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a b s t r a c t

We address the single-machine stochastic scheduling problem with an objective of minimizing total
expected earliness and tardiness costs, assuming that processing times follow normal distributions and
due dates are decisions. We develop a branch and bound algorithm to find optimal solutions to this
problem and report the results of computational experiments. We also test some heuristic procedures
and find that surprisingly good performance can be achieved by a list schedule followed by an adjacent
pairwise interchange procedure.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The single-machine sequencing model is the basic paradigm of
scheduling theory. In its deterministic version, the model has
received a great deal of attention from researchers, leading to
problem formulations, solution methods, scheduling insights, and
building blocks for more complicated models. Extending that
model into the realm of stochastic scheduling is an attempt to
make the theory more useful and practical. However, progress in
analyzing stochastic models has been much slower to develop,
and even today some of the basic problems remain virtually
unsolved. One such case is the stochastic version of the earliness/
tardiness (E/T) problem for a single machine.

This paper presents a branch and bound (B&B) algorithm for solv-
ing the stochastic E/T problem with normally-distributed processing
times and due dates as decisions. This is the first appearance of a
solution algorithm more efficient than complete enumeration for
this problem, so we provide some experimental evidence on the
algorithm’s computational capability. Although B&B algorithms
are not new, they have seldom been applied to problems in stochas-
tic scheduling. Arguably, too little research has been done on the
application of such optimization approaches in stochastic schedul-
ing problems, so a broader goal of this paper is to demonstrate that
methodologies common in deterministic scheduling can success-
fully be applied to problems in stochastic scheduling.

In addition, we explore heuristic methods for solving the
problem, and we show that a relatively simple procedure can be
remarkably successful at producing optimal or near-optimal

solutions. These results reinforce and clarify observations made
in earlier research and ultimately provide us with a practical
method of solving the stochastic E/T problem with virtually any
number of jobs.

In Section 2 we formulate the problem under consideration, and
in Section 3 we review the relevant literature. In Section 4, we
describe the elements of the optimization approach, and we report
computational experience in Section 5. Section 6 deals with
heuristic procedures and the corresponding computational tests,
and the final section provides a summary and conclusions.

2. The problem

In this paper we study the stochastic version of the
single-machine E/T problem with due dates as decisions. To start,
we work with the basic single-machine sequencing model (Baker
& Trietsch, 2009a). In the deterministic version of this model, n
jobs are available for processing at time 0, and their parameters
are known in advance. The key parameters in the model include
the processing time for job j (pj) and the due date (dj). In the actual
schedule, job j completes at time Cj, giving rise to either earliness
or tardiness. The job’s earliness is defined by Ej = max{0, dj � Cj}
and its tardiness by Tj = max{0, Cj � dj}. Because the economic
implications of earliness and tardiness are not necessarily
symmetric, the unit costs of earliness (denoted by aj) and tardiness
(denoted by bj) may be different. We express the objective
function, or total cost, as follows:

Gðd1; d2; . . . ;dnÞ ¼
Xn

j¼1

ðajEj þ bjTjÞ ð1Þ
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The deterministic version of this problem has been studied for
over 30 years, and several variations have been examined in the
research literature. Some of these variations have been solved effi-
ciently, but most are NP-Hard problems. In the stochastic E/T prob-
lem, we assume that the processing times are random variables, so
the objective becomes the minimization of the expected value of
the function in (1). The stochastic version of the E/T problem has
not been solved.

To proceed with the analysis, we assume that the processing
time pj follows a normal distribution with mean lj and standard
deviation rj and that the pj values are independent random vari-
ables. We use the normal because it is familiar and plausible for
many scheduling applications. Few results in stochastic scheduling
apply for arbitrary choices of processing time distributions, so
researchers have gravitated toward familiar cases that resonate
with the distributions deemed to be most practical. Several papers
have addressed stochastic scheduling problems and have used the
normal distribution as an appropriate model for processing times.
Examples include Anderson and Moodie (1969), Balut (1973), Cai
and Zhou (2007), Jang (2002), Portougal and Trietsch (2006), Sarin,
Erdel, and Steiner (1991), Seo, Klein, and Jang (2005), Soroush
(1999), Soroush and Fredendall (1994), and Wu, Brown, and Beck
(2009).

In our model, the due dates dj are decisions and are not subject
to randomness. The objective function for the stochastic problem
may be written as

Hðd1;d2; . . . ;dnÞ ¼ E½Gðd1;d2; . . . ; dnÞ� ¼
Xn

j¼1

ðajE½Ej� þ bjE½Tj�Þ ð2Þ

The problem consists of finding a set of due dates and a sequence of
the jobs that produce the minimum value of the function in (2).

3. Literature review

The model considered in this paper brings together several
strands of scheduling research – namely, earliness/tardiness crite-
ria, due-date assignments, and stochastic processing times. We
trace the highlights of these themes in the subsections that follow.

3.1. Earliness/tardiness criteria

Scheduling problems comprising both earliness costs and tardi-
ness costs were first examined for the case in which processing
times and due dates are given. This type of problem was first stud-
ied by Sidney (1977), who analyzed the minimization of maximum
cost and by Kanet (1981), who analyzed the minimization of total
absolute deviation from a common due date, under the assumption
that the due date is late enough that it does not impose constraints
on sequencing choices. This objective is equivalent to an E/T
problem in which the unit costs of earliness and tardiness are sym-
metric and the same for all jobs. For this special case, Hall, Kubiak,
and Sethi (1991) developed an optimization algorithm capable of
solving problems with hundreds of jobs, even if the due date is
restrictive. In addition, Hall and Posner (1991) solved the version
of the problem with symmetric earliness and tardiness costs that
vary among jobs. Their algorithm handles over a thousand jobs.

The case of distinct due dates is somewhat more challenging
than the common due-date model. Garey, Tarjan, and Wilfong
(1988) showed that the E/T problem with distinct due dates is
NP-Hard, although for a given sequence, the scheduling of idle time
can be determined by an efficient algorithm. Optimization
approaches to the problem with distinct due dates were proposed
and tested by Abdul-Razaq and Potts (1988), Ow and Morton
(1989), Yano and Kim (1991), Azizoglu, Kondakci, and Kirca
(1991), Kim and Yano (1994), Fry, Armstrong, Darby-Dowman,

and Philipoom (1996), Li (1997), and Liaw (1999). Fry et al. ad-
dressed the special case in which earliness costs and tardiness
costs are symmetric and common to all jobs. Their B&B algorithm
was able to solve problems with as many as 25 jobs. Azizoglu et al.
addressed the version in which earliness costs and tardiness costs
are common, but not necessarily symmetric, and with inserted idle
time prohibited. Their B&B algorithm solved problems with up to
20 jobs. Abdul-Razaq and Potts developed a B&B algorithm for
the more general cost structure with distinct costs but prohibited
inserted idle time. Their algorithm was able to solve problems up
to about 25 jobs. Li proposed an alternative lower bound calcula-
tion for the same problem but still encountered computational dif-
ficulties in solving problems larger than about 25 jobs. Liaw’s
subsequent improvements extended this range to at least 30 jobs.

Because optimization methods have encountered lengthy com-
putations times for problems larger than about 25–30 jobs, much
of the computational emphasis has been on heuristic procedures.
Ow and Morton were primarily interested in heuristic procedures
for a version of the problem that prohibits inserted idle time, but
they utilized a B&B method to obtain solutions (or at least good
lower bounds) to serve as a basis for evaluating their heuristics.
They reported difficulty in finding optimal solutions to problems
containing 15 jobs. Yano and Kim compared several heuristics for
the special case in which earliness and tardiness costs are propor-
tional to processing times. The B&B algorithm they used as a
benchmark solved most of their test problems up to about 16 jobs.
Kim and Yano developed a B&B algorithm to solve the special case
in which earliness costs and tardiness costs are symmetric and
identical. Their B&B algorithm solved all of their test problems
up to about 18 jobs. Lee and Choi (1995) reported improved heuris-
tic performance from a genetic algorithm. To compare heuristic
methods, they used lower bounds obtained from CPLEX runs that
were often terminated after 2 hours of run time, sometimes even
for problems containing 15 jobs. James and Buchanan (1997) stud-
ied variations on a tabu-search heuristic and used an integer
program to produce optimal solutions for problems up to 15 jobs.

Detailed reviews of this literature have been provided by Kanet
and Sridharan (2000), Hassin and Shani (2005) and M’Hallah
(2007). The reason for emphasizing problem sizes in these studies,
although they may be somewhat dated, is to contrast the limits on
problem size encountered in studies of the distinct due-date prob-
lem with those encountered in the common due-date problem.
This pattern suggests that stochastic versions of the problem
may also be quite challenging when each job has its own due date.

3.2. Due-date assignments

The due-date assignment problem is familiar in the job shop
context, in which due dates are sometimes assigned internally as
progress targets for scheduling. However, for our purposes, we
focus on single-machine cases. Perhaps the most extensively stud-
ied model involving due-date assignment is the E/T problem with a
common due date. The justification for this model is that it applies
to several jobs of a single customer, or alternatively, to several
subassemblies of the same final assembly. The E/T problem still in-
volves choosing a due date and sequencing the jobs, but the fact
that only one due date exists makes the problem intrinsically dif-
ferent from the more general case involving a distinct due date
assignment for each job. Moreover, flexibility in due-date assign-
ment means that the choice of a due date can be made without
imposing unnecessary constraints on the problem, so formulations
of the due date assignment problem usually correspond to the
common due-date problem with a given but nonrestrictive due
date.

Panwalkar, Smith, and Seidmann (1982) introduced the
due-date assignment decision in conjunction with the common
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due-date model, augmenting the objective function with a cost
component for the lead time. In their model, the unit earliness
costs and unit tardiness costs are asymmetric but identical across
jobs. The results include a simple algorithm for finding the optimal
due date. Surveys of the common due-date assignment problem
were later compiled by Baker and Scudder (1990) and by Gordon,
Proth, and Chu (2002). As discussed below, however, very little
of the work on due-date assignment has dealt with stochastic
models.

Actually, in the deterministic case, if due dates are distinct, then
the due-date assignment problem is trivial because earliness and
tardiness can be avoided entirely. Baker and Bertrand (1981),
who examined heuristic rules for assigning due dates, such as
those based on constant, slack-based, or total-work leadtimes, also
characterized the optimal due-date assignment when the objective
is to make the due dates as tight as possible. Seidmann, Panwalkar,
and Smith (1981) proposed a specialized variation of the single-
machine model with unit earliness and tardiness costs common
to all jobs, augmenting the objective function with a cost compo-
nent that penalizes loose due dates if they exceed customers’ rea-
sonable and expected lead time. They provided an efficient
solution to that version of the problem as well. Other augmented
models were addressed by Shabtay (2008). Because the due-date
assignment problem is easy to solve in the single-machine case
when due dates are distinct, papers on the deterministic model
with distinct due dates typically assume that due dates are given,
and relatively few papers deal with distinct due dates as decisions.
When processing times are stochastic, however, the due-date
assignment problem becomes more difficult.

3.3. Stochastic processing times

The stochastic counterpart of a deterministic sequencing prob-
lem is defined by treating processing times as uncertain and then
minimizing the expected value of the original deterministic
performance measure. Occasionally, it is possible to substitute
mean values for uncertain processing times and simply call on
results from deterministic analysis. This approach works for the
minimization of expected total weighted completion time, which
is minimized by sequencing the jobs in order of shortest weighted
expected processing time, or SWEPT (Rothkopf, 1966). For the min-
imization of expected maximum tardiness, it is optimal to se-
quence the jobs in order of earliest due date, or EDD (Crabill &
Maxwell, 1969). However, replacing uncertain processing times
by mean values and calculating the deterministic objective
function under EDD may not produce the correct value for the sto-
chastic objective function. In fact, suppressing uncertainty seldom
leads to the optimal solution of stochastic sequencing problems;
problems that are readily solvable in the deterministic case may
be quite difficult to solve when it comes to their stochastic
counterpart. An example is the minimization of the number of
stochastically tardy jobs (i.e., those that fail to meet their
prescribed service levels). Kise and Ibaraki (1983) showed that
even this relatively basic problem is NP-Hard.

Stochastic scheduling problems involving earliness and tardi-
ness have rarely been addressed in the literature. Cai and Zhou
(2007) analyzed a stochastic version of the common due-date
problem with earliness and tardiness costs (augmented by a com-
pletion-time cost), with the due date allowed to be probabilistic
and the variance of each processing time distribution assumed to
be proportional to its mean. Although the proportionality condi-
tion makes the problem a special case, it can at least be considered
a stochastic counterpart of a deterministic model discussed by
Baker and Scudder (1990). Xia, Chen, and Yue (2008) described a
heuristic procedure to solve the stochastic E/T problem with
common earliness costs and common tardiness costs, augmented

by a cost component reflecting the tightness of the due dates. This
formulation is the stochastic counterpart of a special case of the
problem analyzed by Seidmann et al. (1981), which was solved
by an efficient algorithm.

The more general stochastic version of the common due-date
problem has not been solved, and only modest progress has been
achieved on the stochastic E/T problem with distinct due dates.
Soroush and Fredendall (1994) analyzed a version of that problem
with due dates given. Soroush (1999) later proposed some heuris-
tics for the version with due dates as decisions, and Portougal and
Trietsch (2006) showed that one of those heuristics was asymptot-
ically optimal. However, an optimization algorithm for that
problem has not previously been developed and tested. Thus, this
paper develops an optimization algorithm to solve a problem that
heretofore has been attacked only with heuristic procedures. One
hint that B&B techniques may be successful in attacking a stochas-
tic sequencing problem with due-dates as decisions comes from
the recent results in Baker (2014), who showed how to solve a
basic safe-scheduling problem with branch and bound.

4. Analysis of the stochastic problem

To analyze the model in (2), we exploit the property that sums
of normal random variables are also normal. Thus, in any sequence,
the completion time of job j follows a normal distribution. Using
notation, let Bj denote the set of jobs preceding job j in the sche-
dule. Then Cj follows a normal distribution with mean
E½Cj� ¼

P
i2Bj

li þ lj and variance var½Cj� ¼ s2
j ¼

P
i2Bj

r2
i þ r2

j . To
streamline the notation, we write E½Cj� ¼ lBj

þ lj and
s2

j ¼ r2
Bj
þ r2

j . Once we know the properties of the random variable
Cj, we can determine the optimal choice of dj.

Theorem 1. Given the mean E[Cj] and the standard deviation sj of the
normal distribution for Cj, the optimal choice of the due date dj is given
by:

Uðk�j Þ ¼
bj

aj þ bj

where k�j ¼ ðdj � E½Cj�Þ=sj represents the standardized due date and
where U(�) denotes the standard normal cdf.

This result is originally due to Soroush (1999). For completeness
and consistency in notation, it is derived in Appendix A.1 The result
is also familiar as the ‘‘newsvendor’’ property of inventory theory; it
specifies the optimal service level (the probability that job j com-
pletes on time), thereby linking the model to basic notions of safe
scheduling (Baker & Trietsch, 2009b).

The implication of Theorem 1 is that the appropriate choice for
the due date of job j is

dj ¼ E½Cj� þ k�j sj ¼ lBj
þ lj þ k�j ðr2

Bj
þ r2

j Þ
1=2 ð3Þ

In this expression the due date dj depends on the previous jobs in
sequence via the set Bj, and the objective is summarized in (2). From
the algebraic derivation given in Appendix A, we can rewrite (2) by
incorporating the optimal choice of dj. The objective becomes

Hðd�1;d
�
2; . . . ;d�nÞ ¼

Xn

j¼1

uðk�j Þðaj þ bjÞsj ð4Þ

where k�j is the standard normal variate corresponding to the opti-
mal service level of Theorem 1. However, from the given values of aj

and bj, we can compute the corresponding value of uðk�j Þ and
substitute cj ¼ uðk�j Þðaj þ bjÞ, allowing us to rewrite the objective
function more simply as

1 The appendices can be found in an Online Supplement.
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Hðd�1;d
�
2; . . . ;d�nÞ ¼

Xn

j¼1

cjsj ð5Þ

Having specified the objective function, we are interested in finding
its optimal value. It is possible, of course, to find an optimum by
enumerating all possible job sequences and then selecting the
sequence with minimal objective function value. Until now,
enumeration has been the only solution algorithm known for this
problem, as in Soroush (1999). However, as a computational meth-
od, enumeration is ultimately limited by the size of the solution
space. (Soroush reported obtaining solutions for 12-job problems
in an average of more than 9 hours of cpu time.) We can compute
optimal solutions more efficiently by employing dominance condi-
tions and a B&B algorithm, which we describe next.

4.1. A dominance condition

Dominance conditions can accelerate the search for an optimal
schedule. Job j is said to dominate job k if an optimal sequence
exists in which job j precedes job k. If we confirm a dominance con-
dition of this type, then in searching for an optimal sequence we
need not pursue any partial sequence in which job k precedes
job j. Dominance conditions can reduce the computational effort
required to find an optimal schedule, but the extent to which they
apply depends on the parameters in a given problem instance. For
that reason, it is difficult to predict the extent of the improvement.

In our model, a relatively simple dominance condition holds.

Theorem 2. For two jobs j and k, if cj P ck and rj 6 rk then job j
dominates job k.

Theorem 2, noted by Portougal and Trietsch (2006), can be proven
by means of a pairwise interchange argument, and the details
appear in Appendix B for consistency in notation and level of detail.
Thus, if we are augmenting a partial sequence and we notice that
job j dominates job k while neither appears in the partial sequence,
then we need not consider the augmented partial sequence
constructed by appending job k next. Although we may encounter
quite a few dominance properties in randomly-generated instances,
it is also possible that no dominance conditions hold. That would be
the case if the costs and standard deviations were all ordered in the
same direction. In such a situation, dominance properties would not
help reduce the computational burden, and the computational
effort involved in testing dominance conditions would be counter-
productive. Nevertheless, in our randomly-generated test problems,
dominance properties reduced the computational burden consider-
ably, as compared to complete enumeration.

4.2. A lower bound

Suppose we have a partial sequence of the jobs, denoted by p,
and we wish to compute a lower bound on the value of the objec-
tive function (5) that can be obtained by completing the sequence.
From the partial sequence we can calculate the portion of the
objective function contributed by the jobs in p. Now, let p0 denote
the set of unscheduled jobs. In the set p0, we take the set of coeffi-
cients cj in largest-first order and separately, the set of standard
deviations rj in smallest-first order, and we treat these values as
if they were paired in the set of unscheduled jobs. These are ficti-
tious jobs due to the rearrangement of coefficients and standard
deviations. Next we calculate each fictitious job’s contribution to
the objective and add it to the portion for the partial sequence p.
This total provides a lower bound (denoted by LB1) on the value
that could be achieved by completing the partial sequence in the
best possible way. The justification is based on the following two
(new) results.

Theorem 3. For any sequence of coefficients cj, the expressionPn
j¼1cjsj is minimized by sequencing the r-values in nondecreasing

order. (See Appendix B for a proof.)

Theorem 4. For any sequence of r-values, the expression
Pn

j¼1cjsj is
minimized by sequencing the c-values in nonincreasing order. (See
Appendix B for a proof.)

Thus, in the course of an enumerative search, if we encounter a
partial sequence for which the lower bound is greater than or equal
to the value of the objective function for a full sequence, we know
that the partial sequence can never lead to a solution better than
the full sequence. We can also combine lower bounds along with
dominance conditions in the search. This combination involves
the most testing of conditions, but it can eliminate the most partial
sequences, and the combination leads to reduced computation
times in all but the smallest problems.

To illustrate the calculations involved in the calculation of the
lower bound, consider the five-job example in Table 1, and assume
that job 1 has been placed first in sequence so that p = {1}, with the
other four jobs remaining to be scheduled.

We first consider the four unscheduled jobs. If we order the jobs
according to Theorem 2, with r-values in nondecreasing sequence,
the job sequence is 4-2-3-5. If we order the jobs according to The-
orem 3, with c-values in nonincreasing sequence, the job sequence
is 5-4-3-2. Thus, the sequence starting with job 1 followed by four
fictitious jobs (f1–f4) exhibits the parameters obtained from these
two sequences, as shown in Table 2.

The lower bound LB1 is computed as
Pn

j¼1cjsj ¼ 91:560.

4.3. Another lower bound

A different lower bound was described by Portougal and
Trietsch (2006), although they did not test their bound in a B&B
algorithm. Again, suppose we have a partial sequence of the jobs,
denoted by p, and we wish to compute a lower bound on the value
of the objective function (5) that can be obtained by completing
the sequence. From the partial sequence we can calculate

s0 ¼
X
i2p

r2
i

 !1=2

Again, let p0 denote the set of unscheduled jobs and reorder them by
nondecreasing ratios of r2

i =ci. Temporarily, we also renumber the
jobs in p0 according to this ordering, and we let:

s2
j ¼

X
i2p

r2
i þ

X
i6j

r2
i

For job j, a lower bound on its contribution (in this sequence) to the
objective function is calculated as2

gj ¼
2cj

3r2
j

s3
j � s3

j�1

� �2
:

Therefore, a lower bound (denoted by LB2) on the best objective
that can be obtained by completing the partial schedule p takes
the form

P
j2pcjsj þ

P
j2p0gj: In this paper, we test for the first time

the computational implications of using this bound.
To illustrate the calculations involved in the calculation of LB2,

we return to the example in Table 1, with job 1 placed first in se-
quence. For this partial sequence, s0 = 5.

The unscheduled jobs are considered in nondecreasing order of
their weighted variance, and the calculations of gj follow. Finally,
the lower bound is calculated as LB2 ¼

P
j2pcjsj þ

P
j2p0gj ¼ 8:775

þ
P

j2p0gj ¼ 93:878 (see Table 3).

2 An erroneous formula appeared in the original article due to a misprint.
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4.4. Special cases

Before describing the computational experiments, we pause to
reflect on two special cases related to the development of the
deterministic E/T problem. First, consider the special case in which
earliness costs are the same for all jobs (aj = a) and tardiness costs
are the same for all jobs (bj = b). In that case, the ratio bj/(aj + bj) is
the same for all jobs. Thus, uðk�j Þ ¼ uðk�Þ and cj = c. The objective
function in (5) becomes

Hðd�1;d
�
2; . . . ; d�nÞ ¼

Xn

j¼1

csj ¼ c
Xn

j¼1

sj

Therefore, by Theorem 3, the optimal sequence in the stochastic
case is obtained by ordering the jobs by shortest variance (equiva-
lently, shortest standard deviation). Thus, when the unit earliness
and tardiness costs are common to all jobs, the optimal solution
can be obtained efficiently. In the stochastic E/T problem, then,
the problem becomes much more challenging when the unit costs
are distinct. This property echoes the result of Seidmann et al.
(1981) for the deterministic counterpart.

A further special case corresponds to the minimization of total
expected absolute deviation (of completion time from due date),
which corresponds to aj = bj = 1. In this case, the optimal sequence
is again obtained by ordering the jobs by shortest variance. In addi-
tion, k�j ¼ 0, so each job’s due date is optimally assigned to the job’s
expected completion time in the sequence. This property echoes
the result of Baker and Bertrand (1981) for the deterministic
counterpart.

5. Computational results for optimization methods

For experimental purposes, we generated a set of test problems
that would permit comparisons of the various algorithms. The
mean processing times lj were sampled from a uniform
distribution between 10 and 100. Then, for each job j, the standard
deviation was sampled from a uniform distribution between 0.10lj

and 0.25lj. In other words, the mean was between 4 and 10 times
the standard deviation, so the chances of encountering a negative
value for a processing time would be negligible. (Very few prece-
dents can be found in the literature for designing test problems
for stochastic scheduling. However, this design resembles previous
experimental work with the normal distribution: Xia et al. (2008)
also generated mean values as small as 4 times the standard devi-
ation, while Soroush (1999) and Cai and Zhou (2007) allowed for
means as small as 3.4 times the standard deviation.) In addition,
the unit costs aj and bj were sampled independently from a uni-
form distribution between 1 and 10 on a grid of 0.1. For each value

of n, a sample of 100 randomly-generated problem instances was
created.

The B&B algorithm was coded in VBA to maintain an easy inter-
face with Excel and was implemented on a laptop computer using
a 2.9 gigahertz processor. Table 4 summarizes the computational
experience in these test problems, using lower bounds LB1 and
LB2, as compared to complete enumeration. Performance is mea-
sured by the average cpu time required and the average number
of nodes encountered in the search. Each average was taken over
100 randomly-generated problem instances with the same para-
metric features.

As Table 4 shows, a 10-job problem took more than 50 seconds
on average to find a solution using complete enumeration. The
other algorithms took less than 0.02 second. Where enumeration
is concerned, computation times become prohibitive for larger
problem sizes. In particular, 12-job problems took roughly
1.7 hours with complete enumeration. (This figure compares to
the nine-hour solution times reported by Soroush; the improve-
ment probably reflects advances in hardware since the time of
his experiments.)

The results in Table 4 also show that lower bound LB1 yields
slightly better performance than LB2, although this advantage dis-
appeared for larger problem sizes. (As discussed below, additional
experiments revealed better performance of LB2 compared to LB1
at problem sizes of n P 15.)

Next, we report computational experience on larger problem
sizes, but with an enhancement to the B&B algorithm. The
enhancement is a preliminary step which finds a good solution
using a heuristic method. In our case, as discussed in the next sec-
tion, we found that an excellent heuristic procedure is represented
by implementing a neighborhood search based on adjacent pair-
wise interchanges (API).

Table 5 summarizes results for problem sizes of 12 6 n 6 20. As
in Table 4, each entry is based on 100 randomly-generated prob-
lem instances generated under the same parametric conditions.
For each algorithm, the table shows the average cpu time and
the maximum cpu time in the 100 instances. Shown in parentheses
is the number of times that the solution could not be confirmed in
an hour of cpu time. For the larger problem sizes, the best results
came from using LB2. The B&B algorithm based on LB2 was able
to solve all 18-job problems in under an hour. By comparison,
the algorithm based on LB1, was not quite able to do so, even with
the API heuristic solution computed first. For the 20-job problems,
the algorithm based on LB2 was able to solve 94 of the 100 test
problems in less than an hour, and this figure remained the same
when the API heuristic was incorporated. However, the average
time required to find a solution was somewhat lower with the
API heuristic.

6. Computational results for heuristic methods

Because the stochastic E/T problem is difficult to solve
optimally, it is relevant to explore heuristic procedures that do

Table 1
A five-job example.

Job j 1 2 3 4 5

rj 5 2 3 1 4
aj 1 1 2 2 3
bj 9 12 16 25 27
cj 1.755 1.876 3.409 3.786 5.265

Table 2
Parameters of fictitious jobs when p = {1}.

Job j 1 f1 f2 f3 f4

rj 5 1 2 3 4
cj 1.755 5.265 3.786 3.409 1.876
sj 5 5.099 5.477 6.245 7.416

Table 3
Parameters for calculating LB2.

Job j 1 4 2 3 5

rj 5 1 2 3 4
cj 1.755 3.786 1.876 3.409 5.265
sj 5.000 5.099 5.477 6.245 7.416
s3

j
125.000 132.575 164.317 243.555 407.891

s3
j � s3

j�1
7.575 31.742 79.238 164.336

r2
j =cj 0.264 2.132 2.640 3.039

gj 19.118 9.925 20.009 36.051
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not require extensive computing effort. In this section, we study
the performance of some heuristic procedures.

A simple and straightforward heuristic procedure is to create a
list schedule. In other words, the list of jobs is sorted in some way
and then the schedule is created in one pass by sequencing the jobs
in their sorted order. In some stochastic scheduling models, sorting
by expected processing time can be effective, but in this problem,
the optimal choice of the due dates adjusts for differences in the
jobs’ processing times. Instead, it makes sense to focus on the stan-
dard deviations or variances of the processing times as a means of
distinguishing the jobs. The simplest way to do so is to sort the jobs
by smallest standard deviation or by smallest variance. Because the
jobs are also distinguished by unit costs, it also makes sense to
investigate cost-weighted versions of those orderings, such as
smallest weighted standard deviation (SWSD), which takes the
jobs in nondecreasing order of rj=cj, and smallest weighted vari-
ance (SWV) which takes the jobs in nondecreasing order of r2

j =cj.
Soroush (1999) tested list schedules for these two rules and found
that, at least on smaller problem sizes, they often produced solu-
tions within 1% of optimality.

A standard improvement procedure for sequencing problems is
a neighborhood search. In this case, we can use a sorting rule
(SWV) to find an initial job sequence and then test adjacent pair-
wise interchanges (API) in the schedule to seek an improvement.
If an improvement is found, the API neighborhood of the improved
sequence is tested, and the process iterates until no further
improvement is possible. API methods have proven effective in
solving deterministic versions of the E/T problem, a finding that
dates back to Yano and Kim (1991). In our tests, API methods were
remarkably effective.

The quality of the heuristic solutions is summarized in Table 6
for the same set of test problems described earlier. Three summary
measures are of interest: (1) the number of optima produced, (2)
the average (relative) suboptimality, and (3) the maximum

suboptimality. As the table shows, the performances of the heuris-
tic procedures were quite different. The SWSD list schedule
produced solutions that averaged about 2% above optimal, and
the SWV list schedule produced solutions that were two orders
of magnitude better. The SWV procedure also produced optimal
solutions in about 60% of the test problems. However, perhaps
the most surprising result was that the API heuristic generated
optimal solutions in every one of the 700 test problems. (The API
heuristic cannot guarantee optimality, however. This point is dis-
cussed in Appendix C.)

To some extent, these results are consistent with previous work
on the stochastic E/T problem. Soroush (1999) provided computa-
tional results demonstrating the effectiveness of the SWV list
schedule. His testbed was slightly different, but his results showed
that SWV performed better than SWSD and frequently produced
optimal sequences. Portougal and Trietsch (2006) showed that
SWV is asymptotically optimal. In other words, the difference
between the objective function produced by SWV and the optimal
value becomes negligible (relative to the optimal value) as n grows
large. Portugal and Trietsch discussed the fact that other rules, such
as SWSD, do not possess this property. The difference between a
rule that exhibits asymptotic optimality and a rule that does not
is illustrated in our comparisons of SWV and SWSD. Neither of
those earlier studies, however, tested the effectiveness of the API
rule.

The feature of asymptotic optimality is important in two ways.
First, although it is a limiting property, we can see in Table 6 that
asymptotic behavior is approached in the range of problem sizes
covered: the worst-case suboptimality drops to 0.1% by the time
n reaches 20. We can expect that schedules produced by SWV
are even closer to optimality for larger problem sizes. Second, the
computational limits of the B&B algorithm – that is, the difficulty
of finding optimal solutions for n > 20 – are not particularly worri-
some. A practical approach to solving larger problems would be to

Table 4
Computation effort for modest problem sizes.

Size (n) Average Time (s) Average Nodes

Enumeration B&B/LB1 B&B/LB2 Enumeration B&B/LB1 B&B/LB2

6 0.015 0.001 0.001 2676 106.8 143.5
8 0.566 0.002 0.003 149920 460.1 681.4

10 50.572 0.013 0.018 13492900 3181.8 4380.5

Table 5
Computation effort for larger problem sizes.

Size (n) Average Time (s) Maximum Time (s)

LB1 LB1/API LB2 LB2/API LB1 LB1/API LB2 LB2/API

12 0.09 0.06 0.13 0.08 0.55 0.46 0.68 0.55
15 2.53 1.63 2.53 1.39 19.10 14.37 19.45 11.92
18 255.89 174.25 137.01 83.17 (2) (1) 3042.20 1866.91
20 1780.20 1187.20 (6) (6)

Table 6
Performance of the heuristic methods.

Optima Average Maximum

n SWSD SWV API SWSD (%) SWV (%) API (%) SWSD (%) SWV (%) API (%)

6 34 84 100 1.51 0.03 0.00 11.98 0.55 0.00
8 3 75 100 2.03 0.03 0.00 6.84 0.30 0.00

10 4 69 100 2.25 0.03 0.00 9.03 0.26 0.00
12 0 64 100 2.44 0.02 0.00 10.73 0.34 0.00
15 0 46 100 2.52 0.02 0.00 7.28 0.11 0.00
18 0 43 100 2.39 0.01 0.00 7.19 0.07 0.00
20 0 40 100 2.40 0.01 0.00 5.60 0.09 0.00
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sort the jobs by SWV (exploiting its asymptotic optimality
property) and then optimize the sequence for the first 12 or 15 jobs
using B&B. This approach gives us a reliable way of solving the sto-
chastic E/T problem of virtually any size, with a strong likelihood
that our solution will be within 0.1% of the optimum.

7. Summary and conclusions

We have analyzed the stochastic E/T problem with distinct unit
costs among the jobs and distinct due dates as decisions. In this
problem, we seek to assign due dates and sequence the jobs so that
the expected cost due to earliness and tardiness is as small as
possible. We first noted that the optimal assignment of due dates
translates into a critical fractile rule specifying the optimal service
level for each job. We then described a B&B approach to this
problem, incorporating lower bounds and dominance conditions
to reduce the search effort. Our computational experiments
indicated that we can solve problems of up to around 20 jobs with-
in an hour of cpu time. Although these problem sizes might not
seem large, our literature review reminds us that computational
experience for the deterministic counterpart was seldom much
better. In addition, the 20-job problem is about twice the size of
a problem that could be solved by enumeration in an hour of cpu
time. Nevertheless, a possible avenue for further research would
be the development of more sophisticated dominance conditions
and lower bounds.

We pointed out that a special case of this problem – when all
jobs have identical (but asymmetric) unit costs of earliness and
tardiness – can be solved quite efficiently, by sorting the jobs from
smallest to largest variance. A cost-weighted version of this
procedure is not optimal in the general problem but appears to
produce near-optimal solutions reliably when used as a heuristic
rule. Moreover, when that solution is followed with an Adjacent
Pairwise Interchange neighborhood search for improvements, the
resulting algorithm produced optimal solutions in all of our test
problems.

Our analysis was based on the assumption that processing
times follow normal distributions. The normal distribution is con-
venient because it implies that completion times follow normal
distributions as well. As Portougal and Trietsch (2006) observed,
the role of completion times in the objective function leads theo-
retically to the use of convolutions in the analysis. Among standard
probability distributions that could be used for processing times,
only the normal gives us the opportunity to rely on closed-form re-
sults. In place of the normal distribution, we could assume that
processing times follow lognormal distributions. The lognormal is
sometimes offered as a more practical representation of uncertain
processing times; indeed, it may be the most useful standard dis-
tribution for that purpose. However, sums of lognormal distribu-
tions are not lognormal, implying that it would be difficult to
model completion times exactly. Nevertheless, the lognormal is
associated with a specialized central limit theorem which
resembles the familiar one that applies to the normal distribution
(Mazmanyan, Ohanian, & Trietsch, 2008). In other words, our anal-
ysis for the normal could be adapted, at least approximately, for
the lognormal as well. However, by focusing here on the normal
distribution, our analysis has been exact, and no approximations
have been necessary.

Looking back to the research done on the deterministic counter-
part, we note that the E/T model was sometimes augmented with
an objective function component designed to capture the tightness
of due dates or to motivate short turnaround times. Augmenting
the stochastic E/T problem in such ways, as suggested in the
safe-scheduling overview in Baker and Trietsch (2009b), would

appear to be another fruitful area in which to build on this
research.
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