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The Short-Run Effects of Time-Varying Prices
in Competitive Electricity Markets

Stephen P. Holland* and Erin T. Mansur**

We analyze the efficiency, distributional, and environmental effects
of real-time pricing (RTP) adoption in the short run. Consistent with theory,
our simulations of the PIM electricity market show that RTP adoption improves
efficiency and compresses the distributions of loads and prices. Adoption
increases average load but decreases operating profits with the largest decrease
Jor oil-fired generation (59% when all customers adopt). Consumer surplus and
welfare gains are modest (2.5% and 0.24% of the energy bill), and emissions
of 8O, and NO, increase but CO, emissions decrease. Approximately 30% of
these efficiency gains could be captured by varying flat rates monthly instead
of annually. Monthly flat rate adjustment has many of the same effects as RTP
adoption, captures more of the deadweight loss than time of use (TOU) rates,
and requires no new metering technology.

1. INTRODUCTION

As electricity markets were restructured in the last decade, sophisticat-
ed auction mechanisms were developed to trade wholesale electricity and reveal
wholesale prices. However, much less attention was paid to retail pricing of elec-
tricity,' and the opening of retail markets to competition has lagged.? Economic
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1. Exceptions include Borenstein and Holland (2005), Joskow (2000), and Joskow and Tirole (2004).
2. Some form of retail competition is established in Texas and Great Britain. Most other proposals
for retail competition in the various states have been tabled.
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theory describing efficient retail pricing of electricity is based on the well-known
theory of peak-load pricing—known as real-time pricing (RTP) in current electric-
ity policy debates.” Despite clear efficiency gains in theory. real-time pricing has
encountered resistance from many quarters. To help understand this resistance., we
analyze the short-run effects of time varying prices in the Mid-Atlantic electricity
market known as PJM by constructing a simulation model of competitive wholesale
and retail markets.* Using the model. we analyze the changes in surplus to different
customers and producers and the environmental effects of RTP adoption.

The basic economic intuition of RTP adoption is straightforward. For
customers not on RTP, retail service providers (whether public service utilities or
competitive retailers) must procure sufficient power to cover retail demand at the
predetermined flat retail price. With predetermined retail prices, demand in the
wholesale market is very inelastic if no customers are on RTP. For customers on
RTP. retail service providers pass through the wholesale price. It the wholesale
price is high in a given hour, the RTP customers will conserve electricity and
reduce the amount of electricity that must be procured. Conversely, it the whole-
sale price is low in a given hour, the RTP customers will increase their electricity
consumption. Thus. RTP adoption by more customers increases the elasticity of
the wholesale demand by rotating the demand around the flat retail rate.

The long-run theoretical effects of the increased demand elasticity from
RTP adoption are described by Borenstein and Holland (2005). They show that
off-peak quantities demanded and prices increase while peak quantities and prices
decrease. This implies that the long-run equilibrium flat rate falls with RTP adop-
tion, but that the effects on average loads and capacity are ambiguous. Borenstein
and Holland also calculate long-run efticiency gains of three percent to 1% of the
cnergy bill with RTP adoption. We tind much smaller efficiency gains in the short
run, which may help to explain why these efficiency gains have not been realized.

While much of the discussion of time-varying prices has focused on real-
time pricing, prices could vary in other ways as well. In particular, flat rates for
all hours can vary more or less frequently, or rates could vary by time of use. We
compare the benefits of monthly flat rate adjustment with traditional time-of-use
(TOU) rates. Surprisingly, we find that the former is superior.

We also examine the environmental impacts of RTP adoption. More spe-
cifically. we model how emissions of sulfur dioxide, SO.. nitrogen oxides, NO .
and carbon dioxide. CO,. change in the PJM market as more and more customers
adopt RTP. This analysis is complementary to Holland and Mansur (2004). which
econometrically estimates the environmental effects of RTP adoption. For each
NERC region in the U.S.. their paper estimates how a reduction in demand vari-

3. Scee Borenstein, Jaske. and Rosenfeld (2002) for a general discussion of RTP. Real-time pricing
usually has prices that vary every hour or every halt hour.

4. Here “short run™ refers to a fixed capital stock of generation capacity whereas “long run™ refers
1o a variable capital stock. We do not analyze demand-side installation of technology tor responding
Lo real-time prices. which would presumably make response more price sensitive.

S. Other possible sources of resistance to RTP could be institutional or political. We do not
exphcitly model these sources.
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ance (a likely outcome of RTP adoption) will affect the emissions of SO,. NO_
and CO,. They find that the impact differs depending on the generation technol-
ogy characteristics of the region.

Section 2 presents the theoretical model. which incorporates the etfects
of RTP adoption on the retail rates paid by customers not on RTP. Section 3
discusses the data. and describes the simulation model. Section 4 presents the
simulation results. With RTP adoption. we find in the short run that: (/) the dis-
tributions of loads and prices are compressed. (i) all rates decrease. (iif) average
loads increase. (/1) profits decrease for all generating sectors, (v) consumers sur-
plus increases for all consumers. (vi) efficiency gains are modest, and (vir) emis-
sions of SO, and NO_ increase. but emissions of CO, decrease. The robustness of
the results to assumptions about demand. imports, generator outages, elasticity of
peak demand. and homogenous customers is addressed in the appendix. Section §
analyzes flat rates that vary by month or by time of use and compares both policies
to annually varying flat rates. Section 6 concludes.

2. MODEL

To estimate the short-run eftects of RTP adoption, we first model pric-
ing in competitive electricity markets where some proportion of customers are on
real-time pricing. A similar model is analyzed carefully in Borenstein and Hol-
land so the model is only outlined here.”

Since electricity cannot be stored economically. demand must equal
supply at all times. We assume there are 7" hours with retail demand in hour
t given by D(p) where D'<0.” A fraction. «. of the customers pays real-time
prices, i.e., retail prices that vary hour to hour.® The remaining fraction of cus-
tomers, 1- a. pay a flat retail price. p. that is the same for every hour in a given
period. i.e.. p, = p_if rand 1" are in the same period.” We assume that « is exog-
enous and that customers on real-time pricing do not differ systematically from
those on flat-rate pricing."” Aggregate (wholesile) demand from all customers is

6. Borenstein and Holland show that in the long run RTP adoption decreases flat rates, increases
surplus to flat-rate customers, increases surplus o switchers, decreases surplus to RTP customers, and
has an indeterminate eftfect on capacity and welfure, Our short-run simulations agree with these results
except that all customers are made better oft.

7. The additive separability assumption implies that cross-price elasticities are zero. Taylor ef al.
(2005) use the generalized McFadden tunctional form to estimite cross price clasticities. They find
both positive and negative cross-price elasticities that are generally an order of magnitude smaller than
own-price effects. See Herriges et af. (1993 Caves er af. (1987). and Patrick and Wolak (2001) tor
further demand elasticity estimates.

8. Following standard assumptions, we assume consumers are rational, e.g.information costs are
small and customers respond to price signals.

9. Here the periods are years. In later simulations, we allow the tlat rates to vary by month or by
time of use

10. See Barbose er al. 12004y, Maoczzi er al. (2004), Matsukawa (2004), and Jenkins (2005) for
discussions of demand response to actual RTP programs. Clearly. the share of customers adopting
RTP will depend on market conditions. We explore the incentive to adopt RTP below.
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then I~)I(pl. p)=aD(p)+ (1-a)D(p,) which implies that l~)’ is decreasing in p, and
P, When a =0, wholesale demand is perfectly inelastic. The larger the share of
customers on RTP, the more elastic is wholesale demand." Note that wholesale
demand rotates around the point (D(p ), p)) with RTP adoption.

Each of N generating units supplies electricity to the wholesale market
based on its installed technology. We assume that generator n can produce up to
capacity ¢, at constant marginal cost, ¢ . Since marginal costs depend on fuel and
other input prices, we allow the marginal cost for each unit to vary over the course
of the year. A competitive generator would produce at capacity if the wholesale
price. w . were above its marginal cost and would produce nothing if the whole-
sale price were below its marginal cost. Therefore, the supply curve from each
generating unit is inverse-L shaped. The industry supply curve, S is found by
aggregating the supply from each generating unit for hour 1.

The retail sector purchases electricity from the wholesale sector and dis-
tributes it to the final customers.'” We assume the identical, competing retailers
have transmission and distribution costs of ¢/ per MWh. The protits of the retail
sector are then

I _
T=3p,—w, =)= Dp)+(p,—w -c)aD (p) (h
=1

The first term is the retail profit from serving the flat-rate customers and the sce-
ond term is the retail profit from serving the RTP customers.

It there are no costs of switching retailers, Bertrand competition in the
retail sector implies zero retail profits in equilibrium, i.e., & =0. Competition over
real-time prices implies that each real-time price equals the wholesale price plus
distribution costs, i.e., /7’= w + ¢/ and competition over the flat rates implies that
cach annual flat rate is the distribution cost plus the weighted average of whole-
sale prices for that period where the weights are the quantities demanded by the
flat-rate customers, i.¢.:

- w D)
5oy e (2)

Seen,D(p)

for each + where @ is the set containing all hours in the same period as hour 1"
Equating supply and demand in the wholesale market for cach ¢, ie.. S (w) =
D (p. p). completes the characterization of the equilibrium.

L1 This holds because Dip, p ) is deereasing in et for p > poand Dip, p) is increasing in o for
P<p.

12, Under uncertainty, the announcement by the retailer of prices ex anfe or ex post has important
implications for risk sharing between the retailers and consumers.

I 3. These equilibrium conditions imply that our results are applicable o a regulated retail sector as
long as the regulation ensuares no teconomic) profit tor the regulated retailers and no cross-subsidization
between RTP and tlat-rate customers.
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3. DATA AND SIMULATION MODEL

The study period covers two years from April to March beginning in
April of 1998 and ending in March of 2000. We apply the model to the PIM
electricity market. which covered parts of Pennsylvania, New Jersey, Maryland.
and Delaware at that time."* Unless otherwise noted, all data are from various
government and industry sources as detailed in Mansur (forthcoming). The 392
modeled fossil generating units, which range in capacity from 0.6 MW to 850
MW, account for approximately 60% of the electricity generated in PJM with the
remainder being supplied primarily by nuclear power." The largest fossil units
are powered by coal (46% of fossil capacity) with the remainder powered by oil
and natural gas (19% and 35% of fossil capacity).

Since the efficiency of each unit (measured by the heat rate in BTU per
kWh) is publicly available, we can estimate the daily marginal cost of each unit
from the costs of fuel and other inputs. Key input prices used in calculating the
daily supply curves include prices of natural gas, heating oil. SO, permits, and
NO_permits.'® Coal prices are assumed constant throughout the study period.

Demand is based on the electricity load reported by PIM. The load aver-
aged 29,400 MWh across the study period with a minimum load of 17,461 MWh
and a maximum load of 51,714 MWh. Wholesale electricity prices ranged from
slightly negative to the price cap of $999 with an average wholesale price of
$25.80 per MWh.

The simulation model uses the data from PIM to estimate the effect
of more customers adopting RTP in competitive markets. In the simulation, we
make a further assumption of identical, constant demand elasticities, but allow
demand for each hour to have a different scale parameter.'” The scale parameters
are calculated from the observed hourly loads and rates in PJM.

The supply side of the model includes generation from fossil, nuclear,
and hydropower.” We assume the fossil supply curve for each coal-, oil-, and
gas-fired generation unit is inverse-L shaped where the marginal cost is calculated
from the unit’s heat rate and daily fuel prices. The capacity of each unit is derated
by its expected outage factor." Supply from nuclear and hydropower is assumed
to be perfectly inelastic at its observed hourly levels throughout the simulations.

14. PIM had a negligible proportion of demand-responsive load during this period.

15. Hydroelectricity accounts for less than 2% of load. and imports/exports are less than 0.1% of
load on average.

16. If firms have fixed contracts for fuel. we assume that they recognize that market prices reflect
true opportunity costs.

17. Since demand is assumed to be of the torm D(p) = A p | the scale parameter is A .

I18. We also reduce the available supply by the amount of clectricity required to regulate the
stability of the electrical grid. The baseline simulation ignores imports, but we report the sensitivity of
the results to an elastic import supply.

19. Generating units may be unavailable in certain hours for a variety of reasons. It a 100 MW
generator, for example, is expected to be unavailable 6% of the time it is called, we treat the effective
capacity of the generator as only 94 MW,
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Nuclear power stations have very low marginal costs and. thus, run whenever
possible. Hydropower in PIM is mostly from run-of-river dams which do not vary
their output based on market conditions. The supply curve is found by aggregat-
ing the supply from cach source. Figure Laillustrates the supply curve for a given
day. Of the fossil units. the coal-fired units have the Towest marginal costs, the
gas-fired units are the mid-merit technology. and oil-fired units have the highest
marginal costs.

Figure la. Supply Curve for all PJM Firms, April 1, 1999
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For a given flat retail price. the wholesale demand curve in any hour is
completely determined, and a candidate wholesale market equilibrium can be cal-
culated from the intersection of the wholesale supply and demand for each hour,
These wholesale prices can be used to caleulate profits to the retail sector tor cach
year. H the retail profit for a year is positive (negative), the equilibrium flat rate
for that year must be fower (higher) than the assumed flat rate. The flat rate for
that year is then adjusted. and a new candidate wholesale market equilibrium and
new retail profit are calculated. Iteration approaches the equilibrium flat rate and
yiclds the equilibrium in the retail and wholesale markets.

The simulation model starts from observed loads and retail prices and
estimates the competitive equilibrium in the wholesale and retail markets. Note
however. that the resulting equilibrium prices may not be directly comparable to
the observed market prices due to market imperfections, for example. regulation,
market power. and intertemporal constraints. Sce Mansur (forthcoming).

4. RESULTS

The results of the bascline simulation are presented in Tables 1-4. The
baseline simulation assumes i demand clasticity of 0.1 and an imtial retail en-
ergy price of $30 per MWh plus $9 for stranded cost recovery with an additional
charge of $40 for T&D.™" The bascline also assumes zero import supply clasticity
and derated capacity. The sensitivity analysis in the appendix addresses each of
these assumptions. We analyze here the effects of RTP adoption on loads. prices.
profits. surplus and emissions.

4.1 Effects on Loads and Prices

Table | shows the changes in equilibrium loads. prices, and flat rates
when the proportion of customers on RTP increases incrementally.”! As expect-
cd. the load distribution is compressed when more customers adopt RTP. This is
shown in Panel A where the maximum hourly load decreases (four percent when
all customers adopt): the minimum hourly load increases (1.5% when all custom-
ers adopt): and the standard deviation decreases.” Figures 2a & 2b illustrate how
the distribution of foad is compressed as more customers adopt real-time pricing.

Panels B & C of Table 1 show how annual flat rates and hourly real-time
prices change with RTP adoption. Annual flat rates decrease with RTP adoption,

200 A demand elasticity of 0.1 s consistent with Borenstein (20084 and is within the range
estimated by Tavlor er af. (2005). The $9 stranded cost is only used for demand calibration.

21 The actuad increments are 0015, 33.3% 0 660.6%, and 99.9% . The 0.1¢¢ of customers on RTP
cnsures the unigqueness of the equilibrium. The G 14 of customers on flat rates, allows us to caleulate
an equilibrium tTat rate.

22, This standard deviation shows that the variance talls over the entire sample. One might expect
that the within-day sariance would also fall with RTP adoption. In tact. the average within-day
coetticient of variation falls from 13,6 1o 13.0% if all customers adopt RTP.
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Table 1. Changes in Equilibrium Load, Flat Rates and Realtime Prices
from RTP Adoption

Panel A: Hourly load in MW

Percent of customers

on Hourly Rates (¢t Mean std. dev. min max
00 29.901 5.923 17.820 52183
339% 29930 5.822 17.944 51.459
67 29,943 5723 18,014 50.749
10074 29954 5,629 18.083 50,143

Panel B: Annual flar rates

(¢} Mean std. dev, min max
0 $66.77 $62.58 $70.94
3¢ $66.32 $62.54 $70.10
07% $66.24 - $62.51 $6Y.95
1004 $60.14 — $62.48 $69.80

Panel C: Hourly real-time prices

(¢4 Mean std. dev., min max
0% $65.20 $17.89 $54.91 $1.039.00
335 $64.95 $9.84 $54.92 $164.01
67% $64.90 $0.49 $55.24 $154.37
100<¢ S64.84 $9.11 $55.27 $151.39

Notes: Elasticity is 0.1 imtial flat retail price $30 with $40 for T&D and %9 tor stranded cost
recovery. Reported prices include T&D.

Figure 2. Kernel Density Estimates of Electricity Load Distribution
(in MWh)

Kernal Density

— i~ S
T T T T
20000 30000 40000 50000
Electricity Load
—— NocustomersonRTP  _ _ ____ All customers on RTP

Note: The kernel density was estimated using the Epancchnikov kernel-weight tunction in Stata
with 300 points used in the estimation.
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which benetits the flat-rate customers.*! The average real-time price is lower than
the average flat rate, because in each month the load-weighted average, which is
the flat rate, puts higher weight on high-priced peak periods. Like the flat rate,
the average and maximum real-time prices fall as more customers adopt RTP.
The effect on the maximum real-time price, which occurs at five PM on July 23,
1999 in each simulation, is particularly dramatic. With no customers on RTP,
the maximum real-time price would be at the price cap.™ Indeed the price cap is
binding in four hours when no customers are on RTP.* However, if even a third
of customers are on RTP. the wholesale price cap no longer is binding in any hour
and the maximum price drops to $164. The minimum price increases slightly as
more customers adopt RTP since demand increases in low price periods. Note
also that the variance of the real-time prices falls since off-peak prices increase
but peak prices decrease. Thus the distribution of hourly real-time prices, like the
distribution of load. is compressed with RTP adoption.

4.2 Distributional Effects and Efficiency of RTP Adoption

To analyze the benetits of RTP adoption, we estimate the changes in
wholesale profits. consumer surplus. and deadweight loss.™ Table 2 shows the
effects on wholesale supply and profits to various sectors from RTP adoption.
The first panel of Table 2 decomposes the load increase shown above into supply
changes from coul-, oil-. and gas-fired fossil generation. This decomposition shows
that RTP adoption, which increases total load. increases the supply from coal-fired
generation, but decreases the supply tfrom oil- and gas-fired generation.”’

To understand these changes in supply. we analyze the changes in supply
tfor peak and non-peak hours in panels B and C of Table 2. We detine peak hours
as those hours in which wholesale energy prices are above $30 (approximately
1800 hours per year) and non-peak hours as those hours in which wholesale en-
ergy prices are below $30 (approximately 7000 hours per year)™. As more cus-
tomers adopt RTP, the relative changes in peak and non-peak supply help explain
the effects in Panel A. For load. the peak decrease of 1.3% is slightly larger than
the oft-peak increase of 0.8% . However, since there are almost four times as many
oft-peak hours, the latter effect dominates, and consequently total load increases.
For coal-fired generation, the off-peak increase in generation of 1.3% swamps the

23, Borenstein and Holland prove that the long-run flat rate declines as customers adopt RTP. but
do not derive an equivalent short-run result.

24, The wholesale price cap was $999. The $40 adder for transmission and distribution yields a
retail real-time price of $1.039.

25, The price cap was actually binding for seven hours in PJM during this time period.

26. Competition in the retail sector ensures that retailers earn no economic profits and thus are
unatfected by RTP adoption.

27. Supptlies of nuclear and hydroelectric power are pertectly inelastic by assumption, so they are
not atfected by RTP.

28. The $30 cut-oft is arbitrary and does not lead to an entirely consistent labeling of hours.
However. the cutoft illustrates the relevant points.
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Table 2. Effects on Wholesale Supply and Profits of RTP Adoption

Panel A: Average hourly supply (in MW)

Percent of customers

on Hourly Rates («) [Load Coal O1l Gas
0% 29901 15926 345 1.873
33 L 10% 0.4% S3.0% -0.9%
67% O.144% 0.7% -0.2% 2.2%
1004% (0.18% 0.9% -0.2% -34%
Panel B: Average hourly supply (price > $30)

« Load Coal Oil Gas
0% 37.068 18,248 1,170 5.651
100% -1.3% -0.1% -12.9% -6.0%
Panel C: Average hourly supply (price < $30)

« Load Coal Qil Gas
0% 28.002 15.310 127 871
100% 0).8% 1.3% 0.5% 2.5%

Panel D: Average hourly operating profit

13 Load Coal Oil Gas
0% $164.967 $147.225 $4.055 $13.688
33% -6% -3 -47% -26%
a7% 7% -4 -S3% -30%
1007 -9 -5% -59% 349

Table 3. Welfare and Consumer Surplus of RTP Adoption

Hourly average change from =0 ACS as
Percent of DWL as ACS RTP ACS Flat percent
customers DWI. a pereent of the
on Hourly per of the All Per All Per energy
Rates () hour energy bill Teust” “eust” bill
0% $1.936 0.24% $4 $0.09 $0 $0.00 0.00%
334 $1.232 0.16% $5.083 $0.31 $8.850 $0.27 1.74%
67% $592 0.08%% $11.863 $0.36 $5.330 $0.32 2.15%
1004 S0 0.00% $20.436 $0.41 $19 $0.38 2.55%

Note: When «eis 0% in the table, 0.1% of customers are on RTP. Similarly, when o is 1009 in the
table, 99.9% of customers are on RTP.

modest decrease in peak-hour generation leading to an increase overall. For oil-
and gas-fired generation. a much larger proportion of the generation occurs dur-
ing peak hours. The substantial reductions in peak-hour generation (six percent
to 129) thus offset the more modest increases in off-peak generation, despite the
fact that these increases oceur for more hours.

Panel D of Table 2 shows that generator operating profits decrease with
RTP adoption. The increase in coal-fired supply might suggest that coal-fired gen-
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eration would benefit from RTP adoption since they would increase their market
share. In addition, off-peak prices would increase, so margins off peak might
increase. However, Table | showed that the average real-time price decreases,
and this effect dominates. For coal-fired generation, operating profit declines by
three percent when a third of the customers adopt RTP and would decline by five
percent if all customers adopted RTP.

For oil- and gas-fired generation, the decrease in supply, coupled with
the decrease in peak and average prices, implies that losses are quite dramatic.
Note that adoption of RTP by only a third of customers would decrease profits of
oil-fired generators by 47%. Gas-fired generator profits also decrease quite dra-
matically, dropping by 26% if only a third of the customers adopted RTP. Since
coal is the dominant fuel source in PJM, the losses to all fossil-fired generation
are less dramatic, (nine percent if all customers adopt RTP and six percent if only
a third of customers adopt) but still substantial.

Since supply from nuclear and hydropower is perfectly inelastic and mar-
ginal operating costs are small, we approximate the change in profit by changes in
revenue. Reflecting the tall in the average wholesale price, revenues for nuclear
and hydropower only decrease slightly (1.5%) when all customers adopt RTP.

The effects of RTP adoption on consumer surplus and welfare are pre-
sented in Table 3. Since we have assumed a constant demand elasticity of 0.1,
consumer surplus would be unbounded. First, to simplity calculations when the
price cap is binding and to bound consumer surplus, we assume that consumers
get no surplus when the price cap is binding. Next, we normalize consumer sur-
plus to zero when no customers are on RTP and analyze the changes in consumer
surplus.” The consumer surplus measure is then the change in surplus from the
surplus if all customers were on flat rates. The First Welfure Theorem implies that
the efficient allocation of electricity is attained by a competitive equilibrium when
all customers are on RTP. Deadweight loss (DWL) is then calculated as the differ-
ence in welfare from that attained when all customers are on RTP.Y

Table 3 shows that welfare increases by $700 per hour if a third of the
customers adopt RTP and by $1,936 per hour (or $17.0 million per year) if all cus-
tomers adopt. To put these numbers in perspective, the entire wholesale energy
market would be worth $7 billion per year. Thus, the welfare increase (avoided
deadweight loss) is only 0.24% of the wholesale energy bill as all customers adopt
RTP. These short-run welfare benefits are modest.

To analyze changes in consumer surplus, we separately analyze changes
to customers on flat rates and on RTP. Since the numbers of customers on RTP
and flat rates are changing as more customers adopt RTP, the consumer surplus

29, Since the flat rate is approximately $67 when no customers are on RTP, our measures of
consumer surplus are the change in surplus from a price of $67.

30. Although Borenstein and Holland show that welfare does not necessarily increase monotonically
as more customers adopt RTP. they argue that the conditions under which welfare could actually
decrease are fairly unusual. We tind here that welfare does indeed increase monotonically as more
customers adopt RTP. even with finer increments to o than reported here.
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measures in Table 3 show both the consumer surplus of all customers on RTP (or
on flat rates) as well as the consumer surplus per “customer™ on RTP (or on flat
rates). The per-customer measures assume a hypothetical customer with 0.002%
of the total load. This hypothetical customer would be very large with approxi-
mately 500 kW of peak demand.

Comparing the per-customer results shows that customers obtain higher
surplus on RTP than on flat rates. This difference in surplus (less any switching
or additional metering costs) is the surplus gain of the marginal RTP adopter.
Since the difference is declining slightly (from $0.09 per hour to $0.03) as more
customers adopt RTP. the incentive to adopt RTP. which is relatively small, is
decreasing in

Adopting RTP may be costly for some customers. As a sensitivity analysis,
we assume that RTP adoption will cost between one and ten cents per hour. ™ In con-
trast, the potential benefits of adopting RTP are between nine and 41 cents per hour
for our customer (see Table 3). However, the incremental benefits of adopting. as op-
posed to staying on a flat rate. are between three and nine cents. Therefore., a simple
benetit-cost analysis argues that customers in our simulation are likely to adopt. but
only if costs are less than three cents per hour.

Table 3 also shows a free-rider effect of RTP adoption. If a customer
adopts RTP along with all other customers. he would gain $0.41 per hour. How-
ever. it all other customers (except himself) adopt RTP. he would capture 93% of
the benetits (50.38) without incurring any additional costs. This free-rider effect.
together with the modest benetits and weak incentive to adopt. may help explain
the ambivalence of many customers toward RTP.

As more customers adopt RTP. the surplus per RTP customer is increas-
ing tfrom $0.09 per hour to $0.41). This implies that an existing RTP customer is
made better off by more customers adopting RTP. Thus, RTP adoption has a posi-
tive etfect on existing RTP customers. Similarly. since surptus per flat-rate cus-
tomer is increasing in . RTP adoption has a positive impact on existing flat-rate
customers. However, generator profits are decreasing as more customers adopt
RTP. so adoption has a negative effect on generators. On net, our simulations find
that RTP adoption has a negative impact on other customers and firms.

4.3 Environmental Effects of RTP Adoption

Since RTP would alter the electricity consumption patterns and electric-
ity generation technologies used. RTP would also change the emissions of a vari-
cty of pollutants. This change in emissions will depend on the relative emissions

A1 We thank an anony mous reteree for suggesting this ringe ol costs.
32 Borenstemn and Halland show that in the long run RTP adoption has & negative pecuniary
eaternality on existing RTP customers, buta positive externality on existing flat-rate customers. Since

producer surplus is unchanged in the long run. the externality can be either positive or negative.
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Table 4. Environmental Effects of RTP Adoption

Panel A: Al fossil hourty emissions

Percent of customers

on Hourly Rates (ae) - Fossil supply SO, NO, CO,
0 18144 294,100 174,512 74.995
33 0.00%% 0.00 0.00¢ 0,00
(67 0.07%% (1,39 01474 -0.08%¢
100 0.3 0.75% 0.26¢ 0164

Pancl B: Coal-fired hourly emissions

« Supply SN0, NO. €O,
04 15926 293250 162915 64,070
100 0.93 1,284 1.33¢4 1.29¢¢

Panel C: Oil-fired hourly emissions

1 Supply SO, NO, CO,
0 345 768 4.857 2971
1004 -019¢ 13,08 -17.89¢¢ -17.944%

Pancl D: Gas-fired hourly emissions

o Supply S0 NO, CO.
0 1.873 84 6739 7.354
100 -340% PRI B -0.87% -5.58%

Note: Emissions of SO and NO are in pounds. Emissions of CO | are in thousand pounds.

of the different generation technologies used in baseload and peak generation. ™
Figure b shows the marginal emissions rates for SO, as generation increases to
60.000 MW along the supply curve. The emissions rates have high variance both
within and across fuel types and are not highly correlated with marginal cost.
Thus. we cannot simply predict the effect of RTP adoption on emissions trom the
marginal emissions rates. Instead. we use the model to simulate changes in emis-
sions of three pollutants: SO, NO_ and €O, *

Since RTP adoption lcads to an increase in average hourly load. emis-
stons would increase if emissions were constant per MWh. However, Table 4
shows that only SO, and NO_emissions increase as more customers adopt RTP.
while CO, emissions actually decercase. ™ SO, emissions increase by 0.75% it all

33 Some customers may respond o real-time prices by utilizing installed backup generation,
which may have ditferent emissions rates. We do not model backup generation.

34 RTP adoption would also fikely affect. for example: emissions of other pollutants, timing ot
emissions, use of rivers and dams, generation of nuclear waste, and siting of new capacity. These
additional environmental effects are potential issues to be addressed in future work.

35, Some pollutants may be subjeet 1o cap-and-trade regulation, which we do not model. Under
CAT regulation, predicted increases in emissions would actually be increases in demand tor permits.
Furthermore, there may be regional environmental etfects.

36, Holland and Mansur (2004) estimate the environmental eftects of RTP Tfrom a reduction in
demand variance. Their cconometric estimates show for PIM that emissions of NO and CO | decrease
but the change in SO, emissions is not significant. The results here ditter since \u\crugc load (and

theretore emissionsy increases.,
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customers adopted RTP even though fossil supply would increase by only 0.13%.
This occurs because SO, emissions rates are increasing (from an average of 16.21
to 16.36 Ibs per MW of supply) as more customers adopt RTP. Similarly, NO_
emissions rates increase with RTP adoption, and CO, emissions rates decrease.

To understand the ditterential effects on SO, NO_, and CO, emissions,
we separately analyze the emissions from coal-, oil-, and gas-fired generation
in Panels B, C. & D of Table 4. The coal-fired units are primarily for baseload
generation, and hence their emissions of all three pollutants increase with RTP
adoption. That the percentage increase in emissions for cach pollutant is greater
than the percentage increase in supply indicates that RTP adoption leads to a shitt
in coal-fired generation toward relatively dirtier plants.

Although the supply of oil- and gas-fired generation decreased by nine
and three percent. respectively, it all customers were to adopt RTP, the corre-
sponding decreases in emissions are even larger: 13%-18% for oil-fired emissions
and five to seven percent for gas-fired emissions. The greater percentage decreas-
es in emissions than in supply indicates that RTP adoption shifts generation away
from the dirtier oil- and gas-fired units,

Since emissions of all three pollutants are increasing trom coal-fired
units but decreasing from oil- and gas-fired units, the net effect for each pollutant
depends on the relative emissions from the difterent types of units. Although coal
accounts for 88% of fossil supply, it accounts for over 99% of SO, emissions and
93% of NO_emissions. It is not surprising that for these pollutants the increase in
cmissions from coal-fired generation is larger than the decrease in emissions from
other sources. On the other hand. coal-fired generation accounts for a smaller
proportion of CO, emissions (86%) and the emissions reductions from oil- and
gas-fired generation leads to a reduction in total emissions of CO,."

4.4 Discussion

To test the sensitivity of our results to the various parameter assump-
tions. we analyze alternative, reasonable parameter assumptions in the appendix.
First. the model depends on the distribution of demands. We test the sensitivity of
our model to the assumptions about demand shifters and then to the assumptions
about demand elasticities. Next we allow for elastic import supply and simulate
random outages at generators instead of simply derating capacity by the expected
outage factor. Finally. demand elasticities are allowed to vary by time of use, and
heterogeneous customers are modeled with different load profiles.

The results are robust to varying these assumptions. In particular, load
and price distributions are compressed, average load increases. average price de-
creases. profits decrease, welfare increases. SO, and NO_emissions increase and

37. To understand this result. note that coal units are on average more efticient thave lower heat
rates) than the other fossil units. The upper tail of coal units also has lower CO, cmissions per MWh
than the upper tail of oil units.
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CO, emissions decrease.™ Shifting demand to the right increases average load and
prices and increases the benefit of RTP adoption but the percentage changes are
not dramatically different. Increasing the demand elasticity causes RTP adoption
to have stronger effects. In particular. the efticiency benefit as a percentage of the
energy bill doubles when the demand elasticity doubles. Increasing the import
elasticity is similar to increasing the demand elasticity. Explicitly modeling ran-
dom outages in a Monte Carlo simulation (instead of simply derating capacity)
has little effect on the results. Allowing different peak and off-peak elasticities
has little effect on the results except as noted in footnote 38. Finally. modeling
heterogencous customers shows slightly larger effects when the load of customers
who adopt RTP covaries more strongly with system load. However, these custom-
ers most likely would not be the first to adopt RTP since they benefit from a cross
subsidy under flat rates.

The model described above cannot capture all the intricacies of the ac-
tual PJM electricity market. In particular, market power and metering costs are
important features of the market which likely would be affected by RTP adop-
tion." Market power has been shown to be a substantial concern in restructured
electricity markets including PIM.* This problem is exacerbated by the inelas-
ticity of wholesale demand.*' Incorporating market power in this analysis would
likely strengthen our results. First, the efficiency gains from RTP adoption would
likely be greater since the gains from eliminating market power would be in
addition to the gains from improved retail pricing. This additional effect might
make RTP adoption more attractive to customers than is estimated by our model.
Second. the losses to generators exercising market power would be even greater
than the losses estimated here since generators would also lose some rents from
market power.

Metering costs would affect the proportion of customers adopting RTP.
If metering and switching costs are insignificant. all competitive customers would
adopt RTP. Conversely. if metering costs are excessive no competitive customers
would adopt RTP. Borenstein, Jaske, and Rosenfeld (2002) argue that real-time me-
tering costs are not excessive, especially for large industrial customers. While real-
time metering costs may be large for residential customers, economies of scale from
automated meter reading may lead to modest real-time metering costs even for resi-
dential customers. Switching costs, however. could be substantial, see Price (2004).

38. The only exception is that in one simulation with elastic peak demand and inelastic off-peak
demand average load decreased and NO_ emissions decreased.

39. The assumptions of zero cross-price elasticities and of homogeneous customers. common in
clectricity policy analysis. are unlikely to affect the analysis substantially. See Borenstein and Holland.
In addition, we do not explicitly model the political economy, behavioral aspects and dynamics of
RTP adoption.

40. See. for example. Borenstein, Bushnell and Wolak (2002). Joskow and Kahn (2002) and
Mansur (forthcoming).

41. Borenstein e/ al. (2002) argue that RTP adoption would lessen the inefficiencies of market power.
This has been supported by simulations, Bushnell (2005), and experiments, Rassenti ef al. (2003).
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5. VARYING FLAT RATES BY MONTH AND BY TIME OF U!

The bascline simulation presented above assumes that retail electricity
rates are set once a year and then remain fixed for the entire year. [n regulated
markets, retail rates are generally fixed for substantial periods of time and are
only adjusted tollowing rate cases or special requests to the regulators. During the
transition period in California and in other restructuring markets. retail clectricity
rates have been capped for extended periods of time.” Even in competitive retail
markets such as the UK, there are sometimes fimits on how frequently the retail
rates can change (Price 2004). Despite the tact that retail rates often do not vary
monthly. there is no technological reason that rates cannot vary as often as meters
are read. In fact. flat rates have varied more trequently in San Diego. New York.
New England. and Ontario. for example.

Another dimension along which electricity rates have sometimes varied is
by time of use (TOU). Typically. three to four different rates might apply through-
out the year depending on season and time of use. For example. a current program
by one utility in PIM (PPL Electric Utilities) has three rates: a winter rate from
October to May. a summer peak rate on weekdiys from noon to seven PM.and a
summer off-peak rate. In this section. we estimate the gains from allowing the flat
retail rates to vary by month or by time of use tor the above TOU program.

Allowing flat rates to vary by month or by time of use will have benetits
il Toad and/or wholesale prices are correlated with months or time of use. Monthly
correlation could be due to seasonal effects or to chunges in input costs. TOU cor-
relation could additionally capture changes in demand throughout the day. In fact,
only a small share of the variations in load and price can be explained by cither
monthly or TOU variation.* This weak correlation suggests that varying flat rates
by month or by time of use would not yield large benetits.

The simulation results with flat rate variation by month and by time of
use are presented in Table S, The table presents the annual tixed rate bascline
with no customers on RTP and compares that with annual tixed TOU rates for all
customers from the PPL program. monthly fixed rates, and 1004 RTP adoption
(.., the efficient allocation).

Table 3 shows that flat rate variation by month or TOU has eftects simi-
lar to RTP adoption even if no customers are on real-time prices. In particular. the
distributions of load and prices are compressed. and the price cap is not binding in
any hour when flat rates vary by month or TOU. As with RTP adoption, profits for
all fossil generators decrease with flat rate variation by month or TOU.

42 In Calitornia. capped retanl rates were not indexed (o input costs and were to remain in etfect
until stranded costs were recovered.

43, Reiss and White 12003) and Bushnell and Mansur (2005) find significant customer response to
the price variation in San Dicgo. After a period of varying rates. the rates in San Dicgo were set again
at the trozen retanl rate.

44, Regressing load on 24 month dunimies has an R of 025 This means that only 253 ot the
variation in load can be explained by difterences across months, Similarly months only explain 7 ot
the price variation. Regressing toad (price) on six TOU dummies has an R of 024 (0.1 1
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Table 5. Effects of TOU and Monthly Flat Rate Variation
Panel A: Hourly load in MW

Fixed rates Mean st des, min max
Annual 29901 5,923 17.820 520183
TOU 29921 5.850 17802 51572
Monthly 29927 5830 17.874 51743
1004 RTP 29954 5.629 18.083 50143

Panel B: Howrly real-time prices

Fixed rates Mcan std, de, min max
Annual $65.20 S17.89 $54.91 S1.039.00
TOU $635.01 S10.15 S54.01 S175.80
Maonthly $64.99 5992 S$54.92 S109.56
1004 RTP S64.84 SY.11 $55.27 SI151.39

Panel C: Average hourly operating profit

Fixed rates Fossil Coal O1l Gas
Annual S104.067 S147.225 $4.055 S13.088
TOU S156.187 S143.004 $2.2960 $10.227
Monthly S155.55% ST43145 S20198 S10.214
1004 RTP S150.840 S$140.173 S1.058 S$9.008

Panel D: Welfure

DWI. as pet Fost CS as pet
Fixed rates DWI. ot caergy bill Lost ¢S of energy bill
Annual $1.936 0.24 $20.451 2.55¢4
TOU SLO44 0.21% SO.154 1174
Monthly S1.329 017 STN22 100
1004 RTP S0 0.00¢ S0 0.00%

Flat rate variation by month or TOU does capture a significant proportion
of the efficiency gains of time-varying prices. Panel D of Table 5 shows that ap-
proximately 15% of the deadweight loss is eliminated by putting all customers on
TOU rates (from $1.936 per hour DWL to $1.644). More surprising though., fully
30% of the deadweight loss is eliminated by allowing flat rates to vary monthly.
This is cquivalent to putting a third of customers on RTP when the remaining
customers are on an annual flat rate. Similarly, a large proportion of the lost con-
sumer surplus is attained simply by allowing flat retail rates to vary monthly.
Thus. despite the low explanatory power of months or time of use, allowing flat
rates to vary by TOU captures a reasonable proportion of the efticiency gains.
Allowing flat rates to vary monthly captures a larger proportion of the efficiency
gains than TOU and could be implemented with traditional meters.

6. CONCLUSION

Despite well-understood theoretical efticiency gains. real-time pricing
has been plagued by a lack of enthusiasm on the part of many policy makers.
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This work analyzes the effects of time-varying prices on market participants, ef-
fictiency. and the environment.

We apply a model of RTP adoption in competitive markets to the PIM
electricity market. Consistent with theory, RTP adoption compresses the distribu-
tions of load and wholesale prices, i.¢., maximums decrease, minimums increase
and variances decrease. Moreover, average loads increase and all rates decrease
on average. The decrease in maximum prices is noteworthy since much concern
has been expressed about exposing unsuspecting customers to extreme price vari-
ation. We find that with only a third of customers on RTP. the maximum price
drops from the price cap to only $164 per MWh. Thus having a few customers on
RTP insulates the market from extreme price swings.

The change in the distribution of load from RTP adoption is reflected in
the shifts in supply: coal-fired. baseload generation increases while oil- and gas-
fired, peak-load generation decreases. The changes in the price and load distribu-
tions also affect operating profits. Despite the fact that generation from coal-fired
units is increasing. the effect of the falling average price is stronger, and coal-fired
operating profits drop by five percent in our baseline. Operating profits decline
more sharply for the other fossil generators—up to 60% tor oil-fired generators
and 35% for gas-tired generators—since generation as well as prices decrease
with RTP adoption. These decreases in short-run operating profits may explain
some of the resistance to RTP adoption.

The welfare increase is only 0.24% of the wholesale energy bill it all
customers adopt RTP. This short-run welfare benetit is modest. For the same de-
mand elasticity, Borenstein and Holland find long-run welfare benefits of RTP
adoption that range from three percent to 11% of the total energy bill. This sug-
gests that a large proportion of the benefits of RTP adoption occur from avoiding
unnecessary construction of additional generating units.**

All consumers, i.e.. those already on RTP, those on flat rates and those
who switch, benefit from RTP adoption. The gains in consumer surplus are large
enough to offset the lost generator protfits so efficiency increases with RTP adop-
tion. However, the consumer surplus gains are relatively small, approximately
2.5% of the energy bill in our baseline. The estimated incentive to adopt RTP is
also not large. The consumer surplus gains of switching to RTP are declining as
more customers adopt. For our hypothetical (very) large customer. the maximum
surplus gain is $0.09 per hour or about $800 per year. In addition, by free riding
on the RTP adoption of other customers, a customer can attain up to 90% of the
benefit of RTP adoption without incurring any additional metering costs. The
modest short-run gains, their dispersion across many customers, and free riding
may explain the ambivalence of many customers toward RTP adoption.

The environmental effects of RTP adoption studied here depend on the
relative emissions of the available generation technologies. In aggregate. we find
that SO, and NO_emissions increase with RTP adoption, but that CO, emissions

45. Additional benefits of RTP may come from avoiding unnecessary construction of transmission,
although we know of no studies quantifying these benefits.
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decrease. Comparing changes in emissions with changes in generation shows
that RTP shifts generation toward dirtier coal-fired generators but away from
dirtier oil- and gas-fired generators. Since coal-fired generation increases with
RTP adoption, emissions of all pollutants also increase from coal-fired genera-
tion. However, RTP adoption reduces emissions from high-cost oil- and gas-tired
generators. Since coal-fired generation accounts for a very large proportion of
SO, and NO_emissions, the emissions increases from coal-fired generators offset
the reductions from other generators. and net emissions increase. With CO.. coal-
fired generators account for a smaller proportion of total emissions, and thus the
decreased emissions from oil- and gas-fired generators offset the increased emis-
sions from coal-fired generators for a net reduction.

Although the simulations do show an efficiency increase from RTP
adoption, this must be compared against any additional costs of installing me-
tering equipment. On the other hand, flat retail rates could be adjusted monthly
without requiring any additional technology. Our simulations show that varying
flat rates monthly has similar effects on load, prices, surplus, profits, efficiency,
and emissions as real-time pricing. In fact, we find that approximately a third of
the efficiency gains from real-time pricing can be captured by simply varying flat
retail rates monthly. This benefit is larger than the gains from putting all custom-
ers on TOU rates and is approximately the same as putting a third of customers
on RTP while the other customers are on annual flat rates but does not require
additional metering technology.

Capturing some of the benetits of RTP adoption through monthly varia-
tion in flat rates maintains the insurance features of flat rates. Flat rates protect
customers against “accidental™ consumption during extremely high-priced peri-
ods. Monthly variation in flat rates would maintain some of this insurance but at
a lower efticiency cost.

The benefits of monthly variation in flat rates depend on customers be-
ing able to observe, and respond to. changing rates (though to a lesser degree than
with RTP). Bushnell and Mansur (2005) find evidence that customers facing this
type of billing in San Diego responded more to the previous month’s bill than to
current price information. However, customer response is likely to improve over
time as customers adapt to new billing structures.

Although our simulation model only analyzes the PIM electricity mar-
ket, the results would be similar for other regions with similar generation port-
folios. From theory, RTP adoption will improve welfare and will compress the
distributions of loads and prices. It is also likely that RTP adoption will decrease
average prices, although whether average load would increase or decrease in a
given region is unclear. Generator profits will likely decrease in other regions,
however, the precise decomposition of the lost profits is uncertain. Furthermore,
consumer surplus gains in other regions will probably be a small proportion of the
energy bill for most customers at least in the short run. However. the environmen-
tal effects. which depend on the emissions rates of the generation technologies,
most likely will vary across different regions.
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APPENDIX
A.l. Demand Shift Calibration

The baseline simulation calibrates the demand shift factor for each hour
based on the observed hourly load and the average retail price of $79. We test the
model by assuming the average retail price is $5 lower and $5 higher. Assuming a
lower initial energy price of $25, instcad of $30, would be the same as decreasing
the demand shift factor for each period since the observed load is assumed to re-
sult from a lower price. Conversely. assuming a $35 initial energy price calibrates
the hourly demand shift factors at higher levels. Intuitively, increases in demand
will increase prices and loads and also increase the benefits from RTP adoption
because more hours intersect the supply curve on its inelastic portion.

Table A.l. presents simulation results from calibrating the demand
shifters from initial energy prices of $25 (Shift 25) and $35 (Shift 35) and com-
pares them to the baseline discussed above. The table shows the results from the
simulations when no customers are on RTP, and the percentage change column
indicates the change when all customers adopt RTP. Panel A of Table A.1. shows
the effects on load of RTP adoption. The distribution of demand is compressed
in all three simulations, i.¢., the maximum decreases, the minimum increases
and the standard deviation decreases. Note that the mean. minimum and maxi-
mum loads are all higher for the higher demand shitter. However, the percentage
changes in these parameters from 100% RTP adoption are quite similar across
the three simulations.

Panel B of Table A.1. shows that the distribution of prices is also com-
pressed with RTP adoption for each of the simulations. For the higher demand
simulation, the prices are higher and the reduction in average price is greater with
RTP adoption (0.61% versus (0.28%) since more hours occur on the inelastic por-
tion of the supply curve. The reduction in the variance of prices from RTP adop-
tion is larger in the two higher demand simulations since the price cap is binding
for some periods but is never binding for the low demand simulation.

Panel C of Table A.1. shows the effects on profits of RTP adoption. For
each of the demand shift assumptions, profits decrease for each type of fossil-fired
generation. Profits decrease quite precipitously for oil- and gas-fired generation
(up to 60%) but this reflects the fact that these profits were inflated by the hours in
which the price cap was binding.

Thus far, the major differences between the simulations with different
demand shifters have hinged on whether or not the price cap was binding. Since
clearing the market by a non-market mechanism (the price cap) represents a shift
in surplus from consumers to producers. we would not expect efficiency ditfer-
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ences it the price cap is or is not binding. Panel D of Table A1, shows that the
avoided deadweight loss is quite robust to the demand shitt assumption. with ap-

proximate efficiency gains of 0.25% of the energy bill for cach simulation.

Pancl E of Table AL L. shows that the changes in emissions are quite ro-
bust to the demand shift assumptions. Namely. SO, and NO_ CINISSIONS INCrease
with RTP adoption, but CO, emissions decrease.

Table A.lL. Effects of Changing Demand Shift Calibration

Panel A: Howrly Toad in MW

Mean ‘¢ change std dev. @ ochange min ‘¢ change Max ‘¢ change
Shitt 25 29733 0.134% 5.890) -4.950% 17.730 133 S2.004 410
Baseline 29901 018 3023 =496 17.820 148 5283 RN A
Shift 35 30.071 0.19%% 5956 -5.00% 17.917 .54 S284 -S04

Panel B: Hourly real-time prices

Mean ¢ change stdodey. ¢ change min ‘¢ change Max ‘¢ change
Shitt 25 SO4T77 0 -0.28% SH0L.09 11604 S35 0.69¢ SI700 -4
Baseline SO3.200 -0.55¢9 S17.89 49084 $55 0.606°¢ S1.039 85434
Shift 33 SOSAR -0.617¢ STO41 -52.244 $55 .60 S1.039  -XS.439

Panel C: Average hourly operating profit

Fossil ¢ change Coul

‘¢ change

Oil ¢ change Gas < change

Shilt 25 SI51900 4029 $139,390
Buseline  S164.967  -8.56% S147.225
Shift 35 SI71900 2938 $152.207

S2.603
-479%
sS4

$2.308  -3T790 0 S10.202 0 -17.514
S4035 S39.100  SIO88 34194
S4.021 260900 SIS072 0 36420

Panel D: Surplus

DWILL s pet

ACS us pat

DWI. ol energy bill ACS of energs bill

Shilt 25 S1.RS50 0.24 S10.362 .33

Baseline $1.9360 024 $20.451 255

Shife 35 $2.004 (.25 S23.004 282

Panel F: Enmissions

SO, < change NO, ‘¢ change O, ‘o change

Shift 25 201491 1144 172.386 0.39¢¢ 73,950 -0.24¢
Bascline 204,100 1.244 174.512 048 74.995 S0 15
Shift 35 206,695 1.28¢¢ 176.043 0.501¢ 76,061 -0.165¢

Note: “Shift 237 reters toan mitial energy price of S250and “Shift 357 refers to an initial energy

price of S35 The baseline uses an initial energy price of $30.

Note: The values in the “levels™ columns, e, “Mean™ are trom the simulation with no customers

on RTP. The values i the 7 change™ columns show how the preceding statistic changes when all

customers adopt RTP.
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Table A.2. Effects of Changing Demand Elasticity
Panel A: Hourly load in MW

Mean ¢ change stdodes. o change min ‘¢ change man o change
Elast .05 20.663  0.06% S.881 S2.59¢0 17.670 0.56% 52027 2314
Baseline 29901 (L18¢ 5923 4969 17.820 AR 5283 3014
Elast .2 30.351 0421 0,005 2939 17977 3947 S2UN84 S5NNY

Panel B: Hourly real-time prices

Mean % change  std.dev. 7 change min o change max ‘¢ change
Elast .05 SO472 0 -0.154 S10.13 -0.124% 855 0.074 SI7600 2023
Baseline SO5.200 -0.5549 S17.89 4908 bRN] 0.66% $1.039 85439
Elast .2 SO5.80  -0.74¢¢ 1947 -56.244 §55 0.73¢¢ SLO3 -87.14¢
Panel C: Average hourly operating profit

Fossil “¢ change Coal ¢ change O1l ‘¢ change Gas ‘¢ change

Elast .05 $SI1S0866 230 S138477 S1424 $2.2000 220000 S10.099 10,244
Bascline  $164967 -850 $147.225 -4.79¢ SHOSS -S0100 S13688 3419
Elast .2 SITRN6T  -11.26%  SISTYT6. -6.22¢ S4.873 0 -70.406% ST0.0IS -43.02¢%

Panel D: Surpluy

DWIL as pet ACS as pet
DWI. of energy bill ACS of energy bill

Elast .05 S983 0.3 $3.604 0.73

Bascline $1.930 0.24¢; $20.451 2550

Elast .2 $3714 0454 $29.890 359

Panel E: Emissions

SO, ‘o change NO_ ‘¢ change O, ‘¢ change

Elast .05 290458 .57 171.563 0.18¢ 73.558 -0.16%
Bascline 204,109 1244 174,512 0484 74995 0154
Elast .2 300.769 2469 IS0 134 1044 77798 -0.124

Note: “Elast 057 refers to an assumed demand clasticity of (.05, and “Elast 27 reters (o an
assumed demand clasticity of 0.2, The baseline has an assumed demand elasticity of 0.1

Note: The values in the “levels™ columns, e.g.. “Mean™ are from the simulation with no customers
on RTP. The values in the ¢ change™ columns show how the preceding statistic changes when all
customers adopt RTP.

A.2. Demand Elasticities

Table A.2. presents the analysis of three difterent demand elasticity as-
sumptions: elasticities of 0.05. 0.1 (the baseline scenario), and 0.2 As above. the
table shows the results from the simulations when no customers are on RTP and the
percentage change that results when all customers adopt RTP. A higher elasticity
assumption has two effects. First. since equilibrium prices are on average lower,
more clastic demand generally increases demand. Second, more elastic demand has

46. Estimates of demand clasticities vary greatly. This range is generally viewed as plausible. For
example. Borenstein and Holland use Tong-run clasticities of 0.1, 0.3, and 0.5,
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greater price response and. hence, greater potential benefits from RTP adoption.

Panels A & B of Table A.2. show that the distributions of load and price
are compressed by RTP adoption in all the simulations. The decreases in the stan-
dard deviation show that the distributions are compressed more with RTP adop-
tion for higher demand clasticities. The average price and load are higher for
more elastic demand. which reflects the increased demand which results from the
higher demand elasticity.

Panels C & D of Table A.2. show the effects on surplus. Profits decrease
with RTP adoption for all types of fossil generation for each elasticity assump-
tion. Declines are larger for more elastic demand and., as above, are largest for oil-
fired generation. With more elastic demand, the efficiency gains are larger (here
up to 0.45% of the energy bill) and consumer surplus gains are also larger.

Panel E of Table A.2. shows that the changes in emissions are robust to
the demand elasticity assumption: namely. emissions of SO, and NO_ increase
but CO, emissions decrease with RTP adoption with lurger_ changes for more
clastic demand.

A.3. Elastic Import Supply

On average imports/exports are negligible, accounting for less than 0.1%
of the average load of approximately 30,000 MW. However, during the sample
period imports ranged from imports of over 18,000 MW to exports of almost
6.000 MW. In this section. we compare the baseline, which has perfectly inelastic
import supply. with two different assumptions about the import supply elasticity.

We define an import supply curve based on the historical prices and an
assumed slope. We assume that imports are positive above the historical price and
negative below it, i.e., exports are positive below the historical price. The import
supply elasticity for cach hour is either 856/ or 428/. The coefticient of 856 is used
in Mansur (forthcoming). but represents a high value, so we compare the results
with half this value, i.e., a slope of 428. The assumed functional form allows for
a very elastic import supply at small quantities, but very inelastic supply at large
quantities. The import surplus is then found by integrating under the import sup-
ply curve.’

Table A.3. presents the simulation results from increasing the import
supply elasticity. Panels A & B show that RTP adoption compresses the load and
price distributions with greater decreases in price variance for more elastic import
supply. Panel C shows that operating profit for all types of fossil-fired generation
decreases with RTP adoption with the greatest decreases for oil-fired generation.
Eftficiency gains from RTP adoption are slightly smaller for more elastic import
supply assumptions. This obtains because more imports mean that the equilibrium
is on the steep portion of the fossil supply curve in fewer hours. Panel E shows

47. Alternatively, we could have used the historical imports and historical price together with an
elasticity to define the import supply curve. Under this assumption, several hours would have implied
non-PIM autarky prices greater than $999. which would require several additional assumptions.
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Table A.3. Effects of Changing Import Elasticity
Panel A: Hourly load in MW

Mecan % change  std. dev. % change min % change max % change
Baseline 29901 0.18% 5923 -4.96% 17.820 148 S2183  -391%
Imp 428 29.897  0.20% 5921 -499% 17.815 1.56% SL362 -2.90%
Imp 856 29883 (L.26% 5916 -4.97% 17,799 1.74% S1225 0 -3.06%
Panel B: Hourly real-time prices

Mean % change  std. dev. % change min % change max % change
Baseline $65.20  -0.55% $17.89  -49.08% $55 (1.66% $1,039  -85.43%
Imp 428 $65.21  -0.71% $20.67  -56.27% $54 0.84% $1.039  -85.54%
Imp 856 $65.35  -1.04% $26.34  -65.79% 48 0.00% $1.039  -85.82%

Panel C: Average hourly operating profit

Fossil % change Coal % change Oil % change Gas % change

Baseline  $164967  -8.506%  $147.225  -4.79% $4055  -59.10%  $13.688  -34.19%
Imp 428 $168.033 -1097%  $147.654  -6.006% $40945 -65.80% 15434 -40.38%
Imp 856 $176.868 -15929%  $150.723  -8.76% $6.949  7481%  $19,196  -50.83%

Panel D: Surplus

DWI. as pet ACS as pet
DWIL. of energy bill ACS of energy bill

Baseline $1.936 (0.24% $20.451 2.55%

Imp 428 $1.776 0.22% $25.684 3.20%

Imp 856 $1.367 0174 $37.462 4.01%

Panel E: Emissions

SO, % change NO, Y change CO, Y change

Baseline 294,109 1.24% 174.512 0.48% 74995 -0.15%
Imp 428 292.223 1.26% 173,584 0.49% 74.624 -0.15%
Imp 856 290,407 1.31% 172.677 0.55% 74,261 -0.06%

Note: The bascline has perfectly inelastic import supply. “Imp 428" reters to an assumed import
supply elasticity of 428/Q. and “Imp 856" reters to an import supply elasticity of 856/Q.

Note: The values in the “levels” columns, e.g., “Mean™. are from the simulation with no customers
on RTP. The values in the % change™ columns show how the preceding statistic changes when all
customers adopt RTP.

that the changes in emissions are robust to various assumptions about import sup-
ply clasticity.

A.4. Random QOutages

Generators are subject to random outages due to a variety of technical
failures. When such outages occur, electricity generation from the unit typically
ceases until the malfunction can be corrected and the generator returned to syn-
chronization with the grid. To account for random outages. the baseline simula-
tion derates cach unit’s capacity by its expected outage factor. If the relationship
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between generation and welfare is sufficiently concave (convex), then Jensen's
Inequality says that the welfare at the average generation level is greater (less)
than the average welfare. To test whether this relationship is sufficiently concave
or convex. we simulate random outages.

A Monte Carlo simulation focuses on July 1998, one of the months with
the highest prices. Each unit either generates or not based on a three hundred random
draws. We then use the resulting supply curve to calculate an equilibrium in the 300
wholesale markets, The equilibrium flat rate. which yields zero profits across the
300 markets. can be interpreted as the flat rate with zero expected profits.

Table A4, presents the random-outage simulation results and compares
them with the July 1998 results from the baseline. The results are remarkably
similar. The main differences stem trom the tact that the price cap is binding in

Table A.4. Random Qutage Simulation for July 1998
Panel A: Hourly load in MW

Mean ¢ change st deve % change min % change max % change
Baseline 33365 0084 7026 -4.52% 19.630 1.99% 49208 -2.37%
Random ISR 00% 7020 -4.50% 19.626 1.74% 49,198 -1.8O%
Outages
Panel B: Howrly real-time prices

Mean ¢ change  stdodev. @ change min % change max % change
Baseline SO041 001 $7.29 0 -0.31% $56 0 0.02% $8Y  -3.43%
Random So647 0 -007% $9.63  -28.35% 456 0.14% $1.039  -90.649%
Outages
Panel C: Average hourly operating profit

Fossil ¢ change Coal % change Oil % change Gas % change

Bascline  $210.790 2054 SI86.603  -0.92¢4% $IRY2 1784 % $20.295  -10.39%
Rundom  $212.397  278%  S186.965 RRE $4.309  -23.56% $21.123 -12.72%
Outages

Panel D: Swrplus

DWIL as pet ACS as pet
DWI, of energy bill ACS of energy bill

Baseline S1.230 0.13% $0.670 0.72%

Random Outages $1.263 0.4 $10,530 1.13%

Panel E: Emissions

SO, ‘o change NO_ “t change CO, “% change

Baseline 335903 0.9]¢ 216.673 S04 97482 -0.84%
Random Qutages 335,507 .90 216,802 -0.19% 97.624 -0.90%

Note: “Bascline™ here refers to the equilibrium for just July 1998, "Random Outages™ refers to the
Monte Carlo simulation.

Note: The vadues in the “levels” columns, ez "Mean™ are from the simulation with no customers
on RTP. The values in the =% change™ columns show how the preceding statistic changes when all

customers adopt RTP,
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several of the draws of the random outage simulation whereas it never binds in
this month for the baseline simulation. The binding price cap leads the prices to
have a larger standard deviation and maximum and larger declines in both with
RTP adoption. It also implies that consumer surplus gains are larger. Despite this
difference, the simulation is remarkably robust to modeling random outages. In
particular, the efficiency gains of RTP adoption (0.13% and 0.14% of the energy
bill) are virtually identical.

A.S. Different Peak and Off-peak Elasticities

Taylor et al. (2005) estimate that demand elasticities are larger in peak
periods than in off-peak periods. The baseline simulation assumes that elasticities
are identical in all hours. To model differing elasticities, we allow the elasticity to
vary across peak and non-peak hours where the peak period is defined according
to the PPL Electric Utilities program described in Section 5.

Table A.5. presents the results from varying the demand elasticity. The
first row, *0.15 & 0.1.” has more elastic peak demand than the baseline and shows
morc compression of the load distribution on the upper tail. The third row, “0.1
& 0.05.” has less elastic non-peak demand than the baseline and thus show less
compression of load and prices on the lower tails. Changes in profit are unaffected
by changing the elasticities. Like changing demand elasticity overall, surplus in-
creases are greater when demand is more elastic.

The fourth row, “0.15 & 0.05. uses elasticities that approximate the esti-
mates of Taylor et al. for industrial customers. These results are similar to the base-
line except that average load and NO_emissions decrease with RTP adoption.

A.6. Heterogeneous Customers

The baseline simulation assumes that RTP adopters do not differ sys-
tematically from non-adopters. RTP adopters could differ from non-adopters in a
number of dimensions, ¢.g., scale and elasticity. If customers do not differ, then
there is no cross-subsidization in a flat rate system. However, if a customer’s load
covaries less strongly with the system load (i.e.. if the customer has a flatter load
profile), then the customer pays a subsidy through the flat rate system to cus-
tomers with peakicr load profiles. Therefore, customers with flatter load protiles
would likely adopt RTP first to avoid subsidizing other customers.

To model customers with different load profiles, we define a customer’s
3. analogous to the financial . implicitly by:

{ -1 L -L
LS 5 B (3)
{ ! L

where [ is customer i's load in hour 1. [ is customer i's average load, is system
load in hour 1. and L is average system load. Note that if 8, then customer i's load
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is & constant {raction of the system load, whereas it 3 is greater (less) than one,
then customer £'s load is peakier (flatter) than system load.

Table A.6. presents the results of simulations where 50% of customers
adopt RTP. In the simulation “Beta 1.1, the adopters have a load that is ten percent
more peaky than the system load. and in the "Beta .97 simulation, the adopters
have a load that is ten percent flatter than the system load. The results show a larger

Table A.5. Effects of Changing Peak and Off-peak Elasticities

Panet A: Howrly load in MW

Peak and Oft-

Peak Elasticity  Mean ¢ change  stdodev. ‘e change min o change max ¢ change
015 &0 29921 014 5.065 -5.590¢ 17.815 .51 S20184 S0
Bascline 29901 018 5923 -496¢¢ 17.820 1484 520183 -390
0.1 & 0.05 29.681 0.02¢ 5024 S3.270 17.669 (.57 5283 -390
.15 & 0.05 29,704 -0.03% 59649 -3940 17.668 (157 S2084 0 -dedy
Pancl B: Hourly real-time prices

Mean 0 change  stdodev. ‘o change min ¢ change max ¢ chunge
015 & 0.1 S05.29 -0.691¢ S19.36 S¥ 85491 .60 S1O39 8543
Baseline S65.20 -0.35% S17.89 -4 854091 0.0606¢ S1.039 83434
01 & 0.0 S64.95 -0.517¢ SI7.84 -47 SA4NT 0.07¢ STO30 -85 14
015 & 0.05 S65.04 -0.65 S$19.31 S1e S548T 0.07¢ SHO30 85140
Panel C: Average howrly operating profit

Fossil ¢ change Coal ‘¢ change O change Gas ¢ change
015 & 00 S16X.114 -0 STARS06 -0 S45NT S04 SE4S0L -39
Buscline S104.967 SO0 SI47.228 S S405S SN0 STI68N S
0.1 & 0.05  S1539.977 -84 S142.756 -4 S3URS 4G S133I0 233
015 & 0.05  S163.208 104 ST144.442 S0 SHARN S6000 SIS AN
Pancl D: Surplus

DWW as pet ACS as pat
DWI. of energy bill ACS of energy bill
015 & 0 S22 0.264 $24.790 3084
Baseline S1.936 0.244 $20.451 2554
01 & 005 S1167 0154 $17.880 2274
015 & 0.05 SEA42 0.7 $22.4358 283
Panel 12 Entissions
SO. ‘¢ change NGO, ‘¢ chunge O, ‘i change

015 & 001 204169 1.26% 174.859 0.314 75.227 0444
Baseline 294108 1.244 174512 04R8¢ 74.995 0154
.1 & 0.05 290485 (.59 171.869 (LO1¢ 73,708 -0.454
0.15 & 0.05 290.593 0.59¢¢ 172.259 -(0L194 74.022 077

Note: "0.15 & 017 refers o a peak elasticity of 0.15 and an off-peak clasticity ot 0.1, The baseline
has clasticity 0.1 peak and off peak. Other rows detined simitarly, The values 1 the “levels”
columns, ez "Mean™ are from the simulation with no customers on RTP The values in the
change™ columns show how the preceding statistic changes when all customers adopt RTP.
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Table A.6. Analysis of Heterogeneous Customers (With 50% Adoption)

Panel A: Hourly load in MW

Mecan

‘

« change  stdodev. ¢ change min ‘e change may ‘o change
Beta 1.1 29901 0124 50923 -2.56% 17.820 .87 SN L2649
Baseline 29901 0.124% 5923 -85 17.820 0.89% SN 20
Beta 0.9 20901 0.12¢4 5923 -2.854 17820 0924 S2AN3 20549
Panel B: Hourly real-time prices
Mean ‘o change  stdodev, %o change min ‘¢ change max ‘¢ change
Beta 1.1 S65.20 043¢ S17.89  -40.004 S5 0024 SLOY 85054
Baseline $65.20 <0434 S17.89 46,007 S35 (.02 $1.039 -84914
Beta 0.9 $65.20 -0.4374 S17.89  -4395¢ S55 0,024 S1.O3Y 84844/
Panel C: Average hourly operating profi
Fossil ‘¢ change Coul ¢ change Ol ¢ change Gas ‘0 change
Beta 1.1 $164.907 S0.8400 S147.225 S3.040 S4.055 0 -50.304 SI688 28410
Basehine  $164967  -6.84¢0  $147.225 o4t S48 50079 SIR68K 2833
Beta 0.9 S164967  -0.83%¢  SI147. -SR0S SH055 0 S50.0570 ST6RS 28259
Panel D: Surplus
Etticiency Etticieney gain as ACS s pet
cuin petotenergy bill ACS ol energy bill
Beta 1.1 $1.037 013 SI5.0674 1.96%¢
Baseline SLO3I 013 SES.604 .96
Beta 0.9 S1.024 0.13% S15.650 .95
Panel I Emissions
SO, ‘i change NO ‘¢ change O, ‘o change
Beta 1.1 204,109 0.09¢¢ 174.512 0.291, 74995 -0.05¢
Baseline 294,109 0.691¢ 174.512 0.29, 74,995 -0.04
Beta 0.9 294,109 0.69¢ 174,512 0,294 74995 -0.04¢¢

Note: In the "Beta L1 simulation, the SO of customers who adopt RTP have a load that covaries
with the system load with =11, In the baseline, all customers are homogencous, i.e.. 3=1. In the
“Beta 0.9 simulation, the 5047 of customers who adopt have [3=0.0.

Note: The values in the “levels™ columns, e.g. Mean™. are from the simulation with no customers
on RTP. The values in the 7 change™ columns show how the preceding statistic chinges when
S04 of customers adopt RTP.

effect of RTP adoption when the adopters™ load covaries more strongly with system

load. However. the customers with fatter load profiles would be the first adopters
under customer choice due to the subsidies inherent in the at rate system.
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