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Abstract

Using cross-sectional data, this paper estimates a national energy model of fuel choice by both households and firms.

Consumers in warmer locations rely relatively more heavily on electricity rather than natural gas, oil, and other fuels. They

also use more energy. Climate change will likely increase electricity consumption on cooling but reduce the use of other

fuels for heating. On net, American energy expenditures will likely increase, resulting in welfare damages that increase as

temperatures rise. For example, if the US warms by 5 1C by 2100, we predict annual welfare losses of $57 billion.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

While many researchers have studied the effects of energy consumption on global warming, few have
examined how changing the climate (long-term weather) is likely to impact the demand for energy [1]. Most of
the studies that do consider the impacts of climate on the energy sector rely mainly on expert opinion [2],
engineering models [3], time series variation of aggregate data [4], or case studies of electricity [5]. The few
empirical studies that consider the entire energy sector use an aggregate expenditure model that examines all
fuels without distinction [6,7].

This paper contributes to this literature by estimating a fuel choice model of energy demand using a
multinomial discrete-continuous choice framework. We estimate the parameters of this model using a
cross section of US residential and commercial energy consumers. We find that both the choice of fuel and
the conditional demand for energy by fuel type are sensitive to climate and especially temperature. We
then use the results of this model to predict the implications of future climate scenarios. By estimating this
e front matter r 2007 Elsevier Inc. All rights reserved.
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discrete-continuous model of energy demand, we are able not only to estimate the welfare effects of climate
change on the energy sector but also to discuss how consumers may adapt as climate changes.

Models that explicitly consider the discrete and continuous components of consumer choice have been used
to examine a wide range of topics including housing [8], food and drink [9], transportation [10,11], and water
[12,13]. Demand is evaluated as a discrete choice over limited alternatives with a corresponding continuous
component conditional on that choice. The approach has also been used in the energy literature [14–18].
Baughman and Joskow [14] develop a model of fuel choice and energy consumption for electricity, natural gas,
and oil in the commercial and residential sectors of the United States. Their study, however, does not account
for potential interactions between fuel choice and consumption decisions. If the decisions are not independent,
then the estimates will suffer from a selection bias [19].

We rely on a basic econometric model developed by Dubin and McFadden [16] (hereafter, DM) to address
this bias in the context of a polychotomous-continuous choice. DM apply their method to electricity demand
and the choice of appliance holdings. As they note, the dynamic investment decisions of households can only
be reasonably measured with cross-sectional data if there are static expectations regarding operating costs.
Ideally, one might be interested in a dynamic model and panel data to better evaluate consumers’ choices, but
climate change occurs very slowly and panel data do not exist for energy use. We argue that the relationship
between energy consumption and climate measures reflected in cross-sectional data captures ‘‘long term’’
adaptation because households can adjust not only their immediate energy use but also their capital stock.1 In
contrast, the relationship between annual or daily weather and energy consumption would measure short run
adjustments because presumably capital stocks would be held fixed.

2. Theory

In response to climate change, households and firms may alter: (1) fuel choice, (2) the quantity of fuel, (3)
expenditures on building characteristics, and/or (4) interior comfort levels. For households, a measure of the
welfare impacts of climate change on energy can be described as the change in income necessary to keep utility
constant given climate change:

qY

qC

����U � ðT�;R�Þ, (1)

where Y is income, C is climate, U is utility, T is interior temperature, and R is an index of all other goods.
Interior temperature is assumed to be a function of climate, energy use (Qf conditional on fuel choice f among
F alternatives), and building characteristics (Z): T ¼ T(C,Qf,Z), where C is exogenous and Qf and Z are
purchased inputs. In aggregate, energy consumption may have a feedback effect on climate. However, climate
remains exogenous to an individual household’s behavior.

To measure the welfare effects of climate change, we make the following three assumptions:

Assumption A1. Households do not vary interior temperatures: qT/qC ¼ 0.

As mentioned above, one possible adaptation to climate is to vary the interior temperature.2 However, if
people (and firms) maintain a preferred interior temperature regardless of outdoor climate, there will be no
loss of interior comfort from climate change.3 The only welfare effect of climate change will be the cost of
maintaining the desired interior temperature. In this case, increases (decreases) in energy and building
expenditures will measure the welfare loss (gain) from climate change.
1This paper relies on cross-sectional data to measure how households and businesses use energy in different climates. The economy

constantly receives shocks and many markets are unlikely to be in long run equilibria. Nonetheless, we argue that cross-sectional data are

more informative, relative to time series data, of how adaptation to gradual climatic change may happen.
2To the extent that comfort levels fall or rise with warming, our measures of the impacts of climate change will be attenuated. This is

likely to be the case especially for low-income households [20,21]. However, if climate change induces adoption of central air conditioning,

people may become more comfortable. Thus, the welfare effects of interior temperature changes are theoretically ambiguous.
3An EIA survey of US households revealed that households currently maintain the same interior temperatures in the winter, but not in

the summer, regardless of climate (‘‘Household Energy Consumption and Expenditures 1990,’’ Data and accompanying documentation

and reports: DOE/EIA-0321/1(90). February 1993).
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Assumption A2. Energy supply is perfectly elastic.

We assume that energy prices do not change as a result of climate change. The long-run supply of electricity
is expected to be elastic because it can use many fuels. Although end users shift away from heating fuels,
most of these heating fuels will then be used to generate electricity. Consequently, the aggregate demand
for the fuels will not change much. We test the sensitivity of our results with respect to this assumption in
Section 6.

Assumption A3. The capital expenditures from changing building characteristics in response to climatic
change are relatively small.

The correct welfare measure would account for changes in building expenditures, as well as changes in
energy expenditures. However, this study has data only on energy expenditures and building characteristics.
The installation of central cooling, for example, will lead to both capital costs and increased demand for
electricity.4 The capital costs of cooling are not reflected in our welfare calculations; so our estimates
understate the costs of climate change. In contrast, with reduced demand for heating, the reduced capital costs
associated with heating will cause our energy-only estimates to overstate the costs of warming. The net effect is
ambiguous and beyond the scope of this study.

Given Assumptions (A1)–(A3), the change in welfare (DW), measured as the compensating variation,
equals:

DW ¼

Z C0

C1

qY

qC
dC ¼

XF

f¼1

Pf Qf ðC0Þ
�
XF

f¼1

Pf Qf ðC1Þ
þ PzZ0 � PzZ1

ffi
XF

f¼1

Pf Qf ðC0Þ
�
XF

f¼1

Pf Qf ðC1Þ
, ð2Þ

where Pf and Pz are vectors of the prices of fuel f and building attributes, respectively. The subscripts 0 and 1
represent the baseline case (i.e., current climate) and climate change scenario, respectively. Assumption (A3)
implies that the last term in (2) is approximately zero.

The probability that a particular fuel portfolio, fAF, is chosen is defined as yf. In the discrete-continuous
situation, the measure of the expected change in welfare, (2), is:

E½DW � ffi
XF

f¼1

Pf E½Qf ðC0Þ
� �
XF

f¼1

Pf E½Qf ðC1Þ
�

¼
XF

f¼1

½Pf yf ðC0ÞQf ðC0Þ
� Pf yf ðC1ÞQf ðC1Þ

�, ð3Þ

where E[ � ] identifies the expected value. Therefore, expenditures over all alternatives are defined as the sum of
prices Pf times the conditional quantities Qf, weighted by the choice probabilities yf. The link between the
model components determining yf and Qf is further described below.

3. Empirical model

We model fuel choice and fuel consumption using a discrete-continuous model based on the DM two-step
estimation method. A multinomial logit model of fuel choice is estimated in the first stage. We examine all of
the major fuels (e.g., electricity, natural gas, and oil) that are available to each consumer. The second stage
estimates the amount of fuel demanded given the fuel chosen. The second stage is estimated using ordinary
least squares (OLS) with selection correction terms, as defined below, from the first stage to control for the
correlation of errors between the two decisions. There are two main approaches to estimating a
polychotomous choice two-step model suggested in the literature: one can include the selection correction
4Air conditioning penetration is highly correlated with the number of cooling degree days [22] and temperature [23]. Warming will result

in greater saturation of the air conditioning market.
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term of the own choice [24] or the selection correction terms of the alternative choices [16].5 One cannot
include both sets of selection correction terms, as the sum of all the choice probabilities must be equal to one.
Both the DM and the Lee [24] models are widely used, including in estimating energy models [17,18].

The Lee model places substantial restrictions on the covariance between the continuous demand and
selection indices [28]. Monte Carlo studies have shown the Lee model to be significantly biased when this
assumption is violated [25,28]. Both of these studies find the DM model to be more robust to various data
generating processes. Further, the advantage of including the alternative choices is that one can explore cross
fuel effects. For example, one can see whether the natural gas consumption of consumers is different
depending on whether the fuel choice model predicted that the consumer would have chosen oil versus
electricity only.

3.1. The Dubin– Mcfadden model

Consumers maximize utility by choosing the type of fuel used (f) as well as the quantity of the fuel consumed
(Qf).

6 An agent choosing option f, among a set of F available choices, will have the latent conditional indirect
utility ðV�f Þ:

V�f ¼ zf gf þ Zf ; f ¼ 1 . . .F , (4)

where zf denotes the observable, exogenous factors influencing this conditional indirect utility function and Zf

is the unobservable, idiosyncratic shock. However, the only observable action to the econometrician is
whether a fuel is chosen: Vf is 1 if fuel f is chosen and 0 otherwise.

For the chosen fuel, the conditional demand function is:

Qf ¼ xf bf þ uf , (5)

where xf denotes those exogenous variables affecting the conditional demand function. Energy consumption,
Qf, will be positive only when fuel f is chosen (Vf ¼ 1). The idiosyncratic term, uf, has the properties:
E(uf|x,z) ¼ 0 and V ðuf jx; zÞ ¼ s2f . In this paper, we allow for the possible correlation of the idiosyncratic terms
uf and Zf.

7

A consumer will choose fuel f based on the following fuel choice process:

V�f 4max
jaf
ðV�j Þ. (6)

Condition (6) is equivalent to zfgf4ef where

�f ¼ max
jaf
ðV�j � Zf Þ.

Following McFadden [29], we assume the unobservable term of the latent variable model, Zf, is distributed
extreme value type I.8 This specification implies that the probability of choosing fuel f (yf) will be

yf � Prðzf gf 4�f Þ ¼
expðzf gf ÞPF
j¼1 expðzjgjÞ

. (7)

The parameters of the latent variable model, gf, can be estimated by maximum likelihood. However, the
estimation of bf requires further assumptions. DM assume an important linearity condition

Eðuf jZ1 . . . ZF Þ ¼ sf

XF

jaf

rjðZj � EðZjÞÞ, (8)

where, by construction, the correlations between uf and Zf sum to zero:
PF

j¼1rj ¼ 0.
5Other less common models include [25–27].
6This section outlines the DM model using the notation of [25].
7If these unobservables were correlated, then OLS estimates of bf would be inconsistent.
8A widely noted property of the multinomial logit model is the independence from irrelevant alternatives (IIA) assumption, which we

test in Section 5.
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DM propose three estimation strategies for estimating bf. In this paper, we focus on a commonly cited
method but reach qualitatively similar conclusions using all three methods. The DM method that we use adds
what we will refer to as ‘‘selection correction terms’’ to each fuel’s conditional demand function (5). The
selection correction terms in this model are similar to the selection correction terms in the Heckman two-stage
decision model [19]. In the Heckman model there is only one choice; so there is only one correction term. In
this model, there are several choices so that there are several correction terms, one for each alternative choice.
The correction terms provide some insight into observations that the choice model predicted would pick the
alternative fuel but did not. For example, the correction term for oil in the natural gas equation indicates
whether consumers that the fuel choice model predicted would pick oil consume more or less natural gas. By
including the selection correction terms, we remove sample selection biases. Assuming (8), DM note that OLS
estimates of bf from the following equation will be consistent:

Qf ¼ xf bf þ sf

XF

jaf

rj

yj lnðyjÞ

1� yj

þ lnðyf Þ

� �
þ wf , (9)

where wf is an independent error term. We use this approach to estimate our model.
4. Data

The data come from earlier studies conducted of climate change and energy expenditures [6,7]. These studies
relied on two surveys conducted by the Energy Information Administration (EIA).9 These surveys provide
detailed data on energy expenditures and consumption as well as demographics and building characteristics.
The data include several thousand buildings distributed in random clusters across the continental US that are
weighted to represent the true population of buildings. Data are available for the five major residential fuels:
electricity, natural gas, fuel oil, liquid petroleum gas (LPG), and kerosene, as well as the four major
commercial fuels: electricity, natural gas, fuel oil, and district heat. The data sets do not disaggregate energy
uses. Although space-conditioning energy is expected to be more sensitive to climate, other commercial and
residential energy uses may also be affected. Hence, the model is estimated for fuel portfolio choice and
consumption across all energy uses.

The original EIA data sets measured only degree-days as a proxy for climate. However, degree-days are
defined relative to an arbitrary standard temperature. Further, it is not clear that i degrees for j days is
equivalent to j degrees for i days. To analyze climate sensitivity with these data, the EIA merged the energy
data with monthly climate (30 year average) data on temperature and precipitation [7].

Because warming reduces heating costs but increases cooling costs, we expect that energy has a nonlinear
relationship with climate. In very cold places, the heating effects will dominate and, in hot places, the cooling
effects will dominate. Somewhere between is a temperate climate that minimizes both heating and cooling.
Climate, of course, is not unidimensional. In addition to annual mean temperatures, the distribution of
temperatures across seasons may also be important (contrast San Francisco and Chicago). In this study, we
will distinguish between winter and summer temperatures. We also explore the less important but still
potentially significant role of precipitation. Precipitation affects relative humidity, which in turn affects
comfort. It is relatively easier to endure high and low temperatures with lower relative humidity, for
example.10

A number of explanatory variables are expected to influence fuel choice and consumption. The variables
used to predict residential and commercial fuel choice and consumption are described in Table A.I.
(Tables A.I–A.V can be found in an appendix available online through JEEM’s archive for supplementary
9The surveys are the Commercial Buildings Energy Consumption and Expenditures 1989 (Department of Energy DOE/EIA-0318(89),

April 1992) and the Household Energy Consumption and Expenditures 1990 (Department of Energy DOE/EIA-0321/1(90), February

1993).
10For the above reasons, we include a quadratic term of our temperature and precipitation variables. The relationship between choice

(or quantity demanded) and climate could be modeled with additional variables that account for higher order terms of climate and

interaction terms of climate variables with other covariates. However, our relatively small sample size limits our ability to explore these

more detailed models.
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material accessible at http://www.aere.org/journal/index.html). In general, explanatory variables include
climate, demographic and firm-specific information, and building characteristics. We know household and
firm location at a regional level (there are nine EIA regions). We employ regional fixed effects to control for
building and other unmeasured characteristics that may vary by climate zone. Of course, the regional fixed
effects also eliminate some of the interregional differences in climate.

The initial EIA surveys included information on annual expenditures and annual consumption, by fuel type,
as reported by consumers. We compute the average fuel price of each customer as the ratio of expenditures
over consumption. These average prices may differ from the marginal social costs of each fuel.11 Each
household and commercial firm chooses only one fuel in our sample. For those fuels not chosen, the EIA
constructed proxy prices by calculating the average expenditures on that fuel in each customer’s region. We
only use the full set of prices in the first stage to estimate fuel choice. For identification of the discrete-
continuous estimation, we restrict the conditional demand functions to depend only on the own price of each
fuel. This is the same restriction imposed by [16].

The building characteristics are divided into climate-sensitive and non-sensitive categories. Non-sensitive
building characteristics such as building size, type of occupancy, and building age are used to control for
exogenous non-climatic factors that affect energy consumption. Climate-sensitive characteristics affecting
thermal efficiency include building materials, conservation capital, the choice of heating and cooling
equipment, and some aspects of the household structure [31]. There are (at least) two possible estimation
strategies for modeling these climate-sensitive variables. One would be to develop additional choice equations
for the decision of whether to invest in each of these capital expenses. However, this would require additional
data beyond what are available, and would add considerable complexity to our model. An alternative option
is to exclude those climate-sensitive variables for which we have data. This ‘‘reduced form,’’ or indirect,
approach will result in the climate variables capturing the variation in expenditures associated with air
conditioning units, insulation, etc.12

Our residential results suggest there is another important distinction to make in energy demand. We find
that households that have access to natural gas (pipeable) and households that do not have access (non-
pipeable) make different consumption choices. We consequently analyze residential fuel choice and
conditional demand separately for pipeable and non-pipeable households. It is not clear whether the
additional choice of natural gas alone is the source of this distinction or whether there is an unmeasured
characteristic that makes pipeable and non-pipeable households different. For example, these households are
more likely to be in a metropolitan area. However, they do not differ with respect to climate.13

There are three categories of customers, and each faces a different choice set. (1) When natural gas is
available, households can choose: (a) electricity only; (b) natural gas and electricity (‘‘gas’’); or (c) fuel oil and
electricity (‘‘oil’’). Of the 3747 pipeable residential consumers, 82% opt for gas, 9% pick oil, and the rest
choose electricity only.14 (2) When gas is not available, residential customers can choose: (a) electricity only;
(b) fuel oil and electricity; or (c) other fuels (like LPG and kerosene) and electricity (‘‘other’’). Of the 1283 non-
pipeable residential consumers, 44% choose electricity only, 26% pick oil, and the rest opt for kerosene or
LPG. (3) We do not have information about whether commercial customers have access to natural gas so they
can choose: (a) electricity only; (b) gas; (c) oil; or (d) other fuels (i.e., district heat) and electricity (‘‘other’’).
Of the 5605 firms, 55% opt for natural gas, 27% pick electricity only, 10% choose oil, and the rest use
district heat.
11Given data limitations, we use average prices as a proxy for the social marginal value. These proxies ignore environmental

externalities, include fixed costs (administrative and capital), and fail to account for nonlinear pricing. Using a log–log specification, the

price elasticity estimates will be consistent [30]; only the constant term will be biased.
12This estimation method may cause an omitted variables bias. The estimates will be consistent if the omitted climate-sensitive building

characteristics are uncorrelated with our other covariates, like the house size or fuel prices. While some of these restrictions appear

unlikely, previous analyses found that the energy expenditures did not change dramatically according to whether one controlled for

climate-sensitive building characteristics [6,7]. These results imply that the bias from omitting these building characteristics is small.
13An OLS regression of gas availability on an MSA indicator, January temperatures, and July temperatures suggests a positive

(conditional) correlation between availability and MSA but no significant (conditional) correlation between availability and climate. The

unconditional correlations between availability and climate are also insignificant.
14Very few households choose kerosene or LPG when gas is available. We do not include those in the sample, as there are fewer

observations than independent variables.

http://www.aere.org/journal/index.html
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Based on our sample, $181 billion was spent in 1990 on residential and commercial energy (Table A.II
reports the actual expenditures for each customer class). Overall, 70% is for electricity. Furthermore, of the
overall expenditures on electricity, 75% is by customers who use other fuels as well. Thus, even though a large
portion of the sample is labeled ‘‘natural gas’’ consumers, most of the expenditures are on electricity. The
share of total energy expenditures for electricity and natural gas is 90%.

5. Empirical results

The estimation results are reported separately in four sections: the residential discrete choice models; the
residential conditional demand models; the commercial discrete choice model; and the commercial conditional
demand models. The last section summarizes the expected marginal climate impacts. Results are estimated
using the selmlog command [25] in Stata 9.

5.1. Residential fuel choice results

We begin by summarizing the results of the multinomial logit fuel choice model of the residential sector. To
test the importance of the IIA assumption, we perform Hausman tests by excluding each of the choices from
the consumers’ choice set and re-estimating the parameters. The IIA assumption is rejected for one case in
each of the three customer classes.15 Some fuel choices are more prevalent in specific regions of the country.
Customers may have regional preferences that indicate different choice parameters. We test whether the
differences in preferences are restricted to the non-climate variables by testing a simplified multinomial logit
model with only climate variables. The IIA assumptions are supported in every case with this simplified model
yet the climate coefficients are statistically indistinguishable from those presented in the paper.16 We present
the full model to investigate how consumers might respond to other non-climatic variables of interest given
their initial choice set.

Table 1 reports the gf coefficients from estimating the latent variable model (4). For both pipeable and non-
pipeable groups, ‘‘electricity alone’’ is the base category where the normalization g1 ¼ 0 is imposed. The
models fit the data relatively well. The pseudo-R2 is 0.41 for the pipeable households and is 0.43 for the others.
We do not report the regional fixed effects for any of our results; however, they were jointly significant at the
five percent level in most (12 of 19) of our models.

Temperature and precipitation variables suggest that households’ choice of fuel is sensitive to climate.
Households in warmer regions more often rely on electricity alone. On the cooling side, electricity is virtually
the only option. On the heating side, it has a high marginal cost but a low fixed cost, making it desirable in
places with moderate winters. In relatively warmer locations, more households use electricity.

Table 2 reports the marginal impacts from the coefficients in Table 1 for temperature and precipitation for
January, July, and overall.17 For the pipeable households, customers in places with warmer January
temperatures are less likely to choose oil (relative to the other options). Households in places with warmer July
temperatures are less likely to choose natural gas and more likely to choose oil. These offsetting effects for oil
selection are consistent with oil being the cheapest fuel, per BTU, and therefore the best choice in regions with
the largest temperature swings. In aggregate, households in places with warmer annual temperatures are more
likely to choose electricity only. Households with more precipitation are less likely to select natural gas and
15For the pipeable residential customers, w2 tests show that dropping oil does not significantly change the natural gas parameters

(w2DF(26) ¼ 5). However, dropping natural gas does change the oil parameters (w2 ¼ 418). For the non-pipeable residential customers,

dropping ‘‘other fuel’’ does not significantly change the oil parameters (w2DF(27)o1) but dropping oil from the choice set does change the

coefficients of ‘‘other fuel’’ (w2 ¼ 66). For commercial customers, we drop each of the choices (relative to electricity only) one at a time.

Dropping either oil or ‘‘other fuel’’ does not significantly change the parameters ((w2DF(65) ¼ 4 and 3, respectively). However, dropping

natural gas from the choice set does have a significant impact (w2 ¼ 200).
16Note that with a non-linear model, the marginal effects of the variables may differ even when their coefficients estimates are similar.
17The marginal effects are calculated in the following manner: qPj=qCj ¼ Pj ½gj �

P
kajgk� [32]. We calculate the marginal effects for

each observation in the sample and report the median. To compute standard errors, we bootstrap these median marginal effects 1000 times

and report the median of these results, as well as whether or not the 90th, 95th, and 99th percent confidence intervals span zero. By

reporting the median draws, probabilities may not sum to one over fuels or in climatic effects over time. A marginal increase in

temperature is an increase of 1 1C and a marginal increase in precipitation is an increase of 1mm/month.
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Table 1

Selection model for residential customers

Natural gas is available Natural gas is not available

Gas Oil Oil Other

Temperature

January 0.0011 �0.3525*** �0.0697 �0.0250

January2 �0.0034* �0.0102** �0.0057 �0.0040*

July �0.1185* 0.1161 �0.5679*** �0.1542*

July2 �0.0077 �0.0041 �0.0752*** 0.0090

Precipitation

January �0.1771*** 0.1728* �0.1955 �0.0944

January2 0.0032* 0.0007 0.0014 0.0035

July 0.0668 �0.0711 0.1711* 0.1163*

July2 �0.0087** 0.0479*** �0.0112 �0.0128**

Log elec. price 3.96*** 2.12*** 3.53*** 4.24***

Log n. gas price �1.76*** 6.04***

Log fuel oil price �1.18 �5.76*** �0.98 �3.10

Log LPG price 1.98*** �2.63***

Log kero. price �0.90 �3.85**

Log building age 0.80*** 2.09*** 1.37*** 0.54***

Log no. floors �0.31** 0.44* �0.30 �1.47*

Log age of head 0.54*** 0.83*** 0.62* 0.25

Log home area 0.44*** 0.51** 0.98*** �0.0065

Log income �0.0069 �0.099 �0.11 �0.40***

Log family size 0.66*** 0.87*** 0.29 0.60***

Mobile home 1.35*** �0.12 0.68 1.24***

Multi unit �0.46** �1.20*** �0.74* �1.96***

Metropolitan �0.14 �0.76*** 0.15 �0.43

Burn wood �0.70*** �0.41 �1.45 �0.56***

Note: Regressions have left out electricity only as a choice. The model on the left-hand side examines residences with access to natural gas

and the model on the right-hand side examines residences without access to natural gas. Very few residences choose an alternative fuel

when natural gas is available. The significance is marked *** at the 1% level, ** at the 5% level, and * at the 10% level. Regional fixed

effects not shown.
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more likely to opt for oil or electricity only. Presumably, for some households, the higher relative humidity
encourages the purchase of combined heating and cooling systems in moister locations.

Non-pipeable households are more temperature-sensitive than pipeable households. Those households with
relatively hot summers are more likely to choose electricity (over oil). Again, this may simply be a result of not
having a choice of piped natural gas or it may reflect other unmeasured characteristics of the two groups.
Another difference between the two groups is that non-pipeable households are not sensitive to variation in
precipitation.

Table 1 also reports the coefficient estimates for other factors that affect fuel choice including fuel prices and
demographic and structural characteristics. The price variables significantly influence the choice probabilities.
The own-price effects are negative while the cross-price effects are positive, suggesting that the other options
are substitutes. The coefficients on the other covariates are consistent with expectations. For example, owners
of multiunit buildings are more likely to pick electricity because usage is easier to apportion to each unit.
Owners of larger homes are more likely to pick fuels with increasing returns, like oil and natural gas.

5.2. Residential conditional consumption results

Given the results of the selection model, we then estimate the conditional demand for each fuel shown in
Eq. (9). The results of the detailed regressions are available in Tables A.III (pipeable residences) and A.IV
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Table 2

Marginal effects of selection model for residential customers

Electricity (%) Gas (%) Oil (%)

Panel A: Natural gas is available

Temperature

January 0.05 0.19 �0.17***

July 0.21 �1.10*** 0.17**

Annual 0.29*** �0.16 �0.02

Precipitation

January 0.37*** �1.46*** 0.23***

July �0.13 0.32** �0.02

Annual 0.16* �0.70*** 0.06**

Electricity (%) Oil (%) Other (%)

Panel B: Natural gas is not available

Temperature

January 0.52 �0.19 �0.09

July 2.15* �0.93** �0.39

Annual 2.97*** �1.06*** �0.68*

Precipitation

January 1.31** �0.78* �0.14

July �1.09* 0.47 0.11

Annual 0.10 �0.12 0.10

The marginal effects of the sample median were calculated for 1000 bootstrap draws. This table reports median of these draws.

Significance is marked *** at the 1% level, ** at the 5% level, and * at the 10% level. A marginal increase in temperature is an increase of

1 1C. A marginal increase in precipitation is an increase of 1 cm per month.
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(non-pipeable residences). In general, energy consumption is increasing in home size, income, and age of head
of household.

Many (40%) of the coefficients on the selection correction terms are at least weakly significant at the 10%
level, suggesting that households simultaneously determine fuel choice and energy consumption. Many of
these coefficients are easily interpreted. For example, households who unexpectedly chose natural gas instead
of oil (i.e., they have a high probability of choosing oil) tend to consume more natural gas. Households with
greater heating needs tend to use the relatively low cost oil.

Table 3 presents the marginal impacts of the climate and price variables on residential fuel consumption. We
report the median marginal impact of temperature and precipitation across the sample again using
bootstrapping. The temperature variables behave as expected–customers who face warmer summers or cooler
winters consume more energy.

The magnitude of the climate sensitivity varies substantially across customers in our sample. On the one
hand, for pipeable households only using electricity, the amount of energy consumed does not vary with the
climate. However, the electricity consumption by pipeable households consuming gas or oil is quite sensitive:
those households with milder winters (i.e., 1 1C warmer in January) and hotter summers (i.e., 1 1C warmer in
July) consume about 6% and 15% more electricity than others, respectively. This is not surprising as these
customers primarily use electricity for cooling whereas the electricity-only customers also use it for heating. As
expected, households facing colder winters use more natural gas. In contrast, the quantity of oil consumed by
pipeable customers appears to be insensitive to climate.

Non-pipeable customers who only use electricity consume more in warmer areas. The amount of electricity
used by non-pipeable households with oil heat is also climate-sensitive: households in areas with 1 1C warmer
temperatures in January and July use about 13% more electricity. The only non-pipeable customers who are
not climate sensitive are the ones who choose ‘‘other fuels’’. The choice of ‘‘other fuels’’ is correlated with low
incomes hinting that poorer people may choose to be less comfortable in warmer summers rather than increase
their expenditures. By only measuring changes in energy consumption and expenditures, we do not value this
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Table 3

Marginal climate effects and price elasticity estimates of the conditional demand models for residential customers

Electricity consumption Other fuels

Only Gas Oil Gas Oil

Panel A: Natural gas is available

Temperature

January �0.0231 0.0092*** �0.0076 �0.0185*** �0.0180

July 0.0135 0.0463*** 0.1600** 0.0038 �0.0579

Annual �0.0093 0.0557*** 0.1542*** �0.0153*** �0.0707

Precipitation

January �0.0092 0.0236*** 0.0632 0.0005 0.0140

July 0.0095 �0.0095** �0.0282 �0.0011 �0.0431

Annual 0.0032 0.0140*** 0.0355 �0.0009 �0.0245

Log elec. price 0.3312 �0.7202 �1.0669***

Log n. gas price �0.7717***

Log fuel oil price 0.4670*

Electricity consumption Other fuels

Only Oil Other Oil Other

Panel B: Natural gas is not available

Temperature

January �0.0051 0.0122 �0.0032 �0.0342 �0.0305

July 0.0504*** 0.1081* 0.0101 0.1439** �0.0023

Annual 0.0444*** 0.1272** 0.0092 0.1197** �0.0341

Precipitation

January 0.0179 0.0161 0.0207 0.0433 �0.0103

July 0.0053 0.0114 0.0157 0.0101 �0.0476

Annual 0.0226 0.0256 0.0371* 0.0547 �0.0590

Log elec. price �0.3900*** �1.2620*** �0.9376***

Log fuel oil price 0.5945*

Log LPG price �1.0424***

Log kero. price 1.2215

Notes: Consumption in ln(kWh) for electricity, ln(therms) for natural gas, and ln(gallons) for oil and other fuels. We report the median

marginal climate effects using bootstrapping. Significance is marked *** at the 1% level, ** at the 5% level, and * at the 10% level. A

marginal increase in temperature is an increase of 1 1C. A marginal increase in precipitation is an increase of 1 cm per month. See Tables

A.III and A.IV for regressions.
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additional discomfort and therefore underestimate the welfare losses. An interesting finding is that households
with warmer summers consume more oil. Households who enjoy warmer annual temperatures may choose to
keep their homes warmer in the winter. Homes in warm areas may also have less insulation so that it takes
more heat to keep them warm in winter. The overall impact of precipitation is insignificant for all consumers.

The own-price elasticities in the conditional equations for electricity consumption are very inelastic for
households only using electricity and roughly unit elastic (between �0.7 and �1.3) for households that use
other fuels as well. The own-price elasticities are �0.8 for natural gas consumption and �1.0 for ‘‘other fuels’’
based on the LPG price.18 The only problem with the price results concerns the price elasticities for oil, which
are +0.5 and +0.6, but are only weakly significant at the 10% level. These positive oil price elasticities may
18Our results are similar to other estimates of own-price elasticities. The price elasticity of residential electricity demand is around unity

[30,33]. Carol Dahl wrote an unpublished survey of energy demand elasticities (DOE contract DE-AP01-93EI23499, 1993) that reports

average long-run elasticities of �0.9 (residential) and �0.8 (commercial) for electricity demand, and for natural gas, �0.7 and �1,
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Table 4

Selection model for commercial customers

Gas Oil Other

Temperature

January �0.0470** �0.0908*** �0.0354

January2 �0.0018 0.0025 �0.0040*

July �0.0181 �0.2187*** �0.0882

July2 �0.0061 �0.0377*** �0.0116

Precipitation

January 0.0018 0.0990* �0.0034

January2 �0.0034*** �0.0050** �0.0033*

July 0.0239 0.1119** 0.1245***

July2 �0.0024 �0.0113* �0.0091*

Log elec. price 0.43*** 0.20 �0.78***

Log n. gas price �3.96*** 0.099 �0.68***

Log fuel oil price 1.50** 0.150 2.09**

Log dist. heat price �0.038 �0.41 �1.53***

Alt. fuel used �2.40*** �1.95*** �3.37***

Log building age 0.38*** 0.52*** 1.02***

Log no. floors 0.02 0.43*** 1.10***

Log square feet 0.18*** 0.16*** 0.41***

Multi-bldg facility �0.60*** �0.81*** 1.85***

Metropolitan 0.41*** �0.08 0.81***

Months open/year 0.11*** 0.14*** 0.031

No. establishments �0.0092** �0.022*** �0.019***

% Assembly 0.0002 0.0006 �0.0010

% Educational activities 0.0014 0.0099*** 0.0034

% Food service activities 0.0099*** 0.0041 0.0013

% In-door parking �0.031*** �0.023*** �0.039***

% Warehouse/vacant �0.012*** �0.011*** �0.017***

% Office �0.0055*** �0.0077*** �0.0050**

Note: Significance is marked *** at the 1% level, ** at the 5% level, and * at the 10% level. The excluded percentage of space is for retail

or service. Regional fixed effects not shown.
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reflect problems in collecting price data for oil. It is possible that there are serious misreporting errors for oil
because deliveries are intermittent. It is also possible that supplies within a region are price inelastic
and somewhat independent so that cities with more demand also face higher prices, relative to the rest of
the region.
5.3. Commercial fuel choice results

Table 4 presents the results of the multinomial logit fuel choice model for the commercial sector. We cannot
distinguish between firms with or without access to natural gas, so there is only one model. Electricity alone is
the base category relative to selecting gas, oil, or other fuel (in this case, district heat). The pseudo-R2 is 0.37.

Many of the climate coefficients are statistically significant, particularly for the choice of oil. Table 5 reports
the median marginal effects of the temperature variables (see footnote 17). Firms with relatively warmer
summers are more likely to use electricity only and less likely to use oil. Firms in wetter places are more likely
to select oil but not natural gas or electricity only. Generally, greater precipitation makes a given temperature
less comfortable. Regions with more precipitation, especially in winter, will have greater demand for heating.
This may lead firms to choose oil because it is cheaper per BTU than electricity or gas.
(footnote continued)

respectively. Estimated elasticities vary depending on research method and data source. More recent studies have also displayed a similar

range of estimates [34].
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Table 5

Marginal effects of selection model for commercial customers

Electricity (%) Gas (%) Oil (%) Other (%)

Temperature

January 0.58*** �0.30* �0.12* 0.00

July 0.36* 0.24 �0.36*** �0.06

Annual 0.97*** 0.00 �0.58*** �0.04

Precipitation

January �0.06 �0.27 0.27* �0.01

July �0.32 �0.20 0.18* 0.11**

Annual �0.36* �0.55** 0.46*** 0.07

The marginal effects of the sample median were calculated for 1000 bootstrap draws. This table reports median of these draws.

Significance is marked *** at the 1% level, ** at the 5% level, and * at the 10% level. A marginal increase in temperature is an increase of

1 1C. A marginal increase in precipitation is an increase of 1 cm per month.
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From Table 4, we note that the own-price effects of gas and district heat are negative while the own price
effect of oil selection is insignificant. Most of the cross-price effects are positive. The table also reports many
coefficients on the control variables that are consistent with economic theory. For example, district heat has
economies to scale so that many large facilities, such as hospitals and universities, use district heat. Buildings
with more establishments tend to select electricity-only probably because it is easier to meter each
establishment for their share.

5.4. Commercial conditional consumption results

The commercial conditional consumption analysis employs a system of regressions as shown in Eq. (9).
Table 6 presents just the marginal climate and price effects (The quantitative results are presented in Table
A.V.). As expected, firms that experience relatively warmer winters use less of gas and oil. Firms that
experience relatively warmer summers use more electricity and (as with the residential customers) more oil. On
net, firms in warmer areas use more electricity and less gas. As with non-pipeable households, firms’ energy
demand is not sensitive to precipitation.

Overall, firms are relatively sensitive to the prices of the fuels they consume. For electricity consumption, the
own-price elasticities range from �1.1 to �2.1. The own-price elasticities are relatively large in magnitude for
natural gas, �2.0, and for oil, �3.8. In contrast, district heat consumption is inelastic, �0.3. District heat is
characteristically used in multi-building non-profit institutions.19 One possible explanation for the low price
elasticity is that non-profits are poor managers and fail to respond to prices by encouraging conservation.
Most of the coefficients on the firm characteristics are consistent with expectations. For example, larger
buildings and buildings that are open for more months use more energy. It is interesting to note that newer
buildings use more energy. Although it is likely that new buildings are more energy efficient, they have more
energy using operations than older buildings and so demand more energy.

5.5. Expected marginal climate sensitivity

Given the multitude of effects on energy expenditures discussed above, we calculate the marginal effects of
temperature and precipitation for the entire model. This climate sensitivity calculation takes into account the
expected switching of fuels and changes in conditional consumption. For each pipeable and non-pipeable
residential customer and each commercial firm, we predict the fuel choice and conditional demand for the
current climate and then we predict the new fuel choice and new conditional demand for a 1 1C increase in
temperature with a 7% increase in precipitation. This is a relatively small change in climate compared to the
range of climate across the sample. The energy system is not particularly sensitive to precipitation so that most
19Of the commercial buildings that consume district heat, 83% are multi-complex facilities and 93% are in designated ‘‘urban’’ areas.
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Table 6

Marginal climate effects and price elasticity estimates of the conditional demand models for commercial customers

Only Gas Oil Other

Panel A: Electricity consumption

Temperature

January �0.0036 0.0475*** �0.0213 0.0454

July 0.0570** �0.0047 0.3056*** �0.0063

Annual 0.0530** 0.0438*** 0.2800*** 0.0378

Precipitation

January 0.0226 0.0014 0.0375 �0.0096

July �0.0224 �0.0103 �0.0438 �0.0126

Annual �0.0007 �0.0082 �0.0005 �0.0217

Log elec. price �2.1293*** �1.8361*** �1.7523*** �1.1082***

Gas Oil Other

Panel B: Consumption of other fuels

Temperature

January �0.0314*** �0.1044*** 0.0104

July �0.0072 0.2251*** �0.0043

Annual �0.0377** 0.1129 0.0064

Precipitation

January �0.0015 �0.0111 �0.0213

July 0.0015 �0.0405 0.0074

Annual 0.0004 �0.0578 �0.0159

Log n. gas price �1.9790***

Log fuel oil price �3.8133***

Log dist. heat price �0.2842***

Notes: Consumption in ln(kWh) for electricity, ln(therms) for natural gas, ln(gallons) for oil, and ln(pounds of steam) for district heat. For

the climate variables, we bootstrap the marginal effects and report the median. Significance is marked *** at the 1% level, ** at the 5%

level, and * at the 10% level. A marginal increase in temperature is an increase of 1 1C. A marginal increase in precipitation is an increase

of 1 cm per month. See Table A.V for regressions.
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of the change is due to temperature. This allows us to determine the overall marginal sensitivity of each
customer to climate.

Given the complexity of the linkages between the variance–covariance matrices of the climate coefficient
estimates in both stages, we measure the uncertainty of our predictions using a bootstrapping method. We
create 1000 data sets by drawing, with replacement, from the original data. As with our estimation procedure,
we treat each observation as independent. In other words, we use the sample weights to calculate aggregate
effects, but not in estimating the coefficients. For each sample drawn, we estimate the discrete-continuous DM
model and use the estimated coefficients to measure the changes in expenditures associated with a marginal
change in climate.

In Table 7, we report the median, 5%, and 95% of the draws. With these last two measures, we construct
the 90% confidence interval. In addition, we report whether the 90th, 95th, and 99th percent confidence
intervals span zero. All annual expenditures are represented in $1990.

With this small change in climate, overall annual residential expenditures increase $3.2 billion with a 90%
confidence interval between $1.7 and $16.8 billion. This is about a 3% change, suggesting a relatively small
elasticity with respect to temperature of approximately 0.34. All of the increase is due to increased electricity
expenditures (an average increase of $4.3 billion per year for all residential customers). This is partially offset
by less consumption of oil and natural gas. Commercial customers added another $2.9 billion annually which
is about a 4% increase. The 90% confidence interval for commercial impacts is between $1.8 and $4.0 billion
per year. Increases in annual electricity expenditures explain this result as well.
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Table 7

Sensitivity of energy expenditures to climate variables (in billions of $1990)

Residential gas available Residential gas not available Commercial total Total

Electricity only 0.7** 1.7*** 1.6*** 4.0***

[0.2, 1.5] [1.2,2.3] [1.1,2.2] [2.5,5.9]

12% 12% 13% 12%

Electricity others 2.3*** �0.4 1.6** 3.4***

[1.6,3.6] [�1, 1.8] [0.7, 2.5] [1.4,7.8]

6% �4% 4% 4%

Natural gas �0.6*** N/a �0.2* �0.8***

[�0.9, �0.4] [�0.3, 0] [�1.3, �0.4]

�2% �2% �2%

Oil �0.3 �0.2 0.0 �0.4

[�0.6, 0.1] [�0.5, 0.8] [�0.1, 0.2] [�1.2, 1.1]

�8% �4% 2% �4%

Other* N/a �0.2 �0.1 �0.3

[�0.7, 0] [�0.3, 0.1] [�1, 0.1]

�4% �3% �4%

Total 2.1*** 1.0* 2.9*** 5.9***

[1.3, 3.5] [0.1, 11.6] [1.8, 4] [3.2, 19.1]

3% 3% 4% 3%

Notes: The table reports the impact of a 1 1C increase in all temperatures and a 7% increase in precipitation. We report the median of the

bootstrap results and the 90 percent confidence intervals in brackets. The significance is marked *** at the 1% level, ** at the 5% level, and

* at the 10% level. ‘‘Other’’ is LPG and kerosene for residential and district heat for commercial.
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Throughout the analysis, we note several interesting patterns. We consistently observe that consumers
spend more on electricity because of greater needs for cooling but they spend less on other fuels that are
primarily used for heating. Another consistent result is that residences and firms in warmer climates have
higher energy expenditures. The additional cooling costs exceed the reduction in heating expenditures.

6. Simulations of the welfare effects of climate change

Next, we use these cross-sectional estimates to simulate the intertemporal impacts of various future climate
scenarios on energy expenditures. We are assuming that the responses of customers from place to place will be
similar to the long run responses of customers over time. Note that we are not modeling the consequences of
changes in year to year weather but rather gradual decadal changes in climate. We are thus anticipating that
customers will have time over these multiple decades to adjust their capital stock and behavior to the new
climates they face.

The early climate impact literature focused on how climate might affect the current economy as shown in
the marginal exercise above. The energy sector is likely to be quite different by the time that forecasted climate
scenarios come to pass. For example, the Intergovernmental Panel on Climate Change (IPCC) estimates that
temperatures will warm between 1.4 and 5.8 1C by 2100 [35]. We propose a possible base case scenario for
2100. We then explore how a 2.5 1C and a 5.0 1C warming scenario (with a 15% increase in precipitation)
would impact this future economy.

Of course, no one knows exactly what will happen in the future not only to climate but to many other key
variables as well. In addition to our base case scenario, we therefore explore alternative baseline assumptions
in order to give a sense of the importance of alternative assumptions regarding energy prices (including
endogeneity), population growth, and economic growth.

The population in the United States is projected to grow annually by approximately 0.3% [35]. Based on
historical averages, we assume income per capita will grow at 2% per year. We assume that these changes are
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Table 8

Welfare loss of each climate change scenario (in billions of $1990/year)

Scenarios Residential Commercial Total Percent (%)

Base case 35.1** 21.6*** 56.7** 22.4

[20, 4108] [13, 41] [43, 4126]

2.5 1C warming 16.2*** 9.9*** 26.0*** 10.3

[10, 749] [6, 16] [20, 878]

Endogenous prices 35.7** 22.8** 58.5** 23.1

[36, 3102] [5, 29] [48, 3123]

Expensive electricity 45.0** 17.8*** 62.8** 24.7

[30, 5039] [11, 34] [47, 6095]

No oil 29.3** 34.7*** 64.0** 27.6

[17, 53] [20, 65] [46, 107]

Higher population growth 47.3*** 28.5*** 75.8*** 22.4

[29, 3610] [18, 53] [56, 3649]

Higher income growth 44.0** 25.9*** 69.9*** 22.3

[23, 4882] [16, 50] [50, 4969]

Current economy 16.8** 17.9*** 34.7** 23.1

[10, 1456] [12, 32] [27, 1541]

Notes: In this table, we simulate the impacts of climate change in the year 2100. For the base case, we assume that electricity prices will

increase 25%, other fuel prices will increase 50%, population will grow at 0.3%/year and income per capita at 2%/year. The commercial

sector will increase proportionally with the residential sector. Building ages will remain constant. We assume a 5 1C warming and a 15%

increase in precipitation across the board. The remaining scenarios test alternative assumptions in 2100. We test a warming of only 2.5 1C

degrees. We test the importance of making prices endogenous. We test our assumption about the cost of future electricity. We test what

would happen if oil or a close substitute of oil were no longer available. We test alternative assumptions about population growth (0.6%)

and income growth (4%). We also test what would happen with the current economy. The reported results are the median of 1000

bootstrap runs. The 90% simulated confidence interval is shown in brackets. The significance is noted by *** at the 1% level, ** at the 5%

level, and * at the 10% level.
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proportional across the country. We assume that the age distribution of the building stock will not change
(new buildings will replace old ones) and that the building technology (but for the modeled fuel choice) will
not change. We assume commercial energy demand will grow proportionally with residential demand.20

We predict that fuel prices will increase over the next century. These changes are likely to occur due to
expected reductions in remaining fossil fuel reserves [36]. In our base case scenario, we assume that oil, natural
gas, and other fuel prices increase 50% by 2100. We assume that electricity prices will increase only 25%
because of the presence of relatively plentiful coal and nuclear power. As oil and gas prices rise, we assume
that synthetic gases and oils will be made from coal. This backstop technology is expensive but likely
abundant. All of these changes will affect the baseline fuel choice, conditional consumption, and energy
expenditures in our forecasts for 2100.

Given the baseline assumptions, we simulate how climate change may impact the 2100 economy. The
scenarios test the change in energy expenditure with and without the climate changing. Both climate change
scenarios assume uniform climate change across the US. Although individual climate models predict that
changes in climate are likely to vary across regions within the US, there is no agreement across models
regarding how that variation will occur. The uniform change scenarios are a reasonable approximation to the
expected climate effects for a country [37] and they are easy to interpret.

Table 8 reports our findings for the future climate scenarios, focusing on the total residential, commercial,
and aggregate changes in expenditures again using bootstrapping. In our base case future scenario,
a 5 1C warming increases energy expenditures by $57 billion per year. The impact is split 38% to the
commercial sector and 62% to the residential sector. The low climate warming scenario (a uniform increase of
2.5 1C) predicts that total expenditures will increase by $26 billion annually. Again, the effects are borne
20Namely, commercial buildings grow at the same rate as the population grows. We also allow the number of buildings to increase with

income. The growth rate was determined so that the ratio of the ‘‘base case’’ and ‘‘income growth’’ case were the same for residential and

commercial.
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primarily by residential customers. Note that doubling the temperature change more than doubles the
expected damages.21

Our sensitivity analysis reveals there are important interactions between assumptions about the base case
for the energy sector and the impact of climate change on annual energy expenditures. Using just the 5 1C
warming scenario, Table 8 reports the results of several alternative assumptions about the future energy sector.
The first sensitivity analysis explores what difference it makes if energy prices are endogenous. See the
appendix for a discussion of the endogenous price scenario. The analysis suggests that average electricity
prices will increase by 1.3b kWh. The price increase will lead to a reduction in consumption of residential
electricity of 89 billion kWh compared to our base case, implying a larger welfare loss of $0.6 billion. For
commercial customers, consumption decreases 185 billion kWh compared to the base case leading to a
reduction in the welfare loss of $1.2 billion. The predicted welfare loss with endogenous prices is $58.5 billion
annually. In the remaining scenarios, we find that the larger the energy sector in 2100, the larger the climate
impacts. For example, we explore what would happen if all energy prices uniformly increase by 50%,
including electricity prices. In this scenario, the higher energy prices imply higher energy expenditures
(especially electricity) with current climate. Climate change, then, causes energy expenditures to increase by
$63 billion per year which is $6 billion more than the base case. The third sensitivity analysis assumes that oil
supplies and synthetic oil substitutes are exhausted. Without oil, consumers must set their shares of oil
consumption to zero. The multinomial logit model suggests that in the absence of a choice of oil, consumers
will allow the other fuel shares to increase proportionally. Expenditures increase $64 billion annually as a
result of climate change.

We then test the sensitivity of our results to a doubling of the assumed population growth rate. The change
in annual expenditures is $76 billion, a 37% increase over the base case. In our simulations, we assume that the
population distribution will not be affected by climate change.22 The next row doubles the income per capita
for residential customers relative to the base case. Welfare falls by $70 billion per year as a result of climate
change. In the last row, we see that what would happen to today’s economy. The change in expenditures
would be only $35 billion a year, about half of the effect seen in the base case.

In general, the welfare effects are increasing in baseline energy expenditures. Under current climate
conditions, our base case expenditures are $253 billion annually while the baseline expenditures when
assuming greater population growth increase to $339 billion. For a 5 1C warming, Table 8 shows similar
percent change in expenditures across simulations.

Overall, we conclude that the impacts of climate change on energy expenditures are quite sensitive to
assumptions about future energy. Our base case simulation of the annual welfare loss associated with a 5 1C
increase in temperature for 2100 is approximately $57 billion. In contrast, our predictions that allow for
different assumptions regarding changes in climate, prices, population growth, and income growth range from
$26 to $76 billion a year.
7. Conclusions

This paper develops a discrete-continuous model of fuel choice and energy consumption. The model is
estimated using cross-sectional data from surveys of households and firms across the US. Capturing fuel
choice provides valuable insights regarding the nature of adjustments to climate in the US energy sector. This
is the first study to explicitly consider how climate change may impact fuel choice in both residential and
commercial energy markets. The estimated model suggests that the fuel choice component may be an
important aspect of adjustment to climate change. In warmer climates, both firms and households tend to
choose electricity to heat and cool. When heating demand is low (less BTU’s), consumers may find the low
capital cost but high marginal cost of electricity relatively more attractive. It is important to note that this is an
adaptation by residents and firms to warmer parts of the US. Electricity is more attractive than combining
electricity with other heating fuels in areas where heating is less important.
21This suggests that if regional changes were greatest in currently warm (cool) areas, the damages would be greater (smaller).
22If climate change induces people to move to cooler regions, our results provide an upper bound of the welfare effects.



ARTICLE IN PRESS
E.T. Mansur et al. / Journal of Environmental Economics and Management 55 (2008) 175–193 191
We also examine the combined effect of fuel switching and conditional fuel consumption. Consumers who
face slightly warmer temperatures than others use more electricity and less of the other fuels, especially oil.
Consumers facing warmer winter temperatures consume less heating fuel while those facing warmer summers
purchase dramatically more electricity. On net, energy expenditures are greater in places with slightly
higher temperatures. This implies that a marginal uniform warming would lead to net damages in the
US energy sector.

Lastly, we explore future climate scenarios. All scenarios measure annual damages (flows), not stock effects.
Given our best guess of the US energy sector in 2100, a 2.5 1C warming would cause damages of
approximately $26 billion per year. With a 5 1C warming, annual residential energy damages might rise to $35
billion with another $22 billion of damages in the commercial side. These estimates are sensitive to
assumptions about price changes, population growth, and economic growth. With the current economy, the
damages would be about 60% of the effects reported above. On the other hand, doubling population growth
or income growth could increase the damages by a quarter to a third. That is, the larger the energy sector in
2100, the greater will be the likely impacts of climate change.

Our estimated impacts exceed those predicted by previous studies. Partly, our overall welfare impacts are
more severe because our fuel-specific model predicts large swings in fuel choice towards electricity as a result of
warming. This change in fuel choice increases the relative expenditures on fuel and thus damages from
warming. Previous studies that have treated fuel choice as exogenous have consequently underestimated the
damages from global warming on the energy sector [3]. Note that this is contrary to other examples of
adaptation where, for example, ignoring how farmers adapt in choosing crops overstates damages [38]. In the
US energy sector, warming causes customers to install more cooling capacity, raising both capital and energy
consumption. It is still true that allowing capital to adjust reduces the damages from warming but cooling
capital and energy are complements not substitutes.

The other major reason why our damage estimates are higher than the earlier literature is because
we are projecting climate change impacts on a 2100 economy. Some studies focused on a 1990 economy [2,3].
Other studies projected a future economy but only until 2060 [6,7]. As our sensitivity analysis reveals,
the size of the future energy sector has a big impact on the magnitude of the damages. The impacts of
climate change are much larger if one accounts for possible future growth in energy prices, population, and
income.

This study advances the analysis of climate change energy impacts but there is further work needed. The
study did not consider other possible technological changes besides just fuel switching. For example, changes
in the fuel efficiency of devices, changes in interior space, and new energy consuming devices may all change
future energy demand and climate sensitivity. Since climate change is a global phenomenon, impact estimates
are needed around the world. Both the pattern and type of energy use vary significantly across countries. An
important next step is to study the nature of impacts in other countries in order to develop an aggregate
estimate of world energy impacts. In addition, other studies of costs and benefits need to be considered in
developing optimal regulation of greenhouse gases.

The approach in this paper could be used to test whether climate change in the form of overall global
warming causes a positive feedback effect on greenhouse gases and other air emissions by increasing
energy demand. In principle, one could do such an analysis. However, our study only captures the fuel
choices and the energy demand of final users. We do not model what fuels electrical generators are using.
For example, it would make a great difference whether future electricity generation came from coal
(where there could be large amounts of greenhouse gas and other pollutants) or a relatively clean energy
source such as natural gas, nuclear, renewable, or other technology (with little greenhouse gas or traditional
air emissions).
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