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Abstract

Recent studies suggest that the conditional CAPM holds, period by period, and that time-variation

in risk and expected returns can explain why the unconditional CAPM fails. In contrast, we argue that

variation in betas and the equity premium would have to be implausibly large to explain important

asset-pricing anomalies like momentum and the value premium. We also provide a simple new test of

the conditional CAPM using direct estimates of conditional alphas and betas from short-window

regressions, avoiding the need to specify conditioning information. The tests show that the conditional

CAPM performs nearly as poorly as the unconditional CAPM, consistent with our analytical results.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The unconditional CAPM does not describe the cross section of average stock returns.
Most prominently, the CAPM does not explain why, over the last 40 years, small stocks
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outperform large stocks, why firms with high book-to-market (B/M) ratios outperform
those with low B/M ratios (the ‘‘value premium’’), or why stocks with high returns in the
previous year continue to outperform those with low prior returns (‘‘momentum’’). In this
paper, our goal is to understand whether a conditional version of the CAPM might explain
these patterns.
Theoretically, it is well known that the conditional CAPM could hold perfectly, period

by period, even though stocks are mispriced by the unconditional CAPM (e.g., Jensen,
1968; Dybvig and Ross, 1985; Jagannathan and Wang, 1996). A stock’s conditional alpha
(or pricing error) might be zero, when its unconditional alpha is not, if its beta changes
through time and is correlated with the equity premium or with market volatility, as we
discuss further below. Put differently, the market portfolio might be conditionally mean-
variance efficient in every period but, at the same time, not on the unconditional mean-
variance efficient frontier (Hansen and Richard, 1987).
Several recent studies argue that time-varying betas do, in fact, help explain the size and

B/M effects. Zhang (2005) develops a model in which high-B/M stocks are riskiest in
recessions when the risk premium is high, leading to an unconditional value premium.
Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Santos and Veronesi (2006),
and Lustig and Van Nieuwerburgh (2005) show that the betas of small, high-B/M stocks
vary over the business cycle in a way that, according to the authors, largely explains why
those stocks have positive unconditional alphas.1

In this paper, we question whether the conditional CAPM can really explain asset-
pricing anomalies, either in principle or in practice. Our analysis has two components. We
argue, first, that if the conditional CAPM truly holds, we should expect to find only small
deviations from the unconditional CAPM—much smaller than those observed empirically.
Second, we provide direct empirical evidence that the conditional CAPM does not explain
the B/M and momentum effects.
The first point can be illustrated quite easily. Suppose, for illustration only, that market

volatility is constant. If the conditional CAPM holds, we show that a stock’s unconditional
alpha depends primarily on the covariance between its beta and the market risk premium,
auEcov(bt,gt). This implied alpha will typically be quite small. For example, suppose that a
stock’s monthly beta has a standard deviation of 0.3, about our estimate for a long-short
B/M strategy, and that the monthly risk premium has a standard deviation of 0.5%, large
relative to its average (also around 0.5%). Then, if the conditional CAPM holds, the
stock’s unconditional alpha can be at most 0.15% monthly [cov(bt,gt)psbsg], an upper
bound achieved only if bt and gt are perfectly correlated. Empirically, the B/M strategy has
an alpha of 0.59% monthly (std. error, 0.14%), and a momentum strategy has an alpha of
1.01% monthly (std. error, 0.28%), both substantially larger than our estimates for
plausible implied alphas.2 In short, we argue that observed pricing errors are simply too
large to be explained by time variation in beta.
1These studies consider both the simple and consumption CAPMs, and we use ‘‘beta’’ in this paragraph to refer

to risk measured using either model. Our paper focuses on the simple CAPM but, as we explain later, the

arguments apply to the consumption CAPM as well. Other recent studies on the conditional CAPM include Wang

(2003), Adrian and Franzoni (2005), Ang and Chen (2006), and Petkova and Zhang (2005).
2The data are described later. Briefly, the portfolios consist of all NYSE and Amex stocks on CRSP and

Compustat from 1964 to 2001. The B/M strategy invests in the top quintile and shorts the bottom quintile of firms

ranked by B/M. The momentum strategy invests in the top decile and shorts the bottom decile when stocks are

ranked by past 6-month returns.
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The second part of the paper provides a simple new test of the conditional CAPM. The
test is based on direct estimates of conditional alphas and betas from short-window
regressions, i.e., we estimate CAPM regressions every month, quarter, half-year, or year
using daily, weekly, or monthly returns. The literature has devoted much effort to
developing tests of the conditional CAPM, but a problem common to all prior approaches
is that they require the econometrician to know the ‘‘right’’ state variables (e.g., Harvey,
1989; Shanken, 1990; Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001).
Cochrane (2001, p. 145) summarizes the issue this way: ‘‘Models such as the CAPM imply
a conditional linear factor model with respect to investors’ information sets. The best we
can hope to do is test implications conditioned on variables that we observe. Thus, a
conditional factor model is not testable!’’ (his emphasis). Our methodology gets around
this problem since it does not require that we specify the set of conditioning information.
As long as betas are relatively stable within a month or quarter, simple CAPM regressions
estimated over a short window—using no conditioning variables—provide direct estimates
of assets’ conditional alphas and betas.

Using the short-window regressions, we estimate time series of conditional alphas
and betas for size, B/M, and momentum portfolios from 1964 to 2001. The alpha estimates
enable a direct test of the conditional CAPM: average conditional alphas should be
zero if the CAPM holds, but instead we find they are large, statistically significant, and
generally close to the portfolios’ unconditional alphas. The average conditional alpha is
around 0.50% for our long-short B/M strategy and around 1.00% for our long-short
momentum strategy (we say ‘‘around’’ because we estimate alphas in several ways; all
methods reject the conditional CAPM but their point estimates differ somewhat.) The
estimates are more than three standard errors from zero and close to the portfolios’
unconditional alphas, 0.59% and 1.01%, respectively. We do not find a size effect in our
data, with conditional and unconditional alphas both close to zero for the ‘‘small minus
big’’ strategy.

Our tests show that betas do vary considerably over time—just not enough to
explain large unconditional pricing errors. A nice feature of the short-window regressions
is that they allow us to back out the volatility of true conditional betas. Specifically, the
variance of estimated betas should equal the variance of true betas plus the variance of
sampling error, an estimate of which is provided by the short-window regressions
(see also Fama and French, 1997). Using this relation, we estimate that beta has a
standard deviation of roughly 0.30 for a ‘‘small minus big’’ portfolio, 0.25 for a ‘‘value
minus growth’’ portfolio, and 0.60 for a ‘‘winner minus loser’’ portfolio. The betas
fluctuate over time with variables commonly used to measure business conditions,
including past market returns, T-bill rates, aggregate dividend yield, and the term spread.
However, we find no evidence that betas covary with the market risk premium in a way
that might explain the portfolios’ unconditional alphas. Indeed, the covariances often have
the wrong sign.

Overall, the evidence supports our analytical results. Betas vary significantly
over time but not enough to explain observed asset-pricing anomalies. Although the
short-horizon regressions allow betas to vary without restriction from quarter to quarter
and year to year, the conditional CAPM performs nearly as poorly as the unconditional
CAPM.

Our analysis focuses on the Sharpe-Lintner CAPM but the conclusions should apply to
other models as well: as a rule, time variation in risk should have a relatively small impact
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on cross-sectional asset-pricing tests. In intertemporal models, consumption betas and the
consumption risk premium would need to vary enormously over time for a conditional
model to significantly outperform an unconditional one. While our empirical tests cannot
be applied directly to the consumption CAPM, because they require high-frequency data,
preliminary results using the mimicking-portfolio approach of Breeden et al. (1989)
provide no evidence that time-varying consumption betas explain momentum or the value
premium (these results are available on request).
Our conclusions counter those of Jagannathan and Wang (1996), Lettau and Ludvigson

(2001), Santos and Veronesi (2006), and Lustig and Van Nieuwerburgh (2005), who argue
that conditioning is very important for asset-pricing tests. The key difference is that they
focus on cross-sectional regressions, not time-series intercept tests, and ignore important
restrictions on the cross-sectional slopes (which are automatically imposed in our tests). To
illustrate, Jagannathan and Wang show that a one-factor conditional CAPM implies a
two-factor unconditional model, E[Ri] ¼ big+li, where Ri is the stock’s excess return, bi is
the stock’s average beta, g is the average risk premium, and li measures how the stock’s
beta covaries though time with the risk premium. The four studies mentioned above
estimate this cross-sectional equation using various measures of bi and li (or
transformations thereof). The key issue is that the cross-sectional slope on li should be
one if the conditional CAPM holds but that constraint isn’t imposed. And our calculations
suggest the actual estimates are much too large. In essence, by not imposing the cross-
sectional restrictions, the papers don’t provide a full test of the conditional CAPM.
This paper is organized as follows. Section 2 explores the theoretical impact of time-

varying risk and expected returns on unconditional CAPM regressions. Section 3
introduces the data and describes our testing approach. Section 4 presents the main
empirical results, and Section 5 discusses other papers that test the conditional CAPM.
Section 6 concludes.
2. The CAPM with time-varying betas

Asset-pricing tests often assume that betas are constant over time. Such ‘‘unconditional’’
tests may reject the CAPM even if it holds perfectly, period by period. In this section, we
derive expressions for a stock’s unconditional alpha and beta when expected returns,
volatility, and covariances all change over time. Our goal is to understand whether the
pricing errors induced by time-varying betas might be large enough to explain important
asset-pricing anomalies.
2.1. Notation and assumptions

Let Rit be the excess return on asset i and RMt be the excess return on the market
portfolio. The joint distribution of Rit and RMt can change over time without restriction,
except that (i) it must have well-defined conditional and unconditional moments, and (ii)
the conditional CAPM is assumed to hold. Conditional moments for period t given
information at t�1 are labeled with a t subscript: the market’s conditional risk premium
and standard deviation are gt and st, and the stock’s conditional beta is bt. The
corresponding unconditional moments are denoted g, sM, and bu. The unconditional bu

will generally differ from the expected conditional beta, denoted b�E[bt].
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2.2. Unconditional alphas and betas

The conditional CAPM says that stocks’ expected returns are proportional to their
conditional betas: Et�1[Rit] ¼ btgt. Taking unconditional expectations implies that
E[Rit] ¼ bg+cov(bt,gt), as observed by Jagannathan and Wang (1996). An asset’s
unconditional alpha is defined as au�E[Rit]–b

ug, and substituting for E[Rit] yields:

au ¼ gðb� buÞ þ covðbt; gtÞ. (1)

Under some conditions, discussed below, a stock’s unconditional and expected conditional
betas will be similar, in which case au is approximately equal to the covariance between
beta and the market risk premium. More generally, Appendix A shows that

bu ¼ bþ
g
s2M

covðbt; gtÞ þ
1

s2M
cov bt; ðgt � gÞ2
� �

þ
1

s2M
cov bt;s

2
t

� �
. (2)

This expression says that bu differs from the expected conditional beta if bt covaries with
the market risk premium (second term), if it covaries with (gt–g)

2 (third term), or if it
covaries with the conditional volatility of the market (last term). Roughly speaking,
movement in beta that is positively correlated with the market risk premium or with
market volatility, gt or s2t , raises the unconditional covariance between Ri and RM (the
other term is generally quite small, as we explain in a moment). Substituting (2) into (1),
the stock’s unconditional alpha is

au ¼ 1�
g2

s2M

� �
covðbt; gtÞ �

g
s2M

cov bt; ðgt � gÞ2
� �

�
g
s2M

cov bt;s
2
t

� �
: (3)

Eq. (3) provides a very general formula for the unconditional pricing error. It says that,
even if the conditional CAPM holds exactly, we should expect to find deviations from the
unconditional CAPM if beta covaries with gt, (gt–g)

2, or market volatility.
Fig. 1 illustrates these results for a scenario in which beta is positively correlated with the

risk premium. For simplicity, the graph assumes that bt and gt are bivariate normal and,
conditional on these parameters, returns are normally distributed with constant volatility,
implying the final terms in Eqs. (2) and (3) drop out. The dark curve shows E[Ri|RM], the
predicted return on the stock as a function of the realized market return, while the light line
shows the unconditional linear regression of Ri on RM.

The graph shows that, when beta and the risk premium move together, the relation
between Ri and RM becomes convex because the slope tends to be high when the market
return is high. The true E[Ri|RM] goes through zero but a linear regression fitted to the
data has a positive intercept—that is, the stock has a positive unconditional alpha. [This is
true unless the average risk premium is huge, shifting the graph so far to the right
that the point where the line drops below the curve occurs at a positive RM; see Eq. (3).]
The effects all reverse in sign if beta and the risk premium are negatively correlated: the
true relation is concave and the unconditional alpha is negative. The graph would also
change if market volatility varied over time. For example, if volatility is positively
correlated with beta, the slope of the curve is high in both tails, inducing a cubic-like
relation. This effect would push up the stock’s unconditional beta in Eq. (2) and push
down its unconditional alpha in Eq. (3).
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Fig. 1. The unconditional relation between Ri and RM. The figure shows the excess return on stock i predicted as a

function of the excess market return. The dark line shows the true E[Ri|RM] and the thin line shows the

unconditional linear regression of Ri on RM. Returns are conditionally normally distributed, with constant

volatility, and the CAPM holds period by period. Beta and the expected risk premium are perfectly positively

correlated.
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2.3. Magnitude

Our goal is to understand whether au in Eq. (3) might be large enough to explain
observed anomalies. We begin with a few observations to simplify the general formula.
Notice, first, that the market’s squared Sharpe ratio, g2/s2M in the first term, is very small
for monthly returns: for example, using the Center for Research in Security Prices (CRSP)
value-weighted index from 1964 to 2001, g ¼ 0.47% and sM ¼ 4.5%, so the squared
Sharpe ratio is 0.011. Further, the quadratic (gt–g)

2, in the second term, is also quite small
for plausible parameter values: if g equals 0.5% and gt varies between, say, 0.0% and
1.0%, the quadratic is at most 0.0052 ¼ 0.000025. Plugging a variable this small into the
second term would have a negligible effect on alpha. These observations suggest the
following approximation for au:

au ¼ covðbt; gtÞ �
g
s2M

cov bt; s
2
t

� �
. (4)

Eq. (4) says that, when the conditional CAPM holds, a stock’s unconditional alpha
depends primarily on how bt covaries with the market risk premium and with market
volatility3.
To explore the magnitude of Eq. (4), it is useful to consider the simplest case

when bt covaries only with the market risk premium: auEcov(bt,gt) ¼ rsbsg,
where s denotes a standard deviation and r is the correlation between bt and gt. Table 1
3The approximation becomes perfect as the return interval shrinks because g2 and (gt–g)
2 go to zero more

quickly than the other terms in Eq. (3). We thank John Campbell for this observation.
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Table 1

Implied deviations from the unconditional CAPM

The table reports unconditional alphas (% monthly) implied by the conditional CAPM for various assumptions

about time variation in beta (bt) and the market risk premium (gt). sb is the standard deviation of bt, sg is the
standard deviation of gt, and r is the correlation between bt and gt. Market volatility and bt are assumed to be

uncorrelated.

sb sb

sg 0.3 0.5 0.7 0.3 0.5 0.7

r ¼ 0.6 r ¼ 1.0

0.1 0.02 0.03 0.04 0.03 0.05 0.07

0.2 0.04 0.06 0.08 0.06 0.10 0.14

0.3 0.05 0.09 0.12 0.09 0.15 0.21

0.4 0.07 0.12 0.17 0.12 0.20 0.28

0.5 0.09 0.15 0.21 0.15 0.25 0.35
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reports the au implied by various combinations of r, sb, and sg. The parameters are chosen
as follows:
�
 We consider three values for sb–0.3, 0.5, and 0.7 – that probably span or, more likely
exceed, standard deviations encountered in practice. Note, for example, that if b ¼ 1.0
and sb ¼ 0.5, a two-standard-deviation interval for beta extends all the way from 0.0 to
2.0. In comparison, Fama and French (1992) estimate unconditional betas for beta-
sorted decile portfolios and find a minimum of 0.79 and a maximum of 1.73. Further,
we estimate later that size, B/M, and momentum portfolios have sb’s between 0.25 and
0.60, while Fama and French (1997) estimate that 48 industry portfolios have sb’s
between 0.12 and 0.42.

�
 We consider five values for sg ranging from 0.1% to 0.5% monthly. The average risk

premium from 1964 to 2001 is 0.47%, using the CRSP value-weighted index, so a
standard deviation as high as 0.5% implies very large changes in the risk premium
relative to its mean (a two-standard-deviation interval extends from –6% to 18%
annualized). For additional perspective, an ordinary least squares (OLS) regression of
NYSE returns on log dividend yield suggests that sg ¼ 0.3% from 1946 to 2000
(Lewellen, 2004), while the calibrations of Campbell and Cochrane (1999) produce a
standard deviation between 0.4% and 0.5% monthly (using statistics in their Tables 2
and 5).

�
 Finally, we consider two values for r, 0.6 and 1.0. The first correlation is chosen

arbitrarily; the second provides an upper bound for the pricing error.

The key result in Table 1 is that unconditional alphas are generally small relative to
observed anomalies. The alphas are typically less than 0.20%, with a maximum of 0.35%
for our most extreme combination of parameters (which we regard as quite generous).
We estimate later that a long-short B/M strategy has sb ¼ 0.25, so Table 1 suggests that
time variation in beta can explain an unconditional alpha of at most 0.15% monthly,
small in comparison to our empirical estimate of 0.59% (std. error, 0.14%). The same is



ARTICLE IN PRESS
J. Lewellen, S. Nagel / Journal of Financial Economics 82 (2006) 289–314296
true of a momentum strategy, for which we estimate an unconditional alpha of 1.01% and
a sb of 0.60. The bottom line is that, for reasonable parameters, the pricing error induced
by time-variation in beta seems far too small to explain important asset-pricing anomalies.
Our analysis extends easily to cases in which beta covaries with market volatility as well

as the risk premium. In fact, time-varying volatility might well strengthen our conclusions:
Eq. (4) shows that unconditional alphas are increasing in cov(bt, gt) but decreasing in
cov(bt,s2t ). Thus, if the risk premium and volatility move together, the impact of time-
varying volatility would tend to offset the impact of the risk premium, making implied aus
even smaller. The connection between gt and s2t is difficult to estimate, since returns are so
noisy, but there is strong indirect evidence that the relation is positive (French et al., 1987;
Campbell and Hentschel, 1992; Ghysels et al., 2005). Many asset-pricing theories also
predict that volatility and the equity premium move together over time, including Merton
(1980) and Campbell and Cochrane (1999).4 We skip a detailed calibration with time-
varying volatility, in the interest of brevity, but our later empirical results show that
changes in volatility have only a small impact on unconditional alphas. In short, with or
without time-varying volatility, au seems too small to explain significant asset-pricing
anomalies.

3. Testing the conditional CAPM

We believe the conclusions above are quite robust, but the calibration relies in part on
our view of reasonable parameter values. In the remainder of the paper, we estimate some
of the parameters and provide a simple direct test of the conditional CAPM.

3.1. Methodology

The basic framework for our tests is standard. We focus on time-series CAPM
regressions for a handful of stock portfolios:

Rit ¼ ai þ biRMt þ �it, (5)

where Rit is the excess return on portfolio i and RMt is the excess return on the market. The
CAPM predicts, of course, that ai is zero. For unconditional tests, we estimate (5) using the
full time series of returns for each portfolio, restricting ai and bi to be constant. For
conditional tests, a common approach (e.g., Shanken, 1990; Ferson and Schadt, 1996;
Lettau and Ludvigson, 2001) is to model betas as a function of observed macroeconomic
variables. However, these tests, and alternatives suggested in the literature, are strictly
valid only if the econometrician knows the full set of state variables available to investors
(see Cochrane, 2001, for a review).
We propose a simple way to get around this problem: we directly estimate conditional

alphas and betas using short-window regressions. That is, rather than estimate Eq. (5) once
using the full time series of returns, we estimate it separately every, say, quarter using daily
4Merton models the risk premium as gtEfst
2, where f is aggregate relative risk aversion. Given this relation, au

in Eq. (4) is very close to zero because the impact of time-varying volatility almost perfectly offsets the impact of a

time-varying risk premium. In Campbell and Cochrane’s model, gt and st are both decreasing functions of the

surplus consumption ratio but volatility moves less than the risk premium (see Lettau and Ludvigson, 2003); thus,

the effects of time-varying gt and st only partially offset.
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or weekly returns. The result is a direct estimate of each quarter’s conditional alpha and
beta—without using any state variables or making any assumption about quarter-to-
quarter variation in beta.

The time series of estimated alphas and betas are used to test the conditional CAPM in
two ways. Our main test simply asks whether average conditional alphas are zero. In
addition, we test whether betas vary over time in a way that might explain stocks’
unconditional alphas, via the mechanisms discussed in Section 2: do betas covary with the
market risk premium or market volatility? For robustness, we estimate regressions over a
variety of interval lengths—monthly, quarterly, semiannually, and yearly—and using
daily, weekly, or monthly returns.

The key assumption underlying our tests is that beta is fairly stable during the month or
quarter, so that each short-window regression can treat it as constant. The idea is that, if
beta is constant during the quarter, a simple OLS regression Rit ¼ ai+biRMt+eit should
produce an unbiased estimate of the true conditional alpha and beta. And that’s all our
tests require. Each regression uses a small number of observations and produces a noisy
estimate of the parameters, but our tests have reasonable power because they use a long
time series of estimates.

The assumption that beta is stable within a month or quarter seems fairly mild.
Empirical tests often assume beta is stable for five or more years, and studies that model
beta as a function of macroeconomic variables typically use very persistent series, like T-
bill rates and dividend yield, implying that betas also change quite slowly. Moreover, we
doubt that high-frequency changes in beta, if they do exist, would affect the results
significantly. The impact of, say, daily changes in beta on quarterly regressions parallels
the impact of time-varying betas on unconditional regressions, except that now only
intraquarter variation (i.e., changes missed by the short-horizon regressions) is important.
We argue in Section 2 that ignoring all variation in beta has little impact on asset-pricing
tests. The point obviously has greater force once we account for a significant portion of
time-varying betas via the short-window regressions: betas, market volatility, and the
risk premium would have to show incredibly large variation within the quarter—and
would have to covary strongly with each other—in order to explain the pricing errors
from our short-window regressions. Appendix B explores these ideas more fully.
Simulations in which risk and expected returns change daily or weekly suggest that our
short-window regressions capture nearly all of the impact of time-varying betas (i.e., our
short-window alpha estimates are close to zero, on average, if the conditional CAPM
truly holds).

3.2. Microstructure issues

While most asset-pricing studies use monthly returns, we use daily or weekly returns
since the regressions are estimated over such short intervals. Doing so raises two concerns.
First, alphas and betas for different return horizons should differ slightly because of
compounding (Levhari and Levy, 1977; Handa et al., 1989). For example, if daily returns
are independently and identically distributed (IID), then expected N-day returns are
E[1+Ri]

N
�1 and the N-day beta is

biðNÞ ¼
E½ð1þ RiÞð1þ RMÞ�

N � E½1þ Ri�
NE½1þ RM�

N

E½ð1þ RMÞ
2
�N � E½1þ RM�

2N
. (6)
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From (6), it can be shown that betas spread out as the horizon lengthens: bi(N) increases in
N if bi(1)41 but decreases in N if bi(1)o1. In addition, if the CAPM holds for daily
returns, a stock with bi(1)41 will have N-day alphas that are negative, while the opposite
is true if bi(1)o1. Fortunately, these effects are tiny and can be ignored in the remainder of
the paper. For example, if the market return has mean 0.5% and standard deviation 5%
monthly, then a stock with a daily beta of 1.300 would have a monthly beta of 1.302 and a
monthly alpha of �0.001%.
Second, and more important, nonsynchronous price movements can have a big impact

on short-horizon betas. Lo and MacKinlay (1990) show that small stocks tend to react
with a week or more delay to common news, so a daily or weekly beta will miss much of
the small-stock covariance with market returns. To mitigate this problem, our tests focus
on value-weighted portfolios and exclude NASDAQ stocks. Also, following Dimson
(1979), we include both current and lagged market returns in the regressions, estimating
beta as the sum of the slopes on all lags (alpha is still just the intercept). For daily returns,
we include four lags of market returns, imposing the constraint that lags 2–4 have the same
slope to reduce the number of parameters:

Ri;t ¼ ai þ bi0RM;t þ bi1RM;t�1 þ bi2½ðRM;t�2 þ RM;t�3 þ RM;t�4Þ=3� þ �i;t. (7)

The daily beta is then bi ¼ bi0+bi1+bi2. (Adding a few more lags doesn’t affect the
results.) For weekly returns, we include two lags of market returns:

Ri;t ¼ ai þ bi0RM;t þ bi1RM;t�1 þ bi2RM;t�2 þ �i;t, (8)

where the weekly beta is again bi ¼ bi0+bi1+bi2. To increase precision, we estimate (8)
using overlapping returns (i.e., consecutive observations overlap by four days). Finally, we
estimate monthly betas including one lag of market returns:

Ri;t ¼ ai þ bi0RM;t þ bi1RM;t�1 þ �i;t, (9)

where the monthly beta is bi ¼ bi0+bi1. As discussed below, Dimson betas are not a
perfect solution but our results do not seem to be driven by measurement problems.
Indeed, unconditional alphas estimated by (7)–(9) are nearly identical for our test
portfolios.

3.3. The data

The empirical tests focus on size, B/M, and momentum portfolios from July 1964
through June 2001. Prices and returns come from the CRSP daily stock file and book
values come from Compustat. As we mentioned above, the portfolios are value-weighted
and contain only NYSE and Amex common stocks. Our market proxy is the CRSP value-
weighted index (all stocks), and we calculate excess returns on all portfolios net of the one-
month T-bill rate.
The size and B/M portfolios are similar to those of Fama and French (1993). In June of

every year, we form 25 size-B/M portfolios based on the intersection of five size and five
B/M portfolios, with breakpoints given by NYSE quintiles. Size is the market value of
equity at the end of June, while B/M is the ratio of book equity in the prior fiscal year
(common equity plus balance sheet deferred taxes) to market equity at the end of
December. Our tests are then based on six combinations of the 25 size-B/M portfolios:
‘‘Small’’ is the average of the five portfolios in the lowest size quintile, ‘‘Big’’ is the average
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of the five portfolios in the highest size quintile, and ‘‘S–B’’ is their difference. Similarly,
‘‘Growth’’ is the average of the five portfolios in the low-B/M quintile, ‘‘Value’’ is the
average of the five portfolios in the high-B/M quintile, and ‘‘V–G’’ is their difference. Our
S–B and V–G portfolios are much like Fama and French’s SMB and HML factors except
that we exclude NASDAQ stocks and start with 25 basis portfolios (rather than six).

The momentum portfolios are constructed separately using all stocks on CRSP with the
required data (i.e., not restricted to Compustat firms). We sort stocks every month into
deciles based on past six-month returns and hold the stocks for overlapping six-month
periods, as in Jegadeesh and Titman (1993). This means, in effect, that one-sixth of the
momentum portfolio is rebalanced every month. Again, the tests focus on a subset of
the ten portfolios: ‘‘Losers’’ is the return on the bottom decile, ‘‘Winners’’ is the return of
the top decile, and ‘‘W–L’’ is their difference.

The tests use daily, weekly, and monthly returns. Weekly returns are calculated by
compounding daily returns over five-day intervals rather than calendar weeks. We use five-
day windows in part because they are easier to align with calendar quarters and in part
because the changing number of trading days in a week (sometimes as few as three) would
complicate some of the tests. Monthly returns are calculated in the standard way,
compounding within calendar months. For long-short strategies, we compound each side
of the strategy and then difference.

To set the stage, Table 2 reports summary statistics for the portfolios from 1964 to 2001.
Panel A shows average daily, weekly, and monthly excess returns. The estimates are all
expressed in percent monthly; the daily estimates are multiplied by 21 (trading days per
month) and the weekly estimates are multiplied by 21/5. Excess returns exhibit the usual
cross-sectional patterns: small stocks outperform large stocks (0.71% vs. 0.50% using
monthly returns), high-B/M stocks outperform low-B/M stocks (0.88% vs. 0.41%), and
winners outperform losers (0.91% vs. 0.01%). Estimates of average returns are always
lowest using daily returns and highest using monthly returns. A very small portion
of this pattern could be attributed to compounding, but it more likely reflects
positive autocorrelation in daily returns. Specifically, monthly expected returns are
mmon ¼ E[

Q
i(1+Ri)]�1. If daily returns are IID, the right-hand side becomes

(1+mday)
21
�1, essentially identical to 21� mday. But notice that the monthly expected

return is higher if daily returns are positively autocorrelated since the expectation would
have additional covariance terms. This observation is consistent with the fact that average
daily and monthly returns are most different for small stocks.

Panel B shows unconditional alphas for the portfolios (percent monthly). The estimates
are remarkably similar for the three return horizons. Focusing on the long-short
portfolios, S–B has a daily alpha of –0.01% and a monthly alpha of –0.03%, V–G has a
daily alpha of 0.60% and a monthly alpha of 0.59%, and W–L has a daily alpha of 0.99%
and a monthly alpha of 1.01%. Thus, after adjusting for risk, the size effect is absent in our
data but the B/M and momentum effects are strong. Using monthly returns, the latter two
are about four standard errors from zero.

The contrast between Panels A and B is interesting: excess returns increase with the
return horizon but alphas do not. Panel C shows why: betas increase, roughly speaking, at
the same rate as excess returns, so the net effect is that alphas (ai ¼ E[Ri]–biE[RM]) are
nearly constant across horizons. As a result, nonsynchronous prices have important effects
on excess returns and betas, especially for small stocks, but little impact on CAPM tests for
any of our portfolios.
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Table 2

Summary statistics for size, B/M, and momentum portfolios, 1964–2001

The table reports average returns and unconditional CAPM regressions for size, B/M, and momentum

portfolios. The regressions use daily, weekly, or monthly returns, correcting for nonsynchronous trading as

described in the text. Average returns and alphas are expressed in percent monthly; the daily estimates are

multiplied by 21 and the weekly estimates are multiplied by 21/5. The portfolios are formed from all NYSE and

Amex stocks on CRSP/Compustat. We begin with 25 size-B/M portfolios (5� 5 sort, breakpoints determined by

NYSE quintiles) and ten return-sorted portfolios, all value weighted. ‘Small’ is the average of the five low-market-

cap portfolios, ‘Big’ is the average of the five high-market-cap portfolios, and ‘S–B’ is their difference. Similarly,

‘Grwth’ is the average of the five low-B/M portfolios, ‘Value’ is the average of the five high-B/M portfolios, and

‘V–G’ is their difference. Return-sorted portfolios are formed based on past six-month returns. ‘Losers’ is the

bottom decile, ‘Winrs’ is the top decile, and ‘W–L’ is their difference.

Size B/M Momentum

Small Big S–B Grwth Value V–G Losers Winrs W–L

Panel A: Excess returns

Avg. Day 0.57 0.49 0.08 0.32 0.81 0.49 �0.10 0.87 0.97

Week 0.63 0.50 0.13 0.37 0.84 0.47 �0.04 0.91 0.95

Month 0.71 0.50 0.21 0.41 0.88 0.47 0.01 0.91 0.90

Std. error Day 0.28 0.20 0.19 0.27 0.23 0.13 0.33 0.28 0.26

Week 0.26 0.18 0.18 0.26 0.22 0.12 0.30 0.26 0.25

Month 0.34 0.19 0.23 0.30 0.26 0.16 0.35 0.28 0.27

Panel B: Unconditional alphas

Est. Day 0.09 0.10 �0.01 �0.21 0.39 0.60 �0.64 0.35 0.99

Week 0.05 0.10 �0.05 �0.22 0.37 0.59 �0.66 0.37 1.03

Month 0.07 0.11 �0.03 �0.20 0.39 0.59 �0.63 0.38 1.01

Std. error Day 0.15 0.06 0.17 0.10 0.12 0.12 0.18 0.13 0.26

Week 0.14 0.06 0.16 0.09 0.11 0.11 0.17 0.12 0.25

Month 0.18 0.07 0.20 0.11 0.13 0.14 0.19 0.13 0.28

Panel C: Unconditional betas

Est. Day 1.07 0.87 0.20 1.18 0.94 �0.25 1.22 1.17 �0.06

Week 1.25 0.86 0.39 1.27 1.03 �0.24 1.33 1.16 �0.17

Month 1.34 0.83 0.51 1.30 1.05 �0.25 1.36 1.14 �0.22

Std. error Day 0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.05

Week 0.03 0.01 0.04 0.02 0.03 0.03 0.04 0.03 0.06

Month 0.05 0.02 0.06 0.03 0.04 0.04 0.06 0.04 0.08
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4. Empirical results

We now turn to the main empirical results. As discussed above, we provide both a direct
test of the conditional CAPM—are conditional alphas zero?—and an indirect test based on
the time-series properties of beta. The volatility, persistence, and cyclical behavior of betas
should be of interest beyond their implications for the CAPM (see, e.g., Franzoni, 2002).
The main inputs for the empirical tests are the time series of conditional alpha and

beta estimates from the short-window regressions (see Section 3.1). We have explored a
variety of window lengths and return horizons and report results for short-window
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regressions estimated several ways: quarterly using daily returns; semiannually using
both daily (Semiannual 1) and weekly (Semiannual 2) returns; and annually using
monthly returns. The estimates are corrected for nonsynchronous trading using the
methodology described in Section 3.2.

4.1. Conditional alphas

The most basic test of the conditional CAPM is whether conditional alphas are zero. Unlike
prior studies, we can test this hypothesis without using any state variables because each quarterly
or semiannual regression produces a direct estimate of a portfolio’s conditional alpha. Our tests
focus on the average conditional alpha for each portfolio, using the time-series variability of the
estimates to obtain standard errors (in the spirit of Fama and MacBeth, 1973).

The average conditional alphas, in Table 3, provide strong evidence against the conditional
CAPM. Most important, B/M and momentum portfolios’ alphas remain large, statistically
significant, and close to the unconditional estimates. Depending on the estimation method,
V–G’s average conditional alpha is between 0.47% and 0.53% (t-statistics of 3.05–3.65),
compared with an unconditional alpha around 0.59%. W–L’s average alpha shows more
dispersion, ranging from 0.77% to 1.37% for the different estimation methods (t-statistics of
2.66–5.12), but the estimates are in line with an unconditional alpha of about 1.00%. The size
effect continues to be weak, as in unconditional tests, but small stocks show a hint of abnormal
Table 3

Average conditional alphas, 1964–2001

The table reports average conditional alphas for size, B/M, and momentum portfolios (% monthly). Alphas are

estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using monthly

returns. The portfolios are formed from all NYSE and Amex stocks on CRSP/Compustat. We begin with 25 size-

B/M portfolios (5� 5 sort, breakpoints determined by NYSE quintiles) and ten return-sorted portfolios, all value

weighted. ‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-

cap portfolios, and ‘S–B’ is their difference. Similarly, ‘Grwth’ is the average of the five low-B/M portfolios,

‘Value’ is the average of the five high-B/M portfolios, and ‘V–G’ is their difference. Return-sorted portfolios are

formed based on past six-month returns. ‘Losers’ is the bottom decile, ‘Winrs’ is the top decile, and ‘W–L’ is their

difference. Bold values denote estimates greater than two standard errors from zero.

Size B/M Momentum

Small Big S–B Grwth Value V–G Losers Winrs W–L

Average conditional alpha (%)

Quarterly 0.42 0.00 0.42 �0.01 0.49 0.50 �0.79 0.55 1.33

Semiannual 1 0.26 0.00 0.26 �0.08 0.40 0.47 �0.61 0.39 0.99

Semiannual 2 0.16 0.01 0.15 �0.12 0.36 0.48 �0.83 0.53 1.37

Annual �0.06 0.08 �0.14 �0.20 0.32 0.53 �0.56 0.21 0.77

Standard error

Quarterly 0.20 0.06 0.22 0.12 0.14 0.14 0.20 0.13 0.26

Semiannual 1 0.21 0.06 0.23 0.12 0.14 0.15 0.19 0.14 0.25

Semiannual 2 0.21 0.06 0.23 0.14 0.15 0.16 0.20 0.15 0.27

Annual 0.26 0.07 0.29 0.16 0.17 0.14 0.21 0.17 0.29

Quarterly and Semiannual 1 alphas are estimated from daily returns, Semiannual 2 alphas are estimated from

weekly returns, and Annual alphas are estimated from monthly returns.
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returns in quarterly regressions. Overall, the conditional CAPM performs about as poorly as the
unconditional CAPM.
The close correspondence between conditional and unconditional alphas supports our

analytical results in Section 2, i.e., that time-varying betas should have a small impact on
asset-pricing tests. The short-window regressions allow betas to vary without restriction
from quarter to quarter or year to year, and we show later that betas do, in fact, vary
significantly over time. Yet compared with unconditional tests, the alpha for the long-short
B/M strategy drops by only about 0.10%, from 0.60% to 0.50%, and the alpha for the
momentum strategy stays close to 1.00%. Thus, time variation in beta has only a small
impact on measures of CAPM pricing errors.
A couple features of Table 3 deserve highlighting. First, the standard errors are not

taken directly from the short-window regressions but are based instead on the sample
variability of the conditional alphas (e.g., the standard deviation of the 148 quarterly
estimates divided by the square root of 148). The tests are therefore robust to both
heteroskedasticity, which does not affect the standard error of a sample average, and to
autocorrelation, which should not exist (in alphas) if the conditional CAPM holds because
every alpha estimate should have a conditional mean of zero.
Second, our short-window regressions ignore high-frequency changes in beta, but we

doubt that such changes affect the results significantly. As noted earlier, daily changes in
beta are a concern only if they are very large and covary strongly with high-frequency
changes in the risk premium or volatility. Indeed, betas, volatility, and the risk premium
would have to exhibit enormous variation within the quarter—much more than they show
across quarters—in order to explain the pricing errors from our short-window regressions.
Appendix B explores these issues more fully. Simulations in which betas change daily or
weekly, and otherwise calibrated to the data, suggest that our short-window regressions
capture nearly all of the impact of time-varying betas.

4.2. Conditional betas

The large and significant conditional alphas in Table 3 provide direct evidence against
the conditional CAPM. An alternative test is to ask whether betas vary over time in a way
that might explain portfolios’ unconditional alphas via the mechanisms discussed in Section
2: do betas covary strongly with the market risk premium or volatility? The fact that our
estimates of conditional and unconditional alphas are similar tells us the answer must be
no, but it seems useful to look at time variation in betas to get additional perspective for
what’s driving the results. These tests reinforce our conclusion that betas don’t vary
enough to redeem the conditional CAPM.
Table 4 reports summary statistics for conditional betas. The average betas in Panel A

are generally close to our earlier estimates of unconditional betas. Focusing on the
semiannual estimates from weekly returns (Semiannual 2), S–B has an average conditional
beta of 0.32 (vs. an unconditional weekly beta of 0.39), V–G has an average beta of –0.19
(vs. an unconditional beta of –0.24), and W–L has an average beta of –0.14 (vs. an
unconditional beta of –0.17).
Panels C and D indicate that betas fluctuate significantly over time. In Panel C, the

standard deviation of estimated betas is often greater than 0.30 and sometimes higher than
0.40 (for momentum portfolios). Part of the variability is due to sampling error, so we
focus more on the implied variability of true betas. Specifically, we can think of the
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Table 4

Time variation in betas, 1964–2001

The table reports summary statistics for the conditional betas of size, B/M, and momentum portfolios. Betas

are estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using

monthly returns, correcting for nonsynchronous trading as described in the text. Panels A and C report the time-

series mean and standard deviation of beta, Panel B reports the average standard error of beta from the short-

window regressions, and Panel D reports the implied time-series standard deviation of true betas.

The portfolios are formed from all NYSE and Amex stocks on CRSP/Compustat. We begin with 25 size-B/M

portfolios (5� 5 sort, breakpoints determined by NYSE quintiles) and ten return-sorted portfolios, all value

weighted. ‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-

cap portfolios, and ‘S–B’ is their difference. Similarly, ‘Grwth’ is the average of the five low-B/M portfolios,

‘Value’ is the average of the five high-B/M portfolios, and ‘V–G’ is their difference. The return-sorted portfolios

are formed based on past six-month returns. ‘Losers’ is the bottom decile, ‘Winrs’ is the top decile, and ‘W–L’ is

their difference.

Size B/M Momentum

Small Big S–B Grwth Value V–G Losers Winrs W–L

Panel A: Average betas

Quarterlya 1.03 0.93 0.10 1.17 0.98 �0.19 1.19 1.24 0.05

Semiannual 1 1.07 0.93 0.14 1.19 0.99 �0.20 1.20 1.24 0.05

Semiannual 2 1.23 0.91 0.32 1.25 1.06 �0.19 1.33 1.19 �0.14

Annual 1.49 0.83 0.66 1.36 1.17 �0.19 1.38 1.24 �0.14

Panel B: Average std. errorb

Quarterly 0.13 0.06 0.17 0.10 0.10 0.12 0.17 0.14 0.24

Semiannual 1 0.09 0.04 0.12 0.07 0.07 0.08 0.12 0.09 0.17

Semiannual 2 0.16 0.07 0.20 0.11 0.12 0.14 0.20 0.15 0.29

Annual 0.36 0.13 0.42 0.22 0.24 0.30 0.40 0.28 0.57

Panel C: Std. deviation of estimated betas

Quarterly 0.35 0.15 0.38 0.22 0.30 0.28 0.41 0.37 0.68

Semiannual 1 0.31 0.13 0.32 0.19 0.29 0.25 0.33 0.32 0.58

Semiannual 2 0.35 0.13 0.38 0.20 0.33 0.33 0.44 0.36 0.71

Annual 0.54 0.14 0.56 0.27 0.46 0.41 0.52 0.44 0.83

Panel D: Implied std. deviation of true betas c

Quarterly 0.32 0.13 0.33 0.19 0.28 0.25 0.36 0.33 0.63

Semiannual 1 0.29 0.12 0.30 0.18 0.28 0.24 0.30 0.30 0.55

Semiannual 2 0.31 0.10 0.32 0.16 0.31 0.29 0.36 0.32 0.62

Annual 0.35 — 0.25 0.04 0.37 0.19 0.19 0.29 0.52

aQuarterly and Semiannual 1 betas are estimated from daily returns, Semiannual 2 betas are estimated from

weekly returns, and Annual betas are estimated from monthly returns.
bAverage standard error from the short-window regressions, not the standard error of the average.
cThe implied variance of true betas equals var(bt) – var(et), the difference between the variance of estimated

betas and the average variance of the sampling error in bt (from the regressions). The standard deviation is

undefined for Big using annual windows/monthly returns because the implied variance is negative.
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estimated betas as bt ¼ bt+et, where bt is the true conditional beta and et is sampling error.
As long as beta is stable during the estimation window and the regression satisfies standard
OLS assumptions, bt is an unbiased estimate of bt, implying that bt and et are uncorrelated
and that var(bt) ¼ var(bt)+var(et). We use this equation to back out the volatility of true
betas, where var(et) is the average sampling variance of bt–bt from the short-window
regressions (see Fama and French, 1997).
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As shown in Panel D, the volatility of betas remains substantial even after removing
sampling error. Focusing on the long-short strategies, S–B’s beta has a standard deviation
of around 0.30, V–G’s beta has a standard deviation of around 0.25, and W–L’s beta has a
standard deviation of around 0.60.
The magnitude of these standard deviations can be seen most easily in Fig. 2. In

particular, S–B’s beta varies from a high of 1.02 (t-stat ¼ 7.22) in 1966 to a low of –0.64
(t-stat ¼ –5.51) in 1989. V–G’s beta reaches a maximum of 0.54 (t-stat ¼ 5.13) in 1976
before falling to a minimum of –0.99 (t-stat ¼ –11.39) just six years later. The momentum
strategy’s beta is the most volatile, which is not surprising given that the strategy almost
certainly has the highest turnover. In Fig. 2, W–L’s beta varies from a high of 2.25
(t-stat ¼ 8.98) to a low of –1.51 (t-stat ¼ –4.47).
4.3. Beta and the market risk premium

Section 2 shows that, if the conditional CAPM holds and beta covaries with the risk
premium gt, a portfolio’s unconditional alpha is approximately auEcov(bt,gt) ¼ rsbsg. In
that section, we consider values of sb ranging from 0.3 to 0.7 to illustrate that implied
alphas are relatively small for ‘‘plausible’’ parameters (see Table 1). This range seems
reasonable given the results in Table 4.
We can also estimate cov(bt,gt) directly from the data. As a first step, Table 5 explores

the correlation between betas and several state variables that have been found to capture
variation in the equity premium. The state variables are lagged relative to beta (i.e., known
prior to the beta estimation window), so the correlations are predictive. RM,�6 is the past
six-month return on the market portfolio; TBILL is the one-month T-bill rate; DY is the
12-month rolling dividend-to-price ratio on the value-weighted NYSE index; TERM is the
yield spread between ten-year and one-year T-bonds; and CAY is the consumption-to-
wealth ratio of Lettau and Ludvigson (2001). The portfolios’ lagged betas, denoted bt�1,
are also included to test for persistence. Table 5 focuses on betas estimated semiannually
using daily returns, the same as those used in Fig. 2.
Panel A reports the correlation between betas and the state variables. The first row

shows that betas are persistent but that autocorrelations are far from one, with estimates
between 0.45 and 0.68 for most of the raw portfolios and a bit lower, 0.37 to 0.51, for the
long-short strategies.5 Momentum betas are both the least persistent and the most highly
correlated with past market returns. Winner betas increase (correlation of 0.47) and Loser
betas decrease (correlation of –0.53) after the market does well. This pattern is intuitive: we
expect the Winner portfolio to become weighted towards high-beta stocks when the market
goes up since those stocks do best (Ball et al., 1995; Grundy and Martin, 2001). Panel A
also shows that Value betas are positively correlated with CAY. Hence, our short-window
regressions capture the same variation in Value betas found by Lettau and Ludvigson
(2001), though our pricing conclusions differ substantially.
Panel B studies the joint explanatory power of the state variables. For this panel, the

state variables are scaled by their standard deviations, so the regression slopes can be
5The standard error of the estimates is roughly 1/
ffiffiffiffi
T
p
¼ 0.12 under the null that the autocorrelations are zero.

Also, true betas should be more highly autocorrelated than estimated betas: sampling error in beta, if serially

uncorrelated, would attenuate the autocorrelations by var(bt)/var(bt). The statistics in Panels C and D of Table 4

suggest that the attenuation bias is small for our data.
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Fig. 2. Conditional betas, 1964–2001. The figure plots conditional betas for size, B/M, and momentum portfolios.

The dark line is the point estimate and the light lines indicate a two-standard-deviation confidence interval. Betas

are estimated semiannually (non-overlapping windows) using daily returns. The portfolios are formed from all

NYSE and Amex stocks on CRSP/Compustat. We begin with 25 size-B/M portfolios (5� 5 sort, breakpoints

determined by NYSE quintiles) and ten return-sorted portfolios, all value weighted. ‘S–B’ is the average return on

the five low-market-cap portfolios (Small) minus the average return on the five high-market-cap portfolios (Big).

‘V–G’ is the average return on the five high-B/M portfolios (Value) minus the average return on the five low-B/M

portfolios (Growth). Return-sorted portfolios are formed based on past six-month returns. ‘W–L’ is the return on

the top decile (Winners) minus the return on the bottom decile (Losers).
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interpreted as the change in beta predicted by a one-standard-deviation change in the state
variables. The slopes indicate that betas vary significantly with TBILL, DY, and TERM.
Small, Value, and Winner stocks have high betas when TBILL and TERM are low (slopes
of –0.08 to –0.14) and when DY is high (slopes of 0.11–0.14). The effect of RM,�6 on
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Table 5

Predicting conditional betas, 1964–2001

The table reports the correlation between various state variables and the conditional betas of size, B/M, and

momentum portfolios. Betas are estimated semiannually using daily returns. The state variables are lagged relative

to the beta estimates. bt�1 is the portfolio’s lagged beta; RM,�6 is the past six-month market return; TBILL is the

one-month T-bill rate; DY is the log dividend yield on the value-weighted NYSE index; TERM is the yield spread

between ten-year and one-year T-bonds; and CAY is the consumption-to-wealth ratio of Lettau and Ludvigson

(2001). Panel A reports simple correlations between estimated conditional betas and the state variables, and Panel

B reports slope estimates when betas are regressed on all of the state variables together.

The portfolios are formed from all NYSE and Amex stocks on CRSP/Compustat. We begin with 25 size-B/M

portfolios (5� 5 sort, breakpoints determined by NYSE quintiles) and ten return-sorted portfolios, all value

weighted. ‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-

cap portfolios, and ‘S–B’ is their difference. Similarly, ‘Grwth’ is the average of the five low-B/M portfolios,

‘Value’ is the average of the five high-B/M portfolios, and ‘V–G’ is their difference. The return-sorted portfolios

are formed based on past six-month returns. ‘Losers’ is the bottom decile, ‘Winrs’ is the top decile, and ‘W–L’ is

their difference.

Size B/M Momentum

Small Big S–B Grwth Value V–G Losers Winrs W–L

Panel A: Correlation between betas and state variables

bt�1 0.55 0.68 0.43 0.58 0.67 0.51 0.30 0.45 0.37

RM,�6 �0.05 �0.01 �0.05 �0.18 0.00 0.14 �0.53 0.47 0.56

TBILL �0.04 0.11 �0.08 0.15 �0.12 �0.25 0.14 �0.25 �0.21

DY 0.22 0.64 �0.04 0.37 0.40 0.18 0.13 �0.12 �0.14

TERM �0.20 0.19 �0.27 �0.12 0.01 0.10 �0.01 �0.08 �0.04

CAY �0.12 0.50 �0.31 �0.01 0.17 0.20 0.09 �0.09 �0.10

Panel B: Betas regressed on the state variables a

Slope estimate

bt�1 0.12 0.05 0.11 0.10 0.12 0.08 0.10 0.15 0.22

RM,�6 0.05 �0.01 0.04 0.02 0.04 0.04 �0.19 0.20 0.39

TBILL �0.13 �0.02 �0.11 �0.03 �0.14 �0.13 0.09 �0.14 �0.24

DY 0.14 0.05 0.09 0.06 0.16 0.10 �0.07 0.11 0.19

TERM �0.10 0.00 �0.10 �0.02 �0.08 �0.07 0.07 �0.11 �0.19

CAY �0.05 0.02 �0.08 �0.03 �0.01 0.03 0.00 �0.01 �0.01

t-statistic

bt�1 3.53 3.99 2.83 4.24 3.88 2.62 3.03 5.31 4.49

RM,�6 1.52 �0.45 1.17 0.73 1.58 1.41 �5.63 7.25 7.63

TBILL �2.56 �1.39 �2.09 �1.06 �3.19 �2.98 1.79 �3.41 �3.22

DY 2.82 3.05 1.74 2.10 3.64 2.65 �1.50 2.87 2.65

TERM �2.40 �0.25 �2.21 �0.81 �2.40 �1.99 1.60 �3.07 �2.81

CAY �1.32 1.86 �1.81 �1.34 �0.17 0.98 0.07 �0.22 �0.13

Adj R2 0.37 0.60 0.26 0.34 0.52 0.32 0.35 0.56 0.53

aThe state variables—including lagged beta—are scaled by their standard deviations. The slopes can be

interpreted as the predicted change in beta associated with a one-standard-deviation change in the state variable.

Bold values denote estimates greater than 1.96 standard errors from zero.
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momentum betas is also quite strong, with a slope of 0.39 for the Winner minus Loser
portfolio. CAY, the consumption-to-wealth ratio of Lettau and Ludvigson (2001), shows
little relation to betas once we control for the other variables. In sum, betas fluctuate with
state variables that have been found to capture variation in the equity premium.
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With that prelude, we estimate cov(bt,gt) in two ways. Our first estimate is simply
cov(bt,RMt), where we have replaced the true conditional beta with our estimate bt and
replaced the risk premium with the realized market return RMt. The logic is that, under the
assumptions of OLS, sampling error in beta should be uncorrelated with market returns,
so the covariance between bt and RMt provides an unbiased estimate of cov(bt,gt):

cov bt;RMtð Þ ¼ cov bt;RMt

� �
¼ cov bt; gt

� �
, (10)

where the last equality uses the fact that unexpected market returns must be uncorrelated
with bt. Eq. (10) is necessarily true if returns are conditionally normal, but it might not
hold for alternative distributions. Empirically, Ang and Chen (2002) show that stocks
covary more strongly in down markets, suggesting that et and st might be correlated for
some firms. Therefore, we report this first estimate primarily as a benchmark rather than as
a perfect estimate of cov(bt,gt).

Table 6, Panel A, shows the results. The numbers can be interpreted as the unconditional
monthly alpha (in percent) that we should observe if the conditional CAPM holds, i.e.,
auEcov(bt,gt). Like our earlier tests, the results provide no evidence that time-varying
betas salvage the CAPM: the implied alphas are either close to zero or have the wrong sign.
The covariance estimates for S–B and W–L betas are generally negative (between –0.04%
and –0.39% for quarterly and semiannual betas), while the covariance estimates for V–G
are small and positive (between 0.04% and 0.11%). Thus, conditional betas do not seem to
covary with the risk premium in a way that can explain the unconditional alphas observed
for B/M and momentum portfolios.

Our second estimate uses the predictive regressions from Table 5. In particular, the
estimator is given by cov(bt*, RMt), where bt* is the fitted value from the regression of bt on
the state variables and its own lag. Because the predictor variables are known at the
beginning of the period, it must be the case that cov(bt*,RMt) ¼ cov(bt*,gt). The estimator
will equal cov(bt,gt) if the error in bt* is uncorrelated with the market risk premium, i.e., if
cov(gt,bt�bt*) ¼ 0. This requires that the state variables do a good job capturing either
time variation in the risk premium or time variation in betas (one is necessary, not both).
The variables do capture a significant fraction of movements in betas—the regression R2s
in Table 5 range from 0.26 to 0.60—but there clearly remains a large component
unexplained. Thus, we again interpret the results with caution, although we have no
particular reason to believe that the unexplained component of beta is correlated one way
or another with gt.

The estimates, in Panel B of Table 6, typically have the same sign as those in Panel A but
are closer to zero. S–B’s and W–L’s betas still covary negatively with market returns, but
only the size strategy’s covariance is now significant. V–G’s betas continue to show little
relation to market returns, with estimates between 0.00% and 0.03% (standard errors
of 0.04%).

In short, covariation between beta and the risk premium does not explain the
unconditional alphas observed for B/M and momentum portfolios. Using the estimates in
Panel B, the conditional CAPM predicts that V–G should have an unconditional alpha of
0.00% to 0.03%, a tiny fraction of the actual alpha, 0.59% (see Table 2). W–L should have
an alpha of –0.08% to –0.12%, small and opposite in sign to the actual alpha, 1.03%. The
results are consistent with our direct evidence that conditional alphas are large and
significant, contrary to the conditional CAPM.
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Table 6

Conditional betas and the market risk premium, 1964–2001

The table reports the covariance between market returns and the conditional betas on size, B/M, and

momentum portfolios. Betas are estimated quarterly using daily returns (Qtr), semiannually using daily and

weekly returns (Semi 1 and Semi 2), and annually using monthly returns (Annual). The market portfolio is the

CRSP value-weighted index. Excess returns on the index are measured over the same window as betas (e.g.,

quarterly betas covary with quarterly returns), but the numbers are all expressed in percent monthly (e.g., the

quarterly covariance is divided by three). Panel A reports the market’s covariance with contemporaneously

estimated betas and Panel B reports the market’s covariance with predicted betas, taken from the regression of

estimated betas on lagged state variables (see Table 4). The size, B/M, and momentum portfolios are formed using

all NYSE and Amex stocks on CRSP/Compustat.

Size B/M Momentum

Small Big S–B Grwth Value V–G Losers Winrs W–L

Panel A: Covariance between estimated betas and market returns (% monthly)

Est. Qtr �0.32 0.07 �0.39 �0.20 �0.12 0.09 0.16 �0.23 �0.38

Semi 1 �0.17 0.07 �0.24 �0.14 �0.03 0.11 �0.03 �0.07 �0.04

Semi 2 �0.12 0.07 �0.19 �0.10 �0.03 0.07 0.15 �0.18 �0.33

Annual 0.06 0.03 0.03 �0.03 0.01 0.04 �0.08 0.11 0.20

Std err.a Qtr 0.08 0.03 0.08 0.05 0.07 0.06 0.09 0.08 0.16

Semi 1 0.07 0.03 0.07 0.04 0.07 0.06 0.08 0.07 0.13

Semi 2 0.08 0.03 0.08 0.04 0.08 0.07 0.10 0.08 0.15

Annual 0.12 0.03 0.13 0.06 0.10 0.09 0.12 0.10 0.19

Panel B: Covariance between predicted betas and market returns (% monthly)

Est. Qtr �0.06 0.04 �0.09 �0.01 �0.02 0.02 0.06 �0.05 �0.12

Semi 1 �0.07 0.03 �0.10 �0.02 �0.02 0.01 0.05 �0.07 �0.12

Semi 2 �0.04 0.02 �0.05 0.00 �0.01 0.00 0.07 �0.08 �0.14

Annual 0.03 0.01 0.02 0.00 0.01 0.03 0.05 �0.03 �0.08

Std err.a Qtr 0.04 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10

Semi 1 0.05 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10

Semi 2 0.04 0.02 0.03 0.02 0.05 0.04 0.06 0.05 0.10

Annual 0.05 0.02 0.05 0.03 0.06 0.04 0.06 0.05 0.09

aStandard errors are obtained by regressing market returns on the estimated or predicted betas, scaling the

independent variable so that the slope equals a simple covariance. These standard errors implicitly condition on

the sample variance of the betas.
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4.4. Beta and market volatility

Section 2 shows that unconditional alphas depend not only on the covariance between
beta and the risk premium, but also on the covariance between beta and market volatility:

au � cov bt; gt

� �
�

g
s2M

cov bt;s
2
t

� �
, (11)

where the last term captures the impact of time-varying volatility. In untabulated results,
we find that the volatility effect is economically quite small. To estimate cov bt;s

2
t

� �
, we

calculate conditional market volatility much like we do betas, using daily, weekly, or
monthly returns over short windows. [We adjust for autocorrelation using the approach of
French et al. (1987).] We then estimate the covariance between market volatility and both
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estimated and predicted betas, similar to Table 6. The estimates of cov bt;s
2
t

� �
are between

–0.02% and 0.02% for every portfolio (std. errors of 0.01–0.02), and, multiplying by
g/s2M ¼ (0.0047/0.0452) ¼ 2.32, the implied impact on unconditional alphas is at most
+/�0.05% monthly. Thus, accounting for time-varying market volatility does little to
improve the performance of the conditional CAPM.

5. Comparison with other studies

Our empirical results and generally skeptical view of conditioning run counter to the
conclusions of Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Santos and
Veronesi (2006), and Lustig and Van Nieuwerburgh (2005). Those studies argue that
conditioning dramatically improves the performance of both the simple and consumption
CAPMs. The studies have been influential, so it seems worthwhile to offer a few
observations on why their conclusions differ from ours.

The four papers differ from ours in many ways, but a key distinction is that they focus
on cross-sectional regressions, not time-series intercept tests, and ignore important
restrictions on the cross-sectional slopes. As such, the papers test only the qualitative
implications of the conditional CAPM, that the effects of time-varying betas are cross-
sectionally correlated with expected returns. They do not provide a full, quantitative test of
the conditional CAPM.

This point can be seen most easily in the context of the simple CAPM. A full test is
whether expected returns are cross-sectionally linear in conditional betas, Et�1[Rit] ¼ bitgt,
with a slope equal to the equity premium. However, following Jagannathan and Wang
(1996), the papers instead focus on the unconditional relation E[Rit] ¼ big+cov(bit,gt),
estimating this cross-sectional regression using various measures of bi and cov(bit,gt). In
this regression, the slope on bi should equal g and the slope on cov(bit,gt) should equal one
but the papers treat the slopes as free parameters. We believe this explains why they find
conditioning to be so important—in particular, the estimated slopes on cov(bt,gt) appear to
be much too large (as we illustrate in a moment).

To be fair, the papers do not estimate the cross-sectional regression,
E[Rit] ¼ big+cov(bit,gt), directly but, rather, consider transformations of it that obscure
the restrictions implied by the conditional CAPM. For example, Jagannathan and Wang
(1996) show that, under some assumptions, the terms bi and cov(bit,gt) can be replaced by
stocks’ unconditional betas and their so-called ‘‘premium betas,’’ bg � cov(Rt,gt)/var(gt).
The other papers use bi and a second loading di that is proportional, under their
assumptions, to cov(bit,gt). These substitutions make it more difficult to see exactly
how their estimates violate the restrictions implied by the conditional CAPM.
As an illustration, we offer here a detailed example from Lettau and Ludvigson (2001),
hereafter LL.

LL’s main conclusions concern the performance of the consumption CAPM. The
‘‘CCAPM’’ implies that Et�1[Rit] ¼ bitgt, where, in an abuse of notation, bit is now an
asset’s consumption beta and gt is the consumption-beta risk premium (in the standard
model, gtEfsc

2, where f is aggregate relative risk aversion and sc
2 is the variance of

consumption growth). Taking unconditional expectations, E[Rit] ¼ big+cov(bit,gt), just as
in the simple CAPM. To implement this empirically, LL estimate how stocks’ consumption
betas fluctuate with the consumption-to-wealth ratio CAY: bit ¼ bi+di CAYt, where bi

and di are estimated in the first-pass regression Rit ¼ ai0+ai1 CAYt+(bi+di CAYt) Dct+et
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(see LL, p. 1266). Substituting bit into the unconditional relation above gives

E½Rit� ¼ bigþ dicov CAYt; gt

� �
. (12)

Thus, in LL’s context, the conditional CCAPM implies that the slope on bi should be the
average consumption-beta risk premium and the slope on di should be cov(CAYt,gt). In
principle, the second restriction could be tested and, we believe, would almost certainly be
rejected. Here we simply note that the estimated slope seems huge. In LL’s Table 3, the
slope on di is around 0.06% or 0.07% quarterly. Interpreting this slope as an estimate of
cov(CAYt,gt) and using the fact that the covariance must be less than sg scay, LL’s estimate
implies that sg43.2% quarterly (that is, if the slope is less than sg scay, then sg4slope/
scay ¼ 0.0006/0.019). In contrast, LL estimate that the average risk premium is close to
zero, between –0.02% and 0.22% quarterly. Thus, if the conditional CCAPM truly
explains their results, the risk premium must be close to zero on average yet have enormous
volatility (and, since gt must be positive, it must also have enormous skewness). These facts
are difficult to reconcile—quantitatively—with the consumption CAPM.6

On a related note, the cross-sectional R2s reported by all four papers should be
interpreted with caution. The papers find a dramatic increase in R2 for their conditional
models, nicely illustrated by their figures showing predicted returns plotted on actual
returns. But these R2s are not very informative for a couple of reasons. First, as discussed
above, the papers ignore key restrictions on the cross-sectional slopes; the R2s would likely
drop significantly if the restrictions were imposed. Second, the papers all use returns on
size–B/M portfolios that have two key features: the returns can be traced to three common
factors (the Fama-French factors produce time-series R2s above 90%) and betas on the
factors explain most of the cross-sectional variation in expected returns. In this setting, it
can be easy to find a high sample R2 even when the population R2 is zero. For example, we
have simulated the two-pass regressions of Lettau and Ludvigson (2001, Table 3) using
historical returns and consumption but substituting a randomly generated, normal, and
IID state variable in place of CAY. In 10,000 simulations, the median R2 is 0.43 and the
5th and 95th percentiles are 0.12 and 0.72, respectively (compared with a reported 0.66).
These results suggest that, despite its increasing use, the cross-sectional R2 is not very
meaningful. Lewellen et al. (2006) explore this point more fully (see, also, Roll and Ross,
1994; Kandel and Stambaugh, 1995).
6. Conclusion

The main point of the paper is easily summarized: the conditional CAPM does not
explain asset-pricing anomalies like B/M or momentum. Analytically, if the conditional
CAPM holds, deviations from the unconditional CAPM depend on the covariances among
betas, the market risk premium, and market volatility. We argue that, for plausible
parameters, the covariances are simply too small to explain large unconditional pricing
errors.
6Campbell and Cochrane (1999) provide a convenient benchmark. In their model, gtEfsc
2 (1+lt), where lt is

the sensitivity function that defines how the surplus consumption ratio responds to consumption. Calibrations in

their paper assume that f ¼ 2, sc ¼ 0.75% quarterly, and generate lt with a mean of 15 and a standard deviation

of 7.5 (roughly). Substituting into gt, these parameters imply that sgE0.10% quarterly, more than an order of

magnitude smaller than the estimate implied by LL’s regressions.
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The empirical tests support this view. We use short-window regressions to directly
estimate conditional alphas and betas for size, B/M, and momentum portfolios from 1964
to 2001. This methodology gets around the problem, common to all prior tests, that the
econometrician cannot observe investors’ information sets. We find that betas vary
considerably over time, with relatively high-frequency changes from year to year, but not
enough to generate significant unconditional pricing errors. Indeed, there is little evidence
that betas covary with the market risk premium in a way that might explain the alphas of
B/M and momentum portfolios. Most important, conditional alphas are large and
significant, in direct violation of the conditional CAPM.

Appendix A

This appendix derives Eq. (2), the expression for a stock’s unconditional beta. Let Rit be
the excess return on asset i, RMt be the excess return on the market portfolio, and bt be the
stock’s conditional beta for period t (given information at t–1). Also, let bt ¼ b+Zt, where
b ¼ E[bt] and Zt is the zero-mean, time-varying component. According to the conditional
CAPM, Rit ¼ bt RMt+et, so the unconditional covariance between Rit and RMt equals

cov Rit;RMtð Þ ¼ cov bþ Zt

� �
RMt;RMt

� �
¼ bs2M þ E ZtR

2
Mt

� �
� E ZtRMt

� �
E RMt½ �. ðA:1Þ

Recall that E[Zt] ¼ 0,Et�1[RMt] ¼ gt,Et�1[R
2
Mt] ¼ gt

2+s2t , and E[RMt] ¼ g. Therefore, the
second term equals cov(Zt,gt

2+s2t ) and the last term equals g cov(Zt,gt). Substituting into
(A.1) yields

cov Rit;RMtð Þ ¼ bs2M þ cov Zt;s
2
t

� �
þ cov Zt; g

2
t

� �
� g cov Zt; gt

� �
. (A.2)

Finally, write gt ¼ g+(gt–g) and substitute into the second-to-last term of (A.2).
Simplifying yields

cov Rit;RMtð Þ ¼ bs2M þ cov Zt;s
2
t

� �
þ g cov Zt; gt

� �
þ cov Zt; gt � g

� �2h i
. (A.3)

Since bt ¼ b+Zt, we can simply replace Zt with bt throughout this expression. The
unconditional beta can then be found by dividing both sides by the market’s unconditional
variance. The result, identical to Eq. (2) in the text, is a general formula for the
unconditional beta when expected returns, variances, and covariances all change over time
and the conditional CAPM holds.

Appendix B

This appendix explores how high-frequency changes in beta affect our short-window
regressions. In principle, we expect the impact of, say, daily changes in beta on quarterly
regressions to be similar to the effects discussed in Section 2 except that now only
intraquarter variation in betas and expected returns (around their quarterly means) should
be important. We use simulations to explore the effects formally, focusing on the case of
constant volatility.

The simulations match many properties of the data but the parameters are guided in
part by theory. We assume that both beta and the market risk premium follow weekly
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AR(1) processes:

gt ¼ fgt�1 þ xt where xt � N 0;s2x
h i

, (B.1)

bt ¼ kbt�1 þ vt where vt � N 0;s2v
� �

. (B.2)

The (realized) return on the market portfolio is RMt ¼ gt+st, with st � N[0,ss
2], and the

return on the stock is Rt ¼ bt RMt+et, with et � N[0, se
2]. In addition, the simulations

capture two potentially important features of the data: (i) shocks to the risk premium are
allowed to covary negatively with market returns (prices drop if the risk premium goes up);
and (ii) shocks to betas are allowed to covary negatively with the stock’s returns (prices
drop if risk goes up).
Specifically, we simulate weekly returns under several assumptions: (i) the correlation

between betas and the risk premium is either 0.0 or 0.8; (ii) the correlation between shocks
to the risk premium and shocks to realized market returns is 0.0, –0.4, or –0.8; and (iii) the
correlation between idiosyncratic shocks to beta (the component that is not correlated with
the risk premium) and idiosyncratic stock returns is either 0.0 or –0.5. These parameters
are chosen to cover a wide range of empirically plausible values. In addition, all
simulations assume that bt and gt both have monthly autocorrelations of 0.98, bt has a
mean of 1.0 and volatility of 0.5, gt has a mean of 0.5% and volatility of 1.5% monthly, the
market’s conditional volatility is 4.5% monthly, and the asset’s idiosyncratic volatility is
5%. We simulate returns with extreme variation in betas and the risk premium in order to
generate unconditional alphas that are in line with their empirical values.
The simulation results are reported in Table A.1 (based on 50,000 quarters of weekly

returns). True conditional alphas are zero in the simulations, since the CAPM holds in
weekly returns. The top panel shows simulations in which bt and gt are uncorrelated, so
unconditional alphas are also zero, while the bottom panel shows simulations in which
cor(bt,gt) ¼ 0.8, so unconditional alphas are roughly auEcov(bt,gt) ¼ 0.60. The simula-
tions confirm that unconditional alphas estimated using either weekly or monthly returns
produce alphas close to the theoretical value. The fact that weekly and monthly alphas are
nearly identical suggests that the horizon over which the CAPM is assumed to hold is not
very important—if it holds at one frequency, it should hold nearly perfectly at others that
are not too different, absent the microstructure issues discussed in Section 3.
More important, the simulations show that our short-window regressions (quarterly

using weekly returns) produce conditional alphas that are close to zero, even though betas
and the risk premium vary wildly over time. For the six scenarios in the top panel, in which
beta and the risk premium are uncorrelated, the short-window alphas are almost exactly
zero. For the six scenarios in the bottom panel, in which auE0.60% monthly, the short-
window alphas are between 0.01% and 0.13% monthly—that is, our short-window
regressions capture 80–99% of the pricing impact of time-varying betas. The short-window
regressions work almost perfectly as long as market returns are not too highly correlated
with shocks to the risk premium, but they deteriorate somewhat (though still work
extremely well) as that correlation approaches –1.0. The small deterioration seems to arise
because the market return is also negatively correlated with shocks to beta; quarters in
which beta goes down are quarters in which the market return is high, pushing the short-
window alphas slightly positive. In general, the simulations suggest that our short-window
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Table A.1

The impact of high frequency variation in beta on CAPM regressions

The table reports unconditional and average short-window regressions from simulations in which beta and the

risk premium vary weekly. The return-generating process is described in the text. The table shows results for 12

scenarios that differ in three dimensions: (i) the correlation between bt and gt is either 0.0 or 0.8; (ii) the correlation

between idiosyncratic shocks to bt (the component that isn’t correlated with gt) and idiosyncratic stock returns is

either 0.0 or –0.5 (labeled cor(b,e) in the table); and (iii) the correlation between shocks to gt+1 and shocks to RMt

is either 0.0, –0.4, or –0.8 (labeled cor(g,RM) in the table). The conditional CAPM holds in weekly returns but the

table shows unconditional regressions using both weekly and monthly returns.

Parameters Unconditional regressions Short-window regressions

cor(b,g) cor(b,e) cor(g,RM) auweekly buweekly aumonthly bumonthly aweekly bweekly cov(b,RM)

0 0 0 0.01 0.97 0.01 0.97 0.00 0.97 0.01

0 0 �0.4 0.01 0.97 0.01 0.97 �0.01 0.97 0.02

0 0 �0.8 0.01 0.97 0.01 0.97 �0.01 0.97 0.02

0 �0.5 0 0.02 0.97 0.02 0.97 0.01 0.97 0.01

0 �0.5 �0.4 0.02 0.97 0.03 0.97 0.01 0.97 0.02

0 �0.5 �0.8 0.03 0.97 0.02 0.97 0.00 0.97 0.02

0.8 0 0 0.62 0.99 0.61 1.00 0.01 0.98 0.61

0.8 0 �0.4 0.62 0.99 0.61 1.00 0.06 0.98 0.56

0.8 0 �0.8 0.61 0.99 0.61 1.00 0.11 0.99 0.50

0.8 �0.5 0 0.63 0.99 0.63 1.00 0.02 0.98 0.61

0.8 �0.5 �0.4 0.63 0.99 0.63 1.00 0.08 0.98 0.56

0.8 �0.5 �0.8 0.63 0.99 0.63 1.00 0.13 0.99 0.50

Alphas, in bold, are % monthly.
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regressions do a very good job of capturing the impact of time-varying betas even when
betas vary at high frequency.
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