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Abstract 

 

 

We obtained field data from two project organizations, including historical 

estimates and historical realizations of activity processing times. We use 

the data from one organization to validate the applicability of the 

lognormal distribution for project activity times. We use the data from the 

other organization to demonstrate the applicability of the Parkinson 

distribution in certain environments. Based on these empirical findings, 

we update and validate the systemic error model for activity time 

distributions in PERT, and we show that the classical PERT model is not 

supported by the data we collected. The main deficiency we expose is the 

stochastic independence assumption, but the traditional estimation method 

is also problematic. As a result, the stochastic engine in classical PERT is 

neither effective nor efficient. By contrast, the updated systemic error 

model provides more powerful results with less user input. It obtains all 

the necessary information using only elementary estimates and historical 

regression.  
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A New Stochastic Engine for PERT 

 
Introduction 

 In this paper we develop and begin to validate a new approach to stochastic 

analysis of project activity times. The major tools used in project scheduling are 

Critical Path Method (CPM) and Program Evaluation and Review Technique (PERT). In 

particular, PERT is the tool of choice when scheduling must recognize the probabilistic 

nature of activity times within a project. At the heart of the PERT method is a set of 

assumptions that facilitates a systematic and intuitively appealing method for modeling 

stochastic behavior in projects. We refer to these assumptions and the method built on 

them as the stochastic engine in PERT. Unfortunately, the stochastic engine in PERT is 

neither effective nor efficient. It is ineffective because it provides unreliable results, and 

it is inefficient because it demands too much input from users. Therefore, the 

development of a new engine would be a welcome addition to the techniques available 

for project scheduling. In this research, we develop a radically different design that 

provides more powerful and useful results than the PERT method and requires less input 

from users. 

 The PERT method, introduced by Malcolm et al. (1959), prescribes a series of steps 

that enables the scheduler to model a project in stochastic terms. After 50 years of 

application, PERT is a familiar staple in textbooks on project scheduling (e.g., Meredith 

and Mantel, 2009) and management science (e.g., Hillier and Hillier, 2007, and Ragsdale, 

2008). The steps have been reproduced so often that they constitute a familiar "recipe" for 

scheduling stochastic projects, starting with three estimates for the duration of each 

activity, an approach we call the triplet method. We provide an outline of the typical 

textbook recipe in Appendix A.  

 Over the years, various improvements have been proposed to enhance the stochastic 

analysis in PERT. The first of these—Clark (1961)—provides an approximation that 

compensates for the tendency of PERT to underestimate the expected project length due 

to network interactions. (We use the term Jensen gap
4
 to refer to the difference between 

the expected project length and the length of the deterministic critical path obtained by 

replacing all activity times by their expected values.) Clark’s work shows how to 

approximate the size of the Jensen gap. Van Slyke (1963) proposes Monte Carlo 

simulation as a practical solution for the same problem and as a way to estimate the 

criticalities of various activities. We consider such enhancements as part of PERT. 

 Ever since the debut of the PERT model, a cornerstone of conventional stochastic 

project scheduling has been the assumption that processing times of project activities are 

statistically independent. However, this assumption leads to an untenable conclusion: as 

the number of activities along the critical path grows large, the coefficient of variation 

(cv) of the project length tends to zero. Thus, we should not be surprised when such a 

model leads to poor estimates of project duration. Indeed, many authors have noticed that 

PERT often yields disappointing results (e.g., Klingel, 1966; Schonberger, 1981). The 

most prevalent explanation offered is the Jensen gap. However, the implication that the 

Jensen gap explains the discrepancy between planning and reality does not appear to be 

                                                 
4
 The term derives from a specialized version of Jensen’s inequality, which states that the expected value of 

a maximum is at least as large as the maximum of the corresponding expected values. 
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supported by any published empirical evidence. On the contrary, by running simulation 

studies with independently distributed processing times, it is possible to verify that cv of 

project length still tends to zero for large projects even after accounting for the Jensen 

gap. The Jensen gap is real and often important, but it does not explain the practical 

shortcomings of PERT as a model for stochastic projects, and certainly not when 

simulation is employed. We assert that a more serious culprit is the independence 

assumption.  

 The simplest model that accounts for stochastic dependence invokes basic linear 

association (Esary, et al., 1967, Baker and Trietsch, 2009). This model employs a 

multiplicative stochastic error that is constant for each project but varies across projects. 

In our context, this error term represents estimation bias. Trietsch (2005) proposed using 

the model, also known as the systemic error model, as the basis for estimating processing 

time distributions and using the results to set optimal project safety times. The present 

work was originally aimed at validating that model with field data. The validation was 

promising (Gevorgyan, 2008), and the analysis led to a simplified model based on the 

lognormal distribution. In this paper, we describe the new version of the systemic error 

model as well as the empirical data that support it.  

 A few technical building blocks help guide our work. We summarize them here and 

elaborate in Appendix B. First, the traditional beta distribution formulas have a structural 

tendency to underestimate the variance of activity durations. Second, the lognormal 

distribution is more plausible than the beta distribution as a model for an activity time. 

Moreover, the lognormal supports its own central limit theorem and can be used as a 

model for the project length. Third, we must also represent the Parkinson effect 

(Parkinson, 1957), which occurs when activities rarely finish early but a large proportion 

completes precisely on time. We introduce the Parkinson distribution as a simple and 

intuitive model that works well in our empirical tests. 

 Our new design explicitly models stochastic dependence among activity times and 

uses regression analysis of historical results to estimate parameters for processing time 

distributions. We draw on the properties of linear association to construct a representation 

of estimation bias. We develop the systemic error model relying on the assumption that 

activity durations are inherently lognormal but possibly influenced by the Parkinson 

effect. We apply our model in two empirical datasets, validating our theory with field 

data. Our validation not only supports the new design but also reinforces the perception 

that the PERT model is flawed. Finally, we conclude by emphasizing the differences 

between our approach and the PERT approach. 

 We refer to the result as PERT 21—PERT for the 21st Century. Our aim is not only 

to improve the quality of the PERT stochastic analysis but also to open the door to other 

sophisticated algorithms that have been developed for PERT/CPM over the years. For 

example, Baker and Trietsch (2009) show how to apply stochastic sequencing and 

stochastic crashing to projects provided valid distributions are given; here we show how 

to obtain such valid distributions.  

 The data we collected from one project organization demonstrate a pure Parkinson 

effect (meaning that no activities finish early). Although the number of historical data 

points in our field study was small, our model was able to ―predict‖ the performance of 

each project based solely on information garnered from the other projects. That 
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information does not include optimistic and pessimistic estimates as in PERT. In fact, our 

analysis showed that traditional PERT is inadequate even with perfect variance estimates.  

 In the other set of projects, earliness was reported often, so we applied the general 

form of the Parkinson distribution for that set. In the general form, early activities are 

reported correctly with some probability and reported ―on-time‖ otherwise. We should 

mention, however, that the data for this set of projects were given in crude units (all 

estimates were in months and all realizations in weeks). This is just one reason why the 

results we report should be re-validated with other data sets. Nonetheless, our model at 

least works for the particular organizations we studied, so it shows promise for other 

cases. 

 

Estimation Bias 

   

 Estimates of activity durations are subject to estimation bias due to such factors as 

the following:  

 

 optimism and pressure to produce attractive estimates from project champions who 

tend to emphasize opportunities,  

 pessimism and pressure to produce cautious estimates from skeptics who tend to 

emphasize risks,  

 mistakes caused by human error, or 

 failure to anticipate possible problems. 

 

Often, several activities are simultaneously affected by such factors as weather 

conditions, general economic conditions, and such unpredictable events as accidents or 

employee turnover. For convenience, we treat the combination of all these causes as 

estimation bias.  

 Estimation bias is not known in advance for any project, so it must be treated as 

random. Therefore, in addition to adjusting for the average bias, we must also account for 

the variance of the bias. This variance is the cause of statistical dependence among the 

deviations from predicted durations in a given project. If all estimates in all projects were 

equally biased, we could eventually learn to adjust for bias perfectly. But because the 

deviations are random and cannot be predicted precisely, estimation errors are positively 

correlated with each other even if the underlying distributions are independent. 

Specifically, optimistic estimates will lead to consistently longer-than-expected activity 

durations throughout the project, whereas pessimistic estimates will lead to consistently 

shorter-than-expected activity durations. In either case, the deviations are positively 

correlated.  

 

Modeling Bias using Linear Association 

 Let the random variable pj denote the processing time for activity j, and let μj and σj 

be its mean and standard deviation. Let Xj be an estimate of pj, where we treat Xj as a 

random variable. Let the nominal estimate be ej = E(Xj), and let V(Xj) denote the variance 

of the estimate. Random effects that are specific to activity j are modeled by V(Xj). We 

assume that the estimates are independent because it would be difficult to come up with 

an adequately posed set of dependent estimates. (Importantly, we do not impose such an 
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assumption on the actual processing times.) We model estimation bias by introducing an 

additional independent random variable B that multiplies the estimate to obtain the 

distributions of the processing time. In other words, we assume that pj = BXj. Let μB and 

VB = σB
2
 denote the mean and variance of B.  

 For present purposes, we assume that our projects are serial, so the project length is 

given by the sum of all activity durations. Serial projects have no Jensen gaps. Therefore, 

we can study the independence assumption without confounding it with the Jensen gap. 

Real projects are seldom serial, however, so in practice activity time distributions should 

be used mainly as inputs for simulation. Consider a chain of activities, π, and let Lπ 

denote its length. Temporarily, we ignore the possibility that any activity along π will be 

delayed by a predecessor outside the chain. The main task in project scheduling is to 

characterize the distribution of Lπ. Because B and Xj are independent, we have μj = μBej. 

However, the multiplication of the processing times by the same realization, B = b, 

introduces dependence between any pair of processing times. Specifically, we obtain: 

 

 σj
2
 = μB

2
V(Xj) + V(Xj)VB + VBej

2
   and   COV(pi, pk) = VBeiek 

 

We can separate σj
2
 into two parts, μB

2
V(Xj) + V(Xj)VB and VBej

2
. The former equals 

E(B
2
)V(Xj) and the latter is a special case of VBeiek. Now assume path π is the nominal 

critical path, characterized by the longest sum of expectations among all paths, and let the 

mean and variance of its length be denoted μ and σ
2
. Temporarily, assume that the 

nominal critical path will actually be critical; that is, it will not be delayed by any activity 

that is not part of it. Then 

 

 μ = μBΣj πej   and   σ
2
 = E(B

2
)Σj πV(Xj) + (σBΣj πej)

2
 

 

The element (σBΣj πej)
2
 imposes a lower bound of  σBΣj πej on σ. This bound is a multiple 

of the expected length of path π; namely, a multiple of σB/μB. In contrast to the case of 

independent activity durations, the cv of project length does not tend to zero as the 

number of activities on the chain grows large: it always exceeds σB/μB. Similarly, the bias 

in the estimate of mean project length is a multiple of the estimate, namely, (μB − 1).  

 Now we revisit the assumption that there are no delays due to activities outside the 

chain. That assumption allowed us to ignore the difference between the expected project 

length and the sum of the μj values along the nominal critical path—that is, to ignore the 

Jensen gap. However, it can be shown that the Jensen gap itself is subject to the exact 

same bias (Baker and Trietsch, 2009).  Therefore, the results we obtain here for serial 

projects apply in general, but instead of using convolutions we must use simulation. 

Alternatively, one of the existing approximation methods could be employed to account 

for the Jensen gap. 

 

Estimates for the Systemic Error Model 

 Consider the task of estimating V(Xj). The triplet method of PERT is notoriously 

dysfunctional. As we discuss in Appendix B, it is likely to lead to systematic 

underprediction of variability. In addition, Woolsey (1992) provides anecdotal evidence 

that it is often not based on objective analysis and that practitioners consider it onerous. 

Therefore, we limit the input elicited from experts to the absolute minimum: a single-
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point estimate, ej, for each activity time. (Indeed, in our field work we were able to obtain 

historical estimates of means and the actual realizations, but not variance estimates.) This 

approach requires that we estimate V(Xj) based on history, as a function of ej. 

 The systemic error model presented by Trietsch (2005) relies on the classical 

central limit theorem. Here, we simplify it slightly and adapt it to the lognormal 

distribution. We assume lognormal distributions for both B and Xj. The product of two 

independent lognormal random variables is lognormal, so our assumption implies that pj 

is lognormal. But because B is shared by all activities in the project, the processing times 

pj are positively correlated. When pj is lognormal and we divide it by a constant such as 

ej, it remains lognormal, and its cv does not change. Therefore, it is convenient to work 

with the appropriate logarithm, ln(pj/ej).  

 Suppose we have historical records for K > 1 projects, and we amend our earlier 

notation to include a double index, jk, where j = 1, 2, . . ., nk and k = 1, 2, . . ., K. Here j 

denotes the jth activity of project k, and project k has nk activities. (Optionally, we may 

elect to treat some subprojects as projects in their own right. That approach would be 

appropriate if a subproject is estimated relatively independently of other project activities 

or if it relies on a different set of resources.) For project k, our historical data consist of nk 

pairs (pjk, ejk), where pjk is the realization and ejk is the original estimate. We can estimate 

the logarithm of the bias for project k, ln(bk), by 

 

 
k

n

j

jkjk

k
n

ep

b

k

1

)(ln

)(n̂l  

 

(Later we discuss an approach to estimating these values that works better when the 

Parkinson effect is involved.) If we give each of these estimators a weight proportional to 

nk, we obtain the following estimator of ln(μB), 
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k

k
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and we obtain the following unbiased estimator of sB
2
 (the variance of ln(μB)) 

 

 
K

k

k

K

k

Bkk

B

Kn

bn

s

1

1

2

2

)(n̂l)(n̂l

ˆ  

 

One way to estimate sk, the standard deviation of ln(pjk/ejk), is to use the variance of the 

set {ln(pjk/ejk)} for j = 1, … , nk. (Again, we discuss an alternative approach later.) We 

expect that any new project in the same family will possess a logarithmic bias drawn 
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from a normal distribution with mean )(n̂l B  and variance 2ˆ
Bs . Similarly, we expect that 

new project to have a lognormal processing time distribution with s drawn from the same 

distribution that generated the sk values for the K projects in the history. Accordingly, we 

can calculate the mean and the variance of the sk estimates similarly to the way we 

calculated  )(n̂l B  and 2ˆ
Bs . We denote these estimators by Xŝ  and V( Xŝ ), respectively. It 

is also necessary to check whether the historical sk estimates and the bias estimates are 

correlated, in which case we must account for such correlation in the model. 

 After calculating the values of these estimators, we have all the data we need to 

simulate the distribution of a new project. Suppose we wish to generate a sample 

containing r repetitions. (Think of r rows for the replications and n columns for the n 

activities.) Using Xŝ  and V( Xŝ ), we generate one sX realization per row and store it in an 

auxiliary column. Similarly, using )(n̂l B  and 
2ˆ
Bs , we generate a bias element for each 

row and store it in another auxiliary column. Using the original ej estimates, we generate 

for each of the n columns a normal random variable with mean ln(ej) and standard 

deviation Xŝ . Before actually storing it, we incorporate the bias element simulated for 

that row, keeping in mind that adding logarithms corresponds to multiplying their 

exponents. Thus, all elements in the row share the same bias element and the same 

variance, but no two rows have the same parameters. 

 

Validation of the Lognormal Model 
 We obtained data from two NGOs about the estimated and actual durations of 

activities in two families of projects with five and nine projects, respectively, all 

completed within the last few years. Both organizations coordinate humanitarian projects 

using subcontractors to perform various activities or subprojects. A fraction of the 

activities at one NGO was not subcontracted. One of the two organizations subcontracts 

numerous low-level activities per project (measured in weeks), whereas the other 

organization subcontracts larger sub-projects (measured in months). As a result we 

obtained one set with fewer projects but more activities per project and another set with 

more projects but fewer activities. In general, the projects were quite eclectic, including 

community organizing, productivity skills training, agricultural infrastructure 

development and even software development. There is a conceptual similarity between 

most of these projects and the Polaris project (for which PERT was originally developed), 

in the sense that activities were subcontracted to outside providers. Therefore, the 

processing time visible to the project manager might include queueing time within the 

supplier organization. Perhaps as a result, we measured high coefficients of variation 

(roughly between 0.6 and 0.95). Furthermore, we do not claim that our results are 

automatically valid for other types of environments. Such validation would require new 

sets of data and further research.  

 Because they were managed similarly, all projects in each family are assumed to be 

related and subject to the same estimation bias distribution, but the two families are 

different. All projects in the larger set exhibit the pure Parkinson effect, and we discuss 

them later. For the five projects in the smaller set, Figure 1 depicts normal P-P plots for 

ln(pj/ej) as generated by SPSS (SPSS, 2001). If the distribution of ln(pj/ej) is normal (that 

is, if pj/ej is lognormal), then the P-P plot should be close to the diagonal from the left 
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bottom corner of the square to the top right corner. We observe that diagonal 

configuration in four of these plots.  

 P-P plots are central to our validation, so we elaborate. If we sample a continuous 

random variable with a given cumulative distribution function (cdf), the cdf can be used 

to transform the sample to an equivalent sample from a uniform distribution on the 

interval (0, 1), denoted U[0, 1]. The transformed sample can then be sorted and compared 

to the cdf of U[0, 1] , which forms the diagonal in the chart. A normal P-P plot is one 

way to display the results of such a comparison; but here, instead of using a given cdf, we 

estimate the mean and variance of the cdf from the sample. The convention used by SPSS 

divides the horizontal scale into n equal segments and places the sorted points at the 

centers of those segments. Thus, point j (the jth smallest realization) has a horizontal 

value of (j − 0.5)/n. The vertical value of point j is the transformed sampled value 

(probability) of that realization. The transformed sample can be tested for uniformity 

using standard statistical tests for goodness of fit. The most common test for this purpose 

is the Kolmogorov-Smirnov (K-S) test, on which we rely. 

 Figure 2 depicts the Q-Q plots associated with these P-P plots. Q-Q plots are related 

to P-P plots but do not transform the sample (SPSS, 2001). Instead, the vertical axis 

denotes actual realizations (logarithms, in our case) and the horizontal axis denotes their 

expected values, plotted as standard normal z-values with cdf probabilities of (j − 0.5)/n. 

Figure 2 reveals many ties where several sorted sample points have the same logarithm. 

Our data were provided in integer units, and the occurrence of such ties is a consequence. 

Project 1 exhibits suspiciously many points with ln(pj/ej) = 0 (indicating completion 

precisely on time) and very few early points. Projects 4 and 5 also have several points 

with ln(pj/ej) = 0, but they are less dominant. Furthermore, from the trend line depicted, it 

seems that all points in projects are arranged linearly. Given that the data were limited to 

points on an integer grid, the good linear fit of the lognormal distribution is especially 

encouraging. A similar observation applies to the subset of tardy activities in Project 1. 

Furthermore, the K-S test rejected the normality of the logarithmic values in project 1 

with a p-value of 1% but accepted projects 2 through 5 with p-values of 8.8%, 9.0%, 

83.2% and 37.7%, respectively). Based on these results we excluded project 1 from most 

of our initial analysis. (However, the p-values 8.8% and 9.0% are quite low. That 

observation motivated us later to revisit these projects and fit the Parkinson distribution 

to them.) 

 We continue our analysis of projects 2-5 under the assumption that the lognormal 

distribution applies. The P-P plots show that the ln(pj/ej) values are consistent with the 

hypothesis that they are sampled from a normal distribution with the same standard 

deviation, s.  As mentioned in Appendix B, the cv of the lognormal is related to s by the 

relationship s
2
 = ln(1 + cv

2
). Therefore, linearity in the plots, indicating a common s for 

all activities, implies a constant cv for all activities in each project. Moreover, in all cases, 

the standard deviations were close to each other, roughly between s = 0.53 and s = 0.78. 

(The standard deviation of Project 1, when estimated by its tail only, is also in the same 

range.) Nonetheless, we do not recommend assuming that all projects share the same 

standard deviation.  
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 Figure 2 suggests an alternative approach to estimating the parameters of the 

lognormal distribution of a project by fitting a regression line to the Q-Q plot. The slope 

of that line for project k is kŝ , and the value at which it intersects the y-axis serves as the 

bias estimate, n̂l (bk). Ignoring the error term, a typical equation in such a regression, 

relating to the activity with the j-smallest ln(p/e) of project k, has the form  

 

   
jk

jk

kjkk
e

p
szb lnˆ)(n̂l       (1) 

 

where zjk = Φ
−1

((j − 0.5)/nk), the z-value for which the standard normal distribution cdf, 

Φ(z), yields a probability of (j − 0.5)/nk. That is, we treat the ln(pjk/ejk) values as our 

dependent variables, and we obtain estimators for ln(bk) and for sk. We adopt this 

approach—in spite of the fact that it is not based on the minimal sufficient statistic—

because it also works when the Parkinson effect is involved. In the pure case, we include 

only equations for tardy activities.  
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 Having shown that the lognormal distribution fits the data reasonably well in all but 

one of the projects, we next wanted to demonstrate that our approach can estimate the cdf 

of the project completion time. Let Fk(x) denote the cdf of project k. In our context, the 

challenge is not just to estimate each Fk(x) but also to demonstrate validity. This is not an 

easy task with so few projects, but we outline a procedure that can help reject the 

approach if the cdfs are patently invalid. Suppose we estimate Fk(x) using information in 

the other three projects. Under the traditional PERT assumptions, such history should be 

useless, but under the systemic error model, that history is relevant. The null hypothesis 

is that our model is valid. Given Fk(x), we can find the estimated Fk(∑pjk) values. If we 

repeat the process for all four projects, then under the null hypothesis we should obtain a 

random sample of four draws from a U[0, 1] distribution. The resulting P-P plot is given 

on the left-hand side of Figure 3. The K-S test does not reject the hypothesis that this is a 

legitimate sample of four from a U[0, 1] distribution, although there are too few data 

points to really say that this is meaningful.  

 We repeated the process using the traditional PERT assumptions, but because we 

had no original PERT triplet estimates, we used the lognormal distribution with the actual 

cv that we obtained from the sample. In other words, we assumed that PERT generated 

perfect variance estimates. That assumption maximizes the chance that PERT will 

perform well. Furthermore, by using the same distribution, we obtain a fair comparison 

(regardless of whether the lognormal is indeed better than the beta, as we assert). The 

relevant P-P plot is given on the right-hand side of Figure 3. The PERT P-P plot starts 

much lower and ends much higher than the one on the left. This suggests that the 

variance estimate of PERT is too low. However, this sample passed the K-S test too, so 

we could not reject the hypothesis that the result is also a valid sample from the 

distribution U[0, 1]. Nonetheless, the fact that the plot starts lower and ends higher is 

what we expected, because PERT ignores the variance introduced by systemic error.  

 This result motivated us to look further. By using simulation results with 10,000 

repetitions, we devised a new test based on measuring the sum of the two smallest 

vertical distances in the plot. We refer to it as the complementary test because the K-S 

test is triggered (indirectly) by large vertical distances; so the new test complements the 

K-S test. In this instance, the two minimal distances occurred between the bottom of the 

plot and the first point and between the last point and the top. The new test rejects this 

sample with a p-value of 4.7%. It does not reject the plot on the left, however. 
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FIGURE 3 

 

 In addition, we obtained evidence that the four projects are different from each 

other and specifically that these differences are mainly due to different biases. To that 

end, we tested whether all distributions were identical without the bias correction by 

pooling the ln(pjk/ejk) values from all four projects. The normality assumption of the 

combined set of ln(pjk/ejk) was rejected with a p-value of 0.2%. We then corrected these 

values for bias—that is, we pooled the values of ln(pjk/ejk) − )(n̂l kb . This time, the 

hypothesis that all values come from a single normal distribution could not be rejected. 

The p-value was 31.9%. Figure 4 shows the relevant P-P plots. On the left, we show the 

results without bias correction and on the right, with the correction. Furthermore, the 

normality of the combined set was accepted after bias correction even though we ignored 

the differences in variance among the projects. As we noted above, these differences are 

not large. 
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FIGURE 4 

 

 

 The analysis of the four projects was encouraging in the sense that it yielded 

reasonable results and demonstrated a clear bias effect. However, it did not provide 

strong evidence that PERT is inadequate. To explore this aspect of our findings further, 

we return to our earlier observation that the triplet model tends to favor low values of the 

cv. In the regression analysis of our four projects we obtained cv estimates of 0.5706, 

0.9140, 0.5926 and 0.7883 (corresponding to estimates of s between 0.5309 and 0.7793). 

Judging by its tail, Project 1 would have cv = 0.8978, which is in the same range. As we 

point out in Appendix B, the triplet method leads to cv ≤ 0.8333, and to reach that limit 

we must tolerate deviations of 5% as well as relatively small values of min and mode. 

However, two of our five estimates fell outside that range. Thus the PERT approach leads 

to estimates of the cv that are too restrictive. Indeed, if we were to use lower cv estimates 

in our check of PERT for these examples we might have even stronger evidence. But we 

used the cv values corresponding to our variance estimates. That is, we used cv values 
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that would not likely have been obtained using PERT. (Our subsequent Parkinson 

analysis indicates even higher cv values.) 

 

Validation of the Parkinson Model 
 Recall that the first project in the smaller set did not fit the lognormal assumptions 

as evaluated by the K-S test. A cursory analysis of the activity times quickly revealed that 

many realizations fit the estimates precisely, whereas only few were early. We took this 

as evidence that the Parkinson effect was involved. In the other set of nine projects, 

however, all activity times exhibited the pure Parkinson effect. (No activity was early.) 

The vertical axis in Figure 5 shows the ln(pjk/ejk) values of those nine projects as a 

function of zjk. Most projects had small nk values (project 6—not depicted—had just one 

activity) but we decided to analyze them nonetheless. We see that no activities have 

negative logarithms (associated with pjk < ejk) and several activities have values of zero, 

associated with ―perfect‖ executions. 
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FIGURE 5 

 

 Although it is evident that these distributions are not lognormal, some of those that 

had sufficiently many tardy activities exhibited relatively straight tails. (Projects 5 and 8 

are good examples.) That feature suggested that there may be a hidden lognormal 

variable behind the observable results. Accordingly we analyzed the distributions based 

only on their tails. For this purpose we ignored two of the projects that had too few tardy 

points to use (projects 1 and 6). Altogether we had 34 equations and we built regressions 

using 14 parameters: a bias (ln(bk)) and a standard deviation (sk) for each of the seven 

remaining projects. Using the regression results, we identified a negative correlation 

between the bias values and the standard deviations. Such correlations should be 

accounted for during simulations. Initially, we used these estimates from the seven 

projects to simulate cdfs for the other two projects. For each of these two projects we 

calculated Fk(∑pjk) and obtained the (sorted) values 0.1931 and 0.5783. Then we 

generated cdfs for the seven remaining projects, but in each case we removed the data 

obtained from the project itself before simulating its cdf. Thus each project simulation 

used the activity estimates for its own activities along with ―historical‖ information from 

other projects. The Fk(∑pjk) results of these projects were 0.0537, 0.1449, 0.3978, 0.5000, 

0.7130, 0.8348 and 0.9196. Together with the previous two outcomes, we obtain the 

following set: 

 

{0.0537, 0.1449, 0.1931, 0.3978, 0.5000, 0.5783, 0.7130, 0.8728 and 0.9196}  

 

A K-S test does not reject the null hypothesis (that these observations come from a 

uniform distribution on the unit interval). (The complementary test using the sum of the 

two minimal distances—namely 0.0537 + [0.9196 − 0.8728] = 0.1005—leads to the same 

conclusion.) Figure 6 depicts the resulting P-P plot. Although our results are apparently 

excellent, we make no claim that it is always safe to use such a small set of active 

equations. 
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FIGURE 6 

 

 

 The left-hand side of Figure 7 depicts the results of regular PERT analysis for this 

case. Here, the K-S test rejected the null hypothesis resoundingly (as did the 

complementary test), but there is no need for a formal test. We observe that three points 

are practically on the edge of the chart—using four-digit precision, their Fk(∑pjk) values 

are 1.0000—and two more are very close. This configuration demonstrates the 

inadequacy of the model. Suppose we were to set safety times with a service level 

(probability of on-time completion) of 99%, then those three projects would be tardy and 

two more projects would be close. Safety times of 98% would fail for five projects. A 

well-known heuristic method for buffer setting, the ―Critical Chain‖ (see Leach 2000), 

assigns arbitrary safety times of 50% of the estimate. In our sample of nine projects, such 

a safety time would fail in eight projects. 
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FIGURE 7 

 

 Malcolm et al. (1959) recommended correcting for the average historical bias (but 

not for its variance). If we were to do so here, the results would be as in the right-hand 

side of Figure 7. They are much improved relative to the left-hand side, but two projects 
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would still be tardy if we set safety time to achieve service levels of 99% by this 

approach. (Of these two points, one is practically on the edge and the other is at 99.79%). 

Although the K-S test accepts this sample, the probability that two points out of nine 

would be so far out is negligible (and the complementary test rejects the null hypothesis 

with a p-value of 0.65%). We conclude that correcting for the mean bias is beneficial but 

not sufficient. 

 We reiterate that the data in Figure 7 are based on the exact cv estimates obtained in 

hindsight. Such precise estimates would not be available to PERT practitioners in reality. 

In addition, our model does not involve a Jensen gap. Thus the PERT failure that we 

demonstrate here is solely due to the independence assumption. In practice, with 

imperfect variance estimates and the Jensen gap to consider, PERT should perform even 

more poorly. By contrast, the results in Figure 6 are excellent. Thus, the systemic error 

model is supported by our two data sets. Furthermore, by rejecting the PERT model, with 

or without a correction for average bias, the statistical analyses indicate that a model such 

as ours is necessary. 

 

The Parkinson Distribution 

 By observation of the five projects in the first set (Figure 2), it is apparent that in all 

projects a fraction of activity times was reported as precisely on time. Some of those can 

be explained by rounding: the data were given in crude units and our ratios are all 

members of a small subset of the rational numbers. Nonetheless, at least in some 

instances it is clear that the proportion of on-time points (with logarithms of 0) is 

relatively high. Furthermore, recall that we could not include project 1 in our analysis so 

far because it exhibited too many on-time points. Therefore, in the second stage of our 

research, we defined the Parkinson distribution to fit the first family of projects. When we 

ran simulations for these projects we obtained the following Fk(C) values: 0.015, 0.206, 

0.555, 0.665, and 0.780. Figure 8 depicts the P-P plot for this case. Although the value 

0.015 is quite low, this P-P plot passes the K-S test and the complementary test. It is also 

higher than the minimal value of the regular PERT case (0.004). Thus we can say that the 

Parkinson distribution provides reasonable prediction for all the projects in the set, each 

based on the others. 
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Summary and Conclusion 
 This research set out to validate the systemic error model of Trietsch (2005) and 

ultimately confirmed the applicability of the lognormal and the Parkinson distributions to 

project activities. Since the first use of the beta distribution in the PERT method, other 

distributions have been proposed, including the lognormal. The Parkinson effect is also 

well known. But apparently none of these ideas has been tested empirically. We focused 

on the lognormal distribution because of its several appealing properties and formulated a 

distribution to model the Parkinson effect. We reported that the lognormal distribution 

provided a surprisingly good fit for the activity times in one set of five projects, whereas 

one of these projects and another set of nine projects seemed to exhibit the Parkinson 

distribution. We then identified a partial Parkinson effect in the former set as well, and 

defined the Parkinson distribution to model such partial effects. Normatively, it is 

desirable to avoid the Parkinson effect, but that is easier said than done. Therefore, it is 

important to be able to analyze the performance of projects that exhibit the effect. When 

we analyzed those projects based on the assumption that the internal random variable is 

lognormal, we obtained useful results.  

 With these distributions in place, we were also able to validate the systemic error 

model. For each project, our validation involved using the other projects in the set as the 

basis for estimating distributional parameters. Using single activity estimates for each 

activity and the parameters obtained from the other projects, we generated a distribution 

for each project's completion time and estimated the completion probabilities, Fk(∑pjk), 

associated with the project’s actual sum of activity completion times. If we do that for K 

projects we should obtain probabilities that correspond to a random sample of K 

independent realizations from a uniform distribution. We can then test the hypothesis that 

they form such a sample, and we can measure the probabilities that would hold under the 

PERT assumption.  

 The first set of projects provided statistical evidence of differences between project 

distribution times that can be explained by systemic error. Initially, we could handle only 

four out of the five projects in the family using the lognormal distribution, but with the 

general Parkinson model in place we could include them all reasonably well. There were 

not enough projects to reject the PERT model for that set using a traditional test. 

However, we were able to reject it using a new test. In the second set, we had less useful 

information per project but more projects. Here, we were able to show by classical tests 

that our results are statistically plausible, whereas similar analysis based on PERT would 

have failed. Stated differently, if planners were to use our approach for these projects and 

set safety times according to our estimated distributions, the safety times would perform 

approximately as planned. By contrast, if they were to use PERT, most projects would be 

tardy. For instance, if we had set safety times for 90% service levels under the PERT 

model, five out of nine projects would have failed, but only one would have failed under 

the systemic error model. Similar safety times based on 98% service would still fail in 

five projects under PERT but would be sufficient for all projects under our approach. 

 Technically, we advocate regression analysis instead of the PERT triplet method. 

To some extent, the use of regression for estimating activity times is an established 

technique. Furthermore, estimates that are based on solid regression analysis are likely to 

be more accurate and precise than those obtained by other methods (Shtub et al., 2004). 
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However, our use of regression extends conventional approaches, because we can use 

historical estimates that might have originally been developed with regression. Our 

approach is also special because when we simulate a new project we use our regression 

results not only for means but also for variances.  

 Our field data came from two NGOs, both of which use subcontractors to carry out 

most or all of the individual activities. Due to subcontracting, the processing time visible 

to the project manager likely includes queueing time within the supplier organization. 

That may explain the high coefficients of variation that we obtained. We suspect that 

similar queueing may also occur under a matrix organization structure, where projects 

compete for resources. One could hypothesize that when resources are dedicated, typical 

cv values will be lower because the project manager controls the queue and processing 

times do not include waiting. Checking that hypothesis requires further research. 

Additional research is required to quantify the effect of the particular industry on cv. For 

example, we might expect lower cv values in construction than in software engineering. 

 When the new engine is fitted in PERT, we can implement what we call PERT 21. 

PERT 21 merges sequencing and crashing techniques that were historically developed for 

CPM with the stochastic approach that is vital for practicability in project scheduling, as 

in PERT. Such a merger has been conspicuously absent until now. Baker and Trietsch 

(2009) show how this merger can be achieved when valid activity time distributions are 

available. 

 Finally, the systemic error model has implications for models other than PERT 21. 

In that sense, our research opens the way to a new, empirically-based approach to 

stochastic scheduling in other environments than project scheduling. It remains for 

further research to explore the application of similar principles to other problems in 

stochastic scheduling. 
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Appendix A. Brief Summary of the Basic PERT Method

 

1. For each activity obtain an estimate of its optimistic duration (a), its mode, or most 

likely duration (m), and its pessimistic duration (b). Assume that if  these estimates 

are obtained by querying a third party, "optimistic" and "pessimistic" are understood 

to mean the literal minimum and maximum, rather than, say, the 10
th

 and 90
th

 

percentiles of the distribution. 

 

2. Calculate the mean and variance of the activity duration from the formulas: 

 

 = (a + 4m + b) / 6 

 = (b – a) / 6 

 

Assume that these formulas are justified by a relationship (often unspecified) to the 

beta distribution model (see also Appendix B). 

 

3. Treating the mean values as deterministic activity durations, identify the critical path. 

(This is called the nominal critical path.) 

 

4. To find the mean length of the critical path, sum the mean durations of the activities 

along the nominal critical path. To find the variance of the length of the critical path, 

sum the variances of the activities along the nominal critical path. Assume that the 

activity times are statistically independent and that the properties of the nominal 

critical path can serve as a model for project length. 

 

5. Using the mean and variance computed in Step 4 as parameters, apply the normal 

distribution to estimate probabilities associated with the length of the project. Assume 

that the Central Limit Theorem applies. 
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Appendix B. Three Building Blocks for the Systemic Error Model

 

1. A mathematical feature of variance estimates in PERT. The traditional PERT 

approach relies on a specialized beta distribution as a model for the randomness in 

activity durations. Specifically, the method assumes that a beta distribution exists that 

satisfies two conditions: (1) μ = (a + 4m + b)/6 and (2) σ = (b − a)/6 (see Appendix A for 

notation). Clark (1962) discusses the reasoning behind the triplet method and clarifies 

that it was meant to serve merely as an approximation. However, that approximation was 

also supposed to cover all reasonable cases that might arise in practice.  

 The beta distribution has four parameters, min, max (corresponding to a and b), and 

a pair of shape parameters, α and β. We can scale the distribution by setting a to 0 and b 

to 1. The scaled mean and standard deviation in the PERT model are: (1) μ = (4m + 1)/6 

and (2) σ = 1/6. In general, for any triplet (a, b, m), precise beta-distribution parameters 

that comply with the PERT conditions rarely exist (Grubbs, 1962), so we must settle for 

approximate results. (One exception is the symmetric case where setting α = β = 4 

provides a perfect fit. Grubbs identified two other exceptions.) Suppose that we are 

willing to tolerate a relative deviation of at most d between the mean, mode, or standard 

deviation estimated in the triplet method and the corresponding values of the 

approximating beta distribution. In other words, we look for parameters α and β for 

which the scaled mode, mean and standard deviation are all within d of the prescribed 

values and for which the beta distribution is as close as possible to the estimates of these 

three values. We can establish numerically that a tolerance of d = 5% approximately 

requires a scaled mode just below 0.05. The corresponding cv as calculated by PERT is 

thus no larger than 0.8333. Hence, adopting the triplet method leads us to a distribution 

with cv ≤ 0.8333, and the value is likely to be much lower if we require tighter tolerance 

levels. Furthermore, even if we were to ignore the quality of the fit completely, the triplet 

method implies cv ≤ 1, because after scaling we get cv = 1/(1 + 4m). If a/b > 0 the cv is 

even lower; for instance, if a = 1 and b = 4 we get cv < 1/2 whereas if a = 2 and b = 5 we 

get cv < 1/4.  

 Typical practitioners are not aware of this technical limit on the location of the 

mode (m) relative to min and max, but they can’t avoid underestimating σ when the true 

range between min and max exceeds 6σ. Therefore, we suspect that the triplet method is 

likely to lead to small cv values in practice as well as in theory. Systematic 

underestimation of variability would also be consistent with the observations of Tversky 

and Kahneman (1974). As our field data demonstrate, however, small cv values may well 

be inappropriate.  

 

2. The lognormal distribution. By definition, the lognormal random variable is the 

exponent of a normal random variable with mean m and variance s
2
. (In other words, the 

logarithm of the lognormal is normal.) Let X denote a lognormal random variable with 

mean  and variance 
2
. To evaluate m and s, let cv = σ/μ. Then  

 

 s
2
 = ln(1 + cv

2
)   and   m = ln  – s

2
/2  (A1) 

 

Baker and Trietsch (2009) present four arguments why the lognormal random variable is 

especially attractive for modeling stochastic processing times: (1) it is strictly positive, 



22 

 

(2) its cv is not restricted, (3) it is convenient for approximating sums of positive random 

variables, and (4) it is suitable for modeling the relationship between capacity and 

processing time. Among the distributions typically employed to model processing times, 

only the lognormal exhibits all four traits. We next elaborate on the last two points.  

 The lognormal distribution is convenient for representing sums of positive random 

variables (convolutions) because it satisfies the lognormal central limit theorem 

(Mazmanyan, Ohanian and Trietsch, 2008): as n grows large, the sum of n independent 

positive random variables tends to lognormal. (This property holds subject to mild 

regularity conditions similar to those that apply to the classical central limit theorem.) 

Practitioners often cite the classical central limit theorem as justification for using the 

normal distribution as a model for the convolution of a small number of random 

variables, but the normal may lead to negative values. This is especially true when the cv 

values are high, which our data show to be an important case. Instead, we use the 

lognormal central limit theorem as a basis for approximate convolutions of positive 

random variables. An important special case has components that are also lognormal. Let 

Y denote the sum of n independent lognormal random variables with parameters mj and 

sj
2
. To approximate the distribution of Y by another lognormal distribution, we first 

evaluate the components’ means and variances from the following formulas: 

 

 μj = exp(mj + sj
2
/2) σj

2
 = μj

2
[exp(sj

2
) − 1] (A2) 

 

Given these parameters, we can add means to obtain μY and add the variances to obtain 

σY
2
. Then we can calculate mY and sY from (A1). Such calculations are easy to program 

and should cause no difficulty in practice. 

  The reciprocal of the lognormal distribution is also lognormal (with the same cv). In 

some project environments, the processing time is inversely proportional to the effective 

capacity allocated to an activity. If the total work requirement is a constant but the 

effective capacity is lognormal, then the processing time will be lognormal. Indeed, the 

ratio of two lognormal random variables is also lognormal, so even if the total work 

requirement is lognormal, the ratio of work requirement to capacity—in other words, the 

processing time—will be lognormal as well.  

 

3. A Model for the Parkinson effect. Baker and Trietsch (2009) introduced another 

distribution for processing times, the [pure] Parkinson distribution. Parkinson’s Law 

(Parkinson, 1957), states that ―work expands so as to fill the time available for its 

completion.‖ In that spirit, suppose that work is allotted q units of time, but it really 

requires X, where X is a random variable. Then the activity duration we observe, Y, is 

given by 

 

 Y = max{q, X}  

 

and we say that Y has a pure Parkinson distribution. The relevance of Parkinson's Law to 

projects has been documented (e.g., Schonberger, 1983; Gutierrez and Kouvelis, 1991), 

but the Parkinson distribution has apparently not been defined or validated previously. In 

this research we apply the pure Parkinson distribution to projects that exhibited a 
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tendency for estimates to serve as a floor for actual realizations. In those cases, we model 

X as lognormal.  

 If some activities are reported early but a high proportion is recorded precisely on 

time, we can employ the Parkinson distribution in its general form. Let pP denote the 

probability that an early activity is falsely recorded as precisely on time. We assume that 

this probability applies to each early activity independently. That is, early activities are 

recorded correctly with a probability of (1− pP), and precisely on time otherwise; tardy 

activities are always recorded correctly. Notice that for pP = 1 we obtain the pure 

Parkinson distribution whereas for pP = 0 we obtain a conventional distribution. The 

Parkinson distribution can be defined for any internal random variable, but here we 

assume the lognormal. 

 To estimate parameters from history, we adapt Equation (1) for correctly recorded 

early activities. Recall that for tardy activities we defined zjk = Φ
−1

((j − 0.5)/nk), and this 

remains valid for strictly tardy activities when we estimate parameters for the Parkinson 

distribution. But because a proportion of early activities must be ignored for estimation 

purposes, we must replace nk by nk(1− pP) for the strictly early activities; that is, for 

correctly recorded early activities we use zjk = Φ
−1

((j − 0.5)/[nk(1− pP)]).  

 To simulate the Parkinson, we estimate the necessary parameters, including pP, 

from history (as is also the case for the pure Parkinson distribution). These parameters are 

used to simulate initial processing time values. Then, each early activity is subjected to a 

side lottery to decide how to record it. When the data set is not rich—as was the case 

here—we can use empirical distributions to represent history. For instance, working in 

logarithmic space, if the mean bias, slope and pP parameters of project k are denoted by  

mk, sk, and pPk, and we wish to simulate for this project, then we use the parameters mi, si, 

and pPi in a proportion of [ni / ∑ i ≠ k ni] of the rows of our sample. By adopting the 

parameters of each project i ≠ k in the "history" together, we automatically take account 

of any empirical correlation between parameters. 

 


