we assume pj ≤

pk. The assumption is necessary to ensure that the effect on H will not be detrimental,

thus allowing us to ignore it. The second tactic is inserting job k just after job j, which

cannot be detrimental for H even if pj > pk. The moves used by both tactics decrease

tardiness for job j but may increase it for job k. By comparing the cost of increasing

tardiness for job k to the benefit of decreasing tardiness for job j, Kanet identifies

sufficient conditions for allowing the move. A simple example is if Cj ≤ dk, so job k

would not be tardy if inserted after job j and therefore we can safely add job k to Aj. That

case boils down to Theorem RN4.1c. The third move starts with job j sequenced at any

time before job k, but after p(Bj) and before all the jobs in {Aj⋃Ak}—that is, job j must

start before p(X) − [p(Aj⋃Ak) + pk]. Here, sufficient conditions are sought for showing

that inserting job k in any position before job j cannot improve our objective. If so, job k

 Aj. Now revisit the case where job j is not tardy at the end of Aj', where we claimed that

{j} Ak. If we interchange the names j and k, the two jobs start in the order we want to

establish. Because the later job is not tardy, moving it to any earlier position, including

any position before the earlier job, cannot improve the objective. So the third tactic

proves the claim. Finally, once we add job k to Aj, by any relevant condition, all the jobs

in Ak can now be considered also in Aj and all the jobs in Bk can be added to Bj.

 As we indicated already, Kanet’s results have not been tested yet, although some

of them generalize or even repeat formerly known results that, as such, have been tested

before. Therefore, to evaluate how powerful they are in reducing computation time and

increasing the size of solved problems, we need empirical testing. When doing that, we

should find not only whether all the new conditions are useful but also the best order for

testing.*

 It is possible to add mandatory constraints to the problem before starting the

analysis. For instance, if job j must precede job k due to a mandatory constraint, we start

the analysis with initial sets that satisfy j Bk and k Aj. But doing so is not identical to

just adding mandatory constraints to independently identified optional ones because

optional constraints may change as a result of mandatory constraints; for instance, they

may contradict each other.

 We now present unpublished results of the same genre (also untested). Although

these results can and should be treated as complements of published ones, we ignore most

connections. To start, we reproduce Rachamadugu’s test, (4.2), for two adjacent jobs, j

and k, that start at time t. Job j can come first if,

p

s

w

p

p

s

w

p

k

+
j

k

k

j

+
k

j

j
1 1 (4.2)

where si
+ is given by (di − t − pi)+; i.e., si

+ is the slack when positive, and zero otherwise.†

Define the latest start time without tardiness of job i by LSi = (di − pi). Then we may

rewrite (4.2) as follows: job j precedes job k if they are adjacent to each other and,

])([])([tLSpwtLSpw kjkjkj

Equivalently, define a difference function, gjk(t), such that if gjk(t) ≥ 0 then job j can

precede job k when they are the next two jobs starting at time t. That is,

])([])([)(tLSpwtLSpwtg kjkjkjjk

We refer to the relationship between two adjacent jobs, such as j and k, that start at time t

and for which gjk(t) ≥ 0 as stable, and if all consecutive pairs are stable at their start time,

* See Exercise 2.6 but notice that here it is conceptually possible that one of the tests can predict several

others, thus rendering them redundant. In Chapter 10, we discuss dominance tests for three-machine flow

shops that exemplify this point.
† In general, sequencing algorithms that use slack are sometimes subject to problems associated with

Theorem 2.7. But one way to ameliorate that effect is to use slack only if it is positive, and zero otherwise,

as is the case here. With that structure in place, slack is not used for sequencing tardy jobs.

we say the sequence is stable. Suppose both jobs j and k can complete on time in either

order (when they start at time t), then both orders are stable. Stability is really just an

indication of local optimality, so we can pose a simple proposition,

Proposition RN4.1 At least one stable sequence is optimal.

By the proposition, the set of stable sequences is dominant, and from now on, we limit

our attention to it. Both by the structure of (4.2) and by Theorem RN4.1a, SWPT is

highly relevant to our problem. Define the basic order by SWPT, with ties broken by LSj,

and remaining ties broken by SPT (any further ties must be between essentially identical

jobs and may be broken arbitrarily). Without loss of generality, we henceforth assume

that all jobs are indexed by the basic order. If jobs k and k+1 are identical, we can

arbitrarily set (k + 1) Ak (and thus also k Bk+1), without risk of suboptimality.

Recalling that i < j, by (4.2), it is clear that if jobs i and j are considered for scheduling

next to each other and i is already tardy, then i can come first (the left element is at most

pi/wi and the right at least pj/wj so the ordering is assured by SWPT). One consequence is

that it is sufficient to define gij(t) for 0 ≤ t ≤ LSi. Beyond LSi the function would be

nonnegative; i.e., in such a case, we can safely schedule by the basic order. For that

reason, for any pair of potential adjacent jobs there exists a time, vij (≤ LSi), such that for

any t ≥ vij job i can precede job j when they are adjacent. (In the rare event that, for two

non-identical jobs, pi/wi = pj/wj and LSi = LSj, the tie-breaker in the basic order definition

implies that pi < pj. In such a case we obtain vij = 0. We specified that tie-breaker for this

reason.) We can also decree that job i precedes job j if neither of them will be tardy as a

result. That is, when no tardiness is involved, we refer only to the order i → j as stable.

Proposition RN4.1 remains valid after this restriction on the set of stable sequences: that

is, the best stable sequence in the restricted set is optimal.

 Rachamadugu used (4.2) recursively to demonstrate that if all jobs are tardy when

sequenced by SWPT, then SWPT is optimal. Because the argument is recursive, if it

applies to the first k jobs but not later, we can still sequence the first k jobs first.

Effectively, then, we can remove them from the problem. As explained in Chapter 3, such

removal requires adjusting all due dates by subtracting the total processing time of these k

jobs; we also reduce the index of all remaining jobs by subtracting k. Thus, without loss

of optimality, we assume that we checked these conditions in a preprocessing step and

therefore no such jobs exist. That is, LS1 > 0. It is possible in an optimal sequence for a

high-index job, say j, to directly precede a low-index job, say i, even if it causes

tardiness, but only up to a limit. That may happen if by scheduling job j first, we avoid

large tardiness in this job at the expense of a sufficiently smaller tardiness in job i. When

that is the case, we must have gij(t) < 0 for some 0 < t < LSi. If so, LSi + max{pj} is an

upper bound on the start time of job i, when it follows a job with a higher index. We can

calculate sharper bounds by explicitly considering all possible preceding jobs, j, as we

discuss next.

 By inspection, it is clear that gij(t) is a piecewise linear function with a breakpoint

at LSj. For our purpose, this breakpoint is only important if 0 < LSj < LSi. If so, sj
+

becomes zero there, whereas si
+ remains positive. Also, gij(LSi) ≥ 0 (by SWPT, because i

< j). To simplify our presentation, we henceforth assume LSi, gij(LSi) > 0, but our

conclusions remain intact if LSi ≤ 0 (which is operationally equivalent to LSi = 0) or

gij(LSi) ≥ 0. Because gij(t) is piecewise linear, gij(t) = 0 is only possible for an argument t

in the range we consider if gij(0) < 0 or gij(LSj) < 0 (or both). Furthermore, if gij(LSj) < 0,

then LSj < LSi and an argument t such that gij(t) = 0 must exist such that LSj < t < LSi, and

the derivative of gij(t) is positive there. If gij(0) < 0, the same observation applies but, if

LSj < LSi and gij(LSj) > 0 the argument t resides between 0 and LSj. In both cases there is

exactly one such argument and the derivative is positive at this argument. If gij(0) > 0 and

gij(LSj) > 0 or LSj ≥ LSi, no such argument exists. Recall that we defined vij such that after

t ≥ vij job j should not precede job i directly. We now see that either vij = 0 or it is given

by the argument t for which gij(t) = 0 and the derivative is positive. Now consider the

special case where gij(0) > 0 but gij(LSj) < 0 (which also implies LSj < LSi). In this case, vij

> LSj but between 0 and LSj there must be another argument t for which gij(t) = 0, such

that gij(t) is decreasing in the neighborhood. When such a value exists, we call it u'ij.

Otherwise, we define u'ij = 0. Our definitions satisfy the following conditions:

 (i) 0 ≤ u'ij ≤ vij ≤ max{0, LSi}

 (ii) if u'ij > 0 then gij(u'ij) = gij(vij) = 0 and u'ij < vij

 (iii) gij(t) ≤ 0 if and only if 0 ≤ u'ij ≤ t ≤ vij ≤ LSi.

Recall from previous discussion that if both jobs can be on time in basic order, that is, if t

≤ min{di − pi, dj − pi − pj}, we prefer to perform job i first. To reflect that we now define

the value uij as the earliest time for which we must consider the possibility that j can

precede i and still comply with Proposition RN4.1. We calculate it by

 uij = max{min{di − pi, dj − pi − pj}, u'ij}

Computing uij and vij for all i < j is straightforward. We can store all these values in

advance in two n n upper triangular matrices, or in a single full matrix where we store

the vij values above the diagonal and the uij values below the diagonal. We refer to that

matrix as the stability matrix. By Proposition RN4.1, we restrict ourselves to sequences

where i always precedes j when they are adjacent unless uij < t < vij. When vij = 0, job j

needs not be considered directly before job i in any schedule.

 We can now strengthen Rachamadugu’s observation that if jobs are tardy under

SWPT then SWPT is optimal. Consider job 1 in the basic order. If all v1j = 0, then job 1

must be first, or it would have to follow a job that should, or at least could, have followed

it instead. In such a case we can schedule job 1 first and remove it from further

consideration. Furthermore, suppose the relationships among the first k jobs are not clear

but for any i ≤ k < j, mini{vij} = 0, then jobs 1, 2, . . ., k should be scheduled first, in some

order. In that case, the problem is effectively decomposed to scheduling the first k jobs

and the next n − k jobs afterwards. Similarly, suppose vjn = 0 for all j, then job n cannot

be stable anywhere except in the last position and it can be scheduled last and removed

from further consideration. Furthermore, job 1 may only follow job k directly if job k

starts at some time t that satisfies 0 ≤ u1k ≤ t < v1k < LS1. Let V(m) denote the set of jobs k

> m for which vmk > 0. Therefore T1 ≤ maxkV(1){v1k + pk − LS1} < pk (for the same k). A

similar expression applies for job 2, with one exception: job 2 may have to follow job 1

even if it causes higher tardiness in job 2 than would be allowed if job 2 were to follow a

job with a higher index. Therefore, T2 ≤ max{maxkV(1){v1k + pk + p1 + p2}, maxkV(2){v2k

+ pk + p2}} − d2. Job 3, in turn, also has a similar limit on its tardiness, but in this case

with two exceptions: it may have to follow job 2 (regardless of whether job 2 follows job

1) and it may have to follow job 1. By such analysis we can bound the maximum

completion time of all jobs, recursively. This is potentially useful as long as the bounds

are below p(X). Furthermore, we can create analogous bounds on the earliest start time of

jobs n, (n − 1), (n − 2), etc. Let U(m) denote the set of jobs k < m for which vkm > 0. A

schedule in which job n starts before minkU(n){ukn} cannot satisfy the stability

requirement and may not be considered. Job n − 1 may precede job n directly in some

stable sequences, but otherwise it should not start before minkU(n−1){uk,n−1}, etc. If for

some integers a and b the earliest start time of job (n − b) exceeds the latest completion

time of job a, then jobs 1, 2, . . ., a all precede jobs (n − b), (n − b + 1), . . ., (n − 1), n.

Furthermore, for pairs of jobs that do not quite satisfy that condition, such as job a and

job (n − b − 1), or job (a + 1) and job (n − b), the bounds may still be useful for tests

associated with either one of the first two tactics defined by Kanet. In such case, their role

is equivalent to the roles of Bk and Aj' in restricting the times at which jobs j and k are

scheduled.

 At least for presentation purposes, assume that the problem is solved by branch

and bound, scheduling forward.* Thus, at some stage of the scheduling process we will

have a partial schedule, PS, which is a set of jobs scheduled to start at time 0 and

complete at time p(PS). The number of potential branches following PS can be reduced if

we construct a set of precedence relationships for the set of schedulable jobs, {X − PS}.

Furthermore, we know with certainty that an optimal sequence exists that is stable.

Therefore, we can restrict our attention to compliant sequences. For efficiency, it is

desirable to be able to perform all the necessary calculations for this task at time 0, so that

we will not have to regenerate conditions for every possible PS. The stability matrix can

serve this purpose very well. We just limit our attention to unscheduled jobs and we

subtract p(PS) from each uij and vij value and set them to zero if they become negative.

One way to proceed is to branch first on jobs 1, 2, . . ., k subject to the condition that they

can be directly followed by some job. For job k this implies that there exists at least one

value j > k such that vkj ≤ pk, or one value j < k such that ujk ≤ pk ≤ vjk. When no such j

exists, job k cannot be first.

 We explored the efficacy of these insights by incorporating them into a heuristic

procedure. The first step, starting with job 1, is to schedule as many consecutive jobs as

possible without tardiness. This can be done in EDD order. Suppose we fit k jobs in this

manner, and therefore job k+1 is either tardy itself or causes tardiness downstream. We

know that job k+1 can fit right after the previous k jobs, in which case it will be tardy but

it will follow a job with a lower index (which can be stable). But we may also try to insert

job k into the latest position where it can be on time (it cannot be stable earlier), or later.

If the total weighted tardiness decreases by such an insertion, we adopt the best one and

move on to job k+2, etc. The worst case complexity of the heuristic is O(n2); i.e., a very

low polynomial. To see this, suppose we already scheduled m jobs and our task is either

to place the next job in its correct place by EDD (if there is no tardiness yet)—which we

* Readers may wish to compare our structure to that of Algorithm 14.1, which applies to the more general

job shop (page 334).

can choose to treat as an insertion—or to insert the next job in the best position possible

(after tardiness manifests). Place job m+1 in the last position and instead of direct

insertion move it earlier by a series of O(m) APIs. Each API takes constant time and the

combined effect of the series is given by the sum of the individual effects. As we go

along, we can also note the best position identified so far, so later we can return to it

directly. As we have to repeat this procedure n times, and O(m) = O(n), the total

complexity is O(n2). We tried the heuristic on the two test problems that fared worst

under WMDD. It cut the suboptimality in one from 10% to 4% and in the other from 7%

to less than 1%. On the one hand, there is no need for such a heuristic as we can achieve

better results by basic neighborhood searches, as well as advanced ones (such as

dynasearch). On the other hand, a fair assessment of the heuristic would pitch it only

against O(n2) or better alternatives, and in this arena its performance seems promising.

Nonetheless, our testing was not sufficient for drawing firm conclusions so this question

requires further research. Having said that, recall that we were not primarily motivated to

find a new heuristic solution but rather we aimed to explore the efficacy of our new

insights. Thus, the most important conclusion of this analysis is that it reinforces the

notion that local stability conditions can be used to achieve good results for the whole

sequence.

 We note again that job 1 can be scheduled first if v1j = 0 at time 0 for all j. This

test can also be carried out for the unscheduled job with the lowest index as part of an

optimizing algorithm. As branching progresses, we may find that for a particular branch

(and thus a particular PS) the next few jobs in basic order can safely be added to the

branch serially. This event is actually quite likely in problems where the due dates are

such that it is clear that quite a few jobs must be tardy. Another likely event is that no

unscheduled job can be appended to PS at the end and be stable with respect to the last

job in PS. Such a branch can be fathomed. Similar observations may apply to jobs in the

last positions, but they would likely be more important for scheduling backwards. Only

experimentation can reveal, however, if checking such conditions is beneficial.

Furthermore, we just explored the tip of the iceberg in terms of opportunities to develop

(4.2) to more general dominance properties. To clarify, Kanet (2007) probably exposed

the most useful relationships that can be developed for two jobs j and k that have partial

sets of known predecessors and followers and are scheduled appropriately. As noted

before, it is likely that the jobs will be separated by a set (denoted H) of intermediary

jobs. Recall that it was necessary to represent the effect of an exchange on H by a bound.

Developing (4.2), however, is based on the idea that we may be able to characterize

conditions under which the jobs in H actually encourage exchanging jobs j and k or

where we can show that some of the jobs in H could (and should) be added to the given

sets of predecessors and successors instead.

Adapting Search Heuristics to the Solution of 1 | prec | ΣwjTj

 Next, we consider a generalized version of the Tw-problem with precedence

constraints. This problem is currently open. The two versions, with and without

precedence constraints, are closely related because we can always choose to treat optional

relationships as mandatory. However, the presence of mandatory constraints may change

the calculations and details involved in identifying optional constraints. For example,

take the unweighted case. It may be that a job that gets a low priority and is assigned a

late position under the conditions of Theorem RN4.1 is the predecessor of a job that

would, by itself, acquire an earlier position. Then it is likely that the priority of the

predecessor job should be increased, but it is also likely that the successor will be

delayed. Some of the existing relationships can still be derived using mandatory

constraints to start the process of adding new relationships. However, the results we

developed above by studying (4.2) require modification or may not work with mandatory

constraints. Nevertheless, a more important question in practice is whether neighborhood

search techniques that currently provide the best practical approach to the Tw-problem can

be adapted to 1 | prec | ΣwjTj, and if so, how? In this section we propose ways to make

such heuristics avoid searching infeasible sequences without losing the opportunity to

find the optimal solution. If future experience demonstrates that search heuristics, such as

dynasearch, can benefit from incorporating precedence constraints, mandatory or

optional, then we can choose to include them even when they are all optional.

 In Chapter 17 we present a modified API search that maintains precedence

constraints and is thus applicable for any API neighborhood search for the Tw-problem

with constraints. The general idea is simple: if we try to move a job (called an activity in

the project context) to a position earlier than a predecessor, we may also have to move its

predecessors. If a set of precedence relationships has been identified by previous analysis,

then we treat them as hard constraints. The modified API approach can be generalized for

the insertion neighborhood without any conceptual difficulty. We can also define a

modified PI between unrelated jobs as a double insertion. Suppose that we want to

interchange jobs i and k, currently in that order. We can safely assume that these jobs are

unrelated, or the interchange can simply be aborted. Let G denote the set of jobs that

precede job i, let H denote the set of jobs strictly between jobs i and k, and let J denote

the jobs that follow. In other words, the current sequence is G-i-H-k-J and without

precedence constraints, a PI would involve a move to G-k-H-i-J. When constraints are

imposed, we still restrict modified insertion or modified exchange to the set {i, H, k},

leaving both G and H scheduled as before. If any job in Ai⋃Ak resides in J, our restriction

to {i, H, k} guarantees that it will still follow its predecessor. A symmetric observation

holds for any jobs in {Bi⋃Bk}∩G. Consider the (possibly empty) subset of jobs in H that

belong to Ai, namely Ai∩H, and the subset of jobs in Bk∩H, the known predecessors of k

within H. These two subsets must be unrelated in the sense that no job in the former is a

predecessor of any job in the latter (or jobs i and k would be related too). The modified PI

can start by inserting the jobs in {Bk∩H, k}—in their original order—just after G (thus

automatically forbidding k from taking the first position after G unless Bk∩H is empty).

Another, similar, insertion step moves the jobs {i, Ai∩H} to a position just before J, again

maintaining the original order of jobs within Ai∩H, with job i preceding the others. The

result is a legal modified PI that is guaranteed to be feasible if jobs i and k are unrelated.

Another point, relevant to dynasearch, is that after this exchange, any set of exchanges

strictly within G or strictly within J would be independent from the change we just

described within {i, H, k}. Thus, it is conceptually possible to address 1 | prec | ΣwiTi by

modified dynasearch (with the basic or the enhanced neighborhood definition). The open

question is how efficient and effective such a search may be. If the dominance conditions

actually make the search easier (and they certainly reduce the number of feasible

sequences, which should help), then it may be useful to generate them when they are

optional. Otherwise, we still need to account for mandatory constraints, and we just

demonstrated how that might be done.

 Finally, it is interesting to study the efficacy of GA in the presence of precedence

constraints. As it turns out, GA is inherently adapted to incorporating precedence

constraints, but we have to be careful with mutations. Recall that under the standard

method of generating offspring, except for mutations, they maintain the job sequence of

at least one parent. Therefore, if two parents obey the constraints, so do their offspring.

However, general mutations can violate precedence. Thus, in the case of GA, it might be

useful to adapt the structure of mutations so that they will not violate constraints. Such

adaptation essentially boils down to limiting mutations to modified moves.

Asymptotic optimality

 A heuristic is asymptotically optimal if, as n grows large, the relative difference

between the heuristic solution and the optimum becomes negligible. More formally, let

f(S*) denote the objective function value with the optimal sequence, S*, and let f(SH) be

the value associated with a heuristic. We say that the heuristic is asymptotically optimal

if, in the limit as n → ∞, [f(SH) – f(S*)] / f(S*) → 0. When we can prove that a heuristic

is asymptotically optimal, then in a sense we can say that it is a good heuristic. Such

proofs typically require regularity conditions on job characteristics, however. We are

especially interested to know whether a relatively simple construction heuristic meets that

test. If such a heuristic is asymptotically optimal, then we can typically solve large

problems to near-optimality, while we can address medium problems by supplementing

the construction heuristic with neighborhood search techniques and obtain optimal or

near-optimal results. Small problems are inherently easier, so in a practical sense we can

say that such a problem is solved for any size. We discuss several instances of

asymptotically optimal heuristics later in the text, both for deterministic and stochastic

problems. However, we do not know of any existing asymptotically optimal heuristic for

the tardiness problem (which is one of the reasons it is a good problem to pursue in our

first chapter on heuristics). In particular, the following example demonstrates a case

where the MDD heuristic is far from asymptotically optimal, at least when no regularity

conditions are imposed: instead, as n → ∞, [f(SH) – f(S*)] / f(S*) → n / 2. The source of

this example—Della Croce et al. (2004)—provides similar examples designed to expose

the weaknesses of other popular heuristics as well, so this should not be interpreted as

specific criticism of MDD.

Example RN4.2 Consider an (n + 1)-job single-machine minimal tardiness instance

with p1 = d1 = n; p2 = … = p(n + 1) = 1; d2 = … = d(n + 1) = n + ε, where

ε is a strictly positive value but as small as we may wish (and we will

assume ε is infinitesimal).

Recall that we define the modified due date of job j at time t to be

dj' = dj'(t) = max{dj, t + pj}

In the example, for t < ε, job 1 has the minimal modified due date; e.g., d1'(0) = n

whereas dj'(0) = n + ε for any j > 1, so job 1 will be selected as the first job. The total

tardiness in this case is n2 / 2 − n /2 − nε /2, instead of the optimal total tardiness of n,

obtained by placing job 1 last. For large n and infinitesimal ε, the error ratio is n /2,

which is unbounded. The suboptimal solution would remain unchanged even if we were

to conduct an API neighborhood search, but it would be corrected with any of the more

advanced search methods that we presented. The potential failure of API in this case is

not surprising because MDD always yields a solution that is locally optimal in the API

neighborhood. Perhaps the most important practical conclusion from Example RN4.2 is

that combinations of heuristics tend to be more robust than any single heuristic.

Testing Heuristics

 In spite of the existence of fabricated worst-case examples that yield such

disappointing results, there is no question that heuristics are necessary. For that reason,

researchers and practitioners in sequencing and scheduling need to be able to develop,

test and apply heuristics. For most practitioners, the aim is not originality but

effectiveness. Hence, they can select from the existing arsenal the best heuristic or

combination of heuristics for the actual conditions they wish to address. In doing so, they

may prefer to use off-the-shelf software (e.g., the Evolutionary Solver). Here, however,

we focus more on developing and testing new heuristics as a research endeavor. Just

inventing a new heuristic is only the beginning. The next task is to demonstrate that the

heuristic is in some sense sufficiently superior to justify using it instead of, or in addition

to, existing solutions. This requires extensive testing. A key question is the quality of the

test problems on which the heuristic is tested (Baker 1999). This is the point at which

many efforts founder.

 To test and compare heuristics for a particular practical application, we may be

able to use realistic data sampled from the production floor. To the extent that the sample

is representative not only of the present but also the future, the result is then good for the

application. But for a heuristic to be considered competitive in general, it should be tested

on instances known to be difficult. Test conditions where the problem is trivial should be

avoided. For instance, if we use problems with agreeable due dates and processing times

even the simplest heuristic (say EDD or SPT) will yield optimal results. Instead, we

should attempt to find conditions under which the solution procedure is most severely

challenged. Accordingly, in the chapter we used test problems that are known to be

difficult (relative to their size). Indeed, those problems were developed as part of research

into the question what constitutes a difficult instance for the weighted tardiness model.

Thus we can be relatively confident that the heuristics will work reasonably well in

practice, too. Hall and Posner (2001) discuss the issue of selecting non-trivial test sets for

any objective. Here we elaborate a bit on the difficulty of various instances of the T-

problem.

 Early results about this issue appeared in Srinivasan (1971), Wilkerson and Irwin

(1971) and were later refined by Baker and Martin (1974). Two insights motivate these

results. We might guess that the performance of a heuristic depends on how many jobs

are likely to be tardy. If no jobs are tardy, we can produce the optimal solution with EDD

sequencing. If all jobs must be tardy, we can produce the optimal solution with SPT

sequencing. Thus, we might expect that problems are most difficult to solve when some,

but not all, of the jobs are likely to be tardy. A simple way to operationalize that notion is

to say that problems are most difficult when the due dates, on average, lie neither at the

beginning nor the end of the schedule. A second insight relates to the dispersion of the

due dates. If they are spread widely around a given average, then it may be easier to

sequence jobs so that individual due dates are met, as compared to a case where the due

dates are clustered. We start by describing how we might create samples reflecting some

of these predefined characteristics, and then we discuss the resulting difficulty of the

results.

 Define the tardiness factor, denoted t, as the fraction of the jobs likely to be tardy.

The tardiness factor is usually a parameter of the data-generating process. Let µp denote

the mean of the distribution from which samples are taken and let µd denote the mean due

date. Therefore, t = 1 – (µd / nµp). For a desired level of t, set

µd = (1 – t)nµp

In other words, we first decide on a processing time distribution and choose its mean.

Then, for some desired level t, we calculate µd and sample due dates from a distribution

with that mean. Next, we define the due-date range, denoted r, as the range of the due

dates relative to the makespan. Again, for the purposes of generating data, we might

sample due dates from a uniform distribution on the interval (a, b). This implies

r = (b − a) / nµp

Thus, we decide on a mean processing time, and for a desired value r, we calculate the

width of the range, (b − a) = rnµp. Knowing t (above) gives us the mean of the due date

distribution, so once we know the width of the range, the uniform distribution is fully

specified, and we can draw samples. Difficult problems—like the ones we have used in

the chapter—involve tardiness factors of roughly 0.6 to 0.8, along with a tight due date

range of 0.2.

 We can see now that there is no conflict between the fact that Example RN4.2 is

one for which MDD does not work well and that it performed well for a set of test

problems developed according to such principles. The key to the difference is that the test

problems were generated according to principles but randomly, whereas a cursory

examination of Example RN4.2 reveals that it is not likely to be the result of a random

selection. Asymptotic optimality theorems typically invoke regularity conditions that

would rule out Example RN4.2. However, we repeat that MDD has not been proven

asymptotically optimal even when subject to such regularity conditions.

More on Asymptotic Behavior

 We defined asymptotic optimality for problems with a given number of jobs, n. In

a dynamic application where jobs arrive at random times on an ongoing basis, a more

common term is asymptotic convergence. The word "convergence" suggests some

infinite process, which is indeed the case in such a dynamic environment. However,

asymptotic convergence is also used for another type of desirable asymptotic behavior for

problems with a given number of jobs, n. We say that a search heuristic converges

asymptotically if we can reach an optimal solution by running the search for a sufficiently

long time (w.p.1). That is, as the number of iterations approaches infinity, we will have

identified an optimal solution almost surely (but we will not have any proof that this

solution is indeed optimal). In contrast to asymptotic optimality, this definition makes

sense only for search heuristics and not for single-pass construction heuristics: the search

itself constitutes the potentially infinite process that is implied by the term

"convergence." Whereas asymptotic optimality asks whether a heuristic’s relative error

becomes negligible for large enough instances (and typically applies to construction

heuristics), asymptotic convergence asks whether a search heuristic is liable to get stuck

forever at a local optimum (regardless of instance size). For example, API search is not

asymptotically convergent because it can get stuck this way. By contrast, random search

is asymptotically convergent, even when the sampling is biased (as long as all pkj are

strictly positive so every single permutation has a positive probability of being selected).

Other heuristics that involve random elements and large enough neighborhoods, such as

simulated annealing (with a sufficiently slow cooling regime), are also asymptotically

convergent: given enough time the search will stumble on an optimal sequence. Genetic

algorithms employ mutations for this purpose, but they do not guarantee asymptotic

convergence (Ingber and Rosen, 1992). Nonetheless, without exception, any

neighborhood search heuristic that is used repetitively as per the multi-start policy with

randomized seeds is convergent.

Concluding Remarks

 Even among the heuristics that are competitive today, it is difficult to assess

which approach is "best." Refinements keep being developed and the target—that is, the

set of problems for which such heuristics are tested—keeps moving. (The examples we

used in the chapter were selected for pedagogical reasons, but they are no longer even

close in complexity to the ones current research addresses.) In this connection, we should

highlight a distinction between using heuristics well and reporting their merits and

shortcomings well. There is little doubt that heuristics can and often should be combined,

sometimes with great synergy. At the very least, running two or more distinct but

sufficiently fast heuristics and selecting the best result cannot hurt. For instance, just by

the evidence provided by the two examples we solved, if we were to combine the

WMDD heuristic with the new heuristic we presented above, the average deviation

would drop from 2% to 1% or less, and the maximum, from 10% to 4%. Furthermore,

practically all optimization algorithms involve internal heuristic choices that can

influence their performance significantly. For instance, the simplex algorithm chooses the

candidate entering variable that improves the objective function fastest (on a per unit

basis). But we could also select the candidate variable that improves the objective

function most in the next step. This rule often leads to the same candidate, but not

always. Both rules are essentially greedy heuristics, and it took experimentation to decide

which one to use. Thus, even in developing an optimization platform, we must test and

use heuristics. Indeed, there is an emerging approach called variable neighborhood

search (VNS) that essentially tries several neighborhoods for each move and selects the

best. That creates a single metaheuristic, reportedly a highly successful one (Hansen and

Mladenović, 2001; Hansen et al., 2006). Hence, combining heuristics is often a

productive idea, although selecting a good combination is an art. However, the picture is

less clear with respect to reporting results. There are many potential combinations, and

each of them involves many seemingly minor implementation decisions that may not be

minor in fact. Therefore, it would be counterproductive to make broad comparisons

among such combinations. When a combination of heuristics works well, it may be

impossible to tell which ingredients should really be credited. For example, in Chapter 14

we discuss a highly successful state-of-the-art tabu search algorithm for job shops (due to

Nowicki and Smutnicki, 2005) that involves so many refinements and clever bound

calculations that we can no longer say with certainty how much of the success is due to

the tabu search mechanism, or any other ingredient. (For that reason, when we performed

experiments to evaluate some of the heuristics, we restricted our comparisons to "vanilla"

applications of the individual heuristics.)

 With this caveat, three heuristic approaches are frequently mentioned as winners

in more complex environments: tabu search, simulated annealing and genetic algorithms.

Of these, TS is reportedly very competitive for job shop makespan minimization, closely

followed by SA (Vaessens et al. 1996). But for projects, there is evidence that GA may

be the best choice (Hartmann 2001). Indeed, different approaches may be required for

different problems in general. Although such results cannot be taken as "final" or

completely objective, there are possible explanations why one approach is better in the

project environment and another in the job shop. Specifically, in the job shop

environment, it is easier to confine the search to feasible solutions that are likely to

improve upon the current candidate than it is in the project environment. Therefore,

because GA is likely to produce conforming offspring, it has an edge for projects. We

suspect that it would perform even better if mutations were to be modified. If so,

however, then there is room to improve the other approaches for projects by modified

neighborhoods. Indeed, Fleszar and Hindi (2004) provide partial empirical evidence to

that effect in the project scheduling context. They use an insertion neighborhood that

conforms to the modified insertion mechanism we introduced. The heuristic is reportedly

very successful, but it also involves variable neighborhood search. Thus, again, it is

difficult to judge how much of their success is attributable to VNS and how much to the

use of modified search moves. We discuss this point further in the research notes of

Chapters 14 and 18.

Optimal Values of the 12 Test Problems

For readers who might wish to try solving the 12 test problems, we list the optimal target

function values here.

 # T # T # T

1 78028 5 32370 9 102709

2 116674 6 47542 10 40232

3 69558 7 40067 11 47780

4 32992 8 85800 12 49704

An Excel file containing the problem data can be found among the Data Files on the

book's website.

References

Agarwal A., Colak S., Eryarsoy E. (2006) "Improvement heuristic for the flow-shop

scheduling problem: An adaptive-learning approach," European Journal of

Operational Research 169, 801-15, 03 2006.

Agarwal A., Pirkul H., Jacob V.S. (2003) "Augmented neural networks for task

scheduling," European Journal of Operational Research 151, 481-502.

Baker, K.R. (1999) "Heuristic Procedures for Scheduling Job Families with Setups and

Due Dates," Naval Research Logistics 46, 978-991.

Baker, K.R. and J.J. Kanet (1984), "Improved Decision Rules in a Combined System for

Minimizing Job Tardiness," International Journal of Production Research 22,

917-921.

Baker, K.R. and J.B. Martin (1974) "An Experimental Comparison of Solution

Algorithms for the Single-Machine Tardiness Problem," Naval Research Logistics

Quarterly 21, 187-199.

de Boer, P.T., D.P. Kroese and R.Y. Rubinstein (2004) "A Fast Cross-Entropy Method

for Estimating Buffer Overflows in Queueing Networks," Management Science

50, 883-895.

den Besten, M., T. Stützle and M. Dorigo (2000) "Ant Colony Optimization for the Total

Weighted Tardiness Problem," Parallel Problem Solving from Nature, Lecture

Notes in Computer Science, Volume 1917, 611-620, Springer Berlin/Heidelberg.

Colak S., Agarwal A. (2005) "Non-greedy heuristics and augmented neural networks for

the open-shop scheduling problem," Naval Research Logistics 52, 631-44.

Colorni, A. M. Dorigo, F. Maffioli, V. Maniezzo, G. Righini and M. Trubian (1996)

"Heuristics from Nature for Hard Combinatorial Optimization Problems,"

International Transactions in Operational Research 3, 1-21.

Congram, R.K. (2000) Polynomially searchable exponential neighborhoods for

sequencing problems in combinatorial optimisation, Ph.D. thesis, University of

Southampton, UK. (Available on the web.)

Congram, R.K., C.N. Potts and S.L. van de Velde (2002) "An iterated dynasearch

algorithm for the single-machine total weighted tardiness scheduling problem,"

INFORMS Journal on Computing 14, 52-67.

Della Croce, F., A. Grosso and V. Th. Paschos (2004) "Lower Bounds on the

Approximation Ratios of Leading Heuristics for the Single-Machine Total

Tardiness Problem," Journal of Scheduling 7, 85-91.

http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=8792458
http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=8792458
http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=7901154
http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=7901154

Fleszar, K. and K. Hindi (2004) "Solving the Resource-Constrained Project Scheduling

Problem by a Variable Neighbourhood Search," European Journal of Operational

Research 155, 402-413.

Glover, F. (1989) "Tabu Search—Part I," ORSA Journal on Computing 1, 190-206.

Glover, F. (1990a) "Tabu Search—Part II," ORSA Journal on Computing 2, 4-39.

Glover, F. (1990b)"Tabu Search: A tutorial," Interfaces 20(4), 74-94. (Available at:

http://leeds-faculty.colorado.edu/glover/TS%20-%20Interfaces.pdf [accessed

February 22, 2009].)

Grefenstette, J.J. (ed) (1985) Proccedings of the 1st International Conference on Genetic

Algorithms, L. Erlbaum Associates Inc. Hillsdale, NJ, USA.

Grosso, A., F. Della Croce, R. Tadei (2004) "An enhanced dynasearch neighborhood for

the single-machine total weighted tardiness scheduling problem," Operations

Research Letters 32, 68-72.

Gupta J.N.D., Sexton R.S., and Tunc E.A. (2000) "Selecting scheduling heuristics using

neural networks," INFORMS Journal on Computing 12, 150-62.

Hall, N.G. and M.E. Posner (2001) "Generating Experimental Data for Computational

Testing with Machine Scheduling Applications," Operations Research 49, 854-

865.

Hansen, P. and N. Mladenović (2001) "Variable Neighborhood Search: Principles and

Applications," European Journal of Operational Research 130, 449–467.

Hansen, P., N. Mladenović and D. Urošević (2006) "Variable Neighborhood Search and

Local Branching," Computers & Operations Research 33, 3034–3045

Hartmann, S. (2001) "Project Scheduling with Multiple Modes: A Genetic Algorithm,"

Annals of Operations Research, 102, 111-135.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of

Michigan Press, Ann Arbor.

Ingber, L. and B. Rosen (1992) "Genetic algorithms and very fast simulated reannealing:

a comparison," Mathematical and Computer Modelling, 16(11), 87-100.

Kanet, J.J. (2007) "New Precedence Theorems for One-Machine Weighted Tardiness,"

Mathematics of Operations Research 32, 579-588.

Kanet, J.J. and X. Li (2004) "A Weighted Modified Due Date Rule for Sequencing to

Minimize Weighted Tardiness," Journal of Scheduling 7, 261-276.

http://leeds-faculty.colorado.edu/glover/TS%20-%20Interfaces.pdf
http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=6610966
http://apps.isiknowledge.com/INSPEC/CIW.cgi?SID=4CD34Gh4Pco6IiFjBmh&Func=Links;ServiceName=TransferToWoS;PointOfEntry=FullRecord;request_from=UML;UT=6610966

Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi (1983) "Optimization by Simulated

Annealing," Science 220, 671-680.

Lawler, E.L. (1977) "A 'Pseudopolynomial' Algorithm for Sequencing Jobs to Minimize

Total Tardiness," Annals of Discrete Mathematics 1, 331-342.

Lawler, E.L. (1982) "A Fully Polynomial Approximation Scheme for the Total Tardiness

Problem," Operations Research Letters 1, 207-208.

Morton, T.E. and D.W. Pentico (1993) Heuristic Scheduling Systems, Wiley, New York.

Nowicki, E. and C. Smutnicki (2005) "An Advanced Tabu Search Algorithm for the Job

Shop Problem," Journal of Scheduling 8, 145-159.

Pan, Y. and L. Shi (2007) "On the Equivalence of the Max-Min Transportation Lower

Bound and the Time-Indexed Lower Bound for Single-Machine Scheduling

Problems," Mathematical Programming 110, 543-559.

Potts, C.N. and S. Van de Velde (1995) "Dynasearch—iterative local improvement by

dynamic programming: part I, the traveling salesman problem," Technical Report,

University of Twente, The Netherlands.

Rubinstein, R.Y, and D.P. Kroese (2004) The Cross-Entropy Method: A Unified

Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine

Learning, Springer.

Srinivasan, V. (1971) "A Hybrid Algorithm for the One Machine, Sequence-Independent

Scheduling Problem with Tardiness Penalties: A Branch-Bound Solution," Naval

Research Logistics Quarterly 18, 317-327.

Vaessens, R.J.M., E.H.L. Aarts and J.K. Lenstra (1996) "Job Shop Scheduling by Local

Search," INFORMS Journal on Computing 8(3), 302-317.

Van Wassenhove, L.N. and L. Gelders (1978) "Four Solution Techniques for a General

One-Machine Scheduling Problem," European Journal of Operations Research,

2, 281-90.

Wilkerson, L.J. and J.D. Irwin (1971) "An improved algorithm for scheduling

independent tasks," AIIE Transactions 3(3), 239-245.

A tutorial on the cross-entropy method is available at the CE web page,

 http://www.cemethod.org and also at,

 http://wwwhome.cs.utwente.nl/~ptdeboer/ce/tutorial.pdf. Accessed: 24 Oct. 2007)

http://www.cemethod.org/
http://wwwhome.cs.utwente.nl/~ptdeboer/ce/tutorial.pdf

