TWO-SIDED HETEROGENEITY AND TRADE∗

Andrew B. Bernard†, Tuck School of Business at Dartmouth, CEPR & NBER
Andreas Moxnes‡, University of Oslo & CEPR
Karen Helene Ulltveit-Moe§, University of Oslo & CEPR

June 14, 2017

Abstract

This paper develops a multi-country model of international trade that provides a simple micro-foundation for buyer-seller relationships in trade. We explore a rich dataset that identifies buyers and sellers in trade and establish a set of basic facts that guide the development of the theoretical model. We use predictions of the model to examine the role of buyer heterogeneity in a market for firm-level adjustments to trade shocks, as well as to quantitatively evaluate how firms’ marginal costs depend on access to suppliers in foreign markets.

Keywords: Heterogeneous firms, exporters, importers, sourcing costs, trade elasticity

JEL codes: F10, F12, F14.

∗Thanks go to Richard Baldwin, Arnaud Costinot, Dave Donaldson, Adam Kleinbaum, Ben Mandel, Kjetil Storesletten, and Tony Venables as well as seminar participants at Columbia, DINR, ERWIT 2013, Michigan, MIT, NBER, NY Fed, Princeton and Stanford for helpful comments. We thank Angela Gu for excellent research assistance. A special thanks to the efforts of Statistics Norway for undertaking the identification of buyers and linking the transactions. Moxnes is grateful for financial support from The Nelson A. Rockefeller Center for Public Policy and the Social Sciences at Dartmouth College and the Center for Global Business and Government at Tuck.

†100 Tuck Hall, Hanover, NH 03755, USA, email: andrew.b.bernard@tuck.dartmouth.edu

‡PO Box 1095 Blindern, 0317 Oslo, Norway, email: andreamo@econ.uio.no

§PO Box 1095 Blindern 0317 Oslo, Norway, email: k.h.ulltveit-moe@econ.uio.no
1 Introduction

Global trade is the sum of millions of transactions between individual buyers (importers) and sellers (exporters). Micro-level data has traditionally revealed exports of individual firms, summed across all buyers; or conversely, imports of individual firms, summed across all sellers. Naturally, theories of international trade have also focused on firms on either side of the market, exporters in [Melitz (2003)] or importers in [Antrás et al. (2014)]. In this paper, we explore the individual matches between exporters and importers and examine the consequences of this micro-structure on firm-level and aggregate outcomes. In doing so, we build a model of international trade where exporters and importers are put on an equal footing.

We have access to a rich data set for Norwegian firms where the identities of both the exporter and the importer are known, and where a firm’s annual export transactions can be linked to specific buyers in every destination country, and each firm’s annual import transactions can be linked to specific suppliers in every source country. This allows us to establish a set of basic facts about sellers and buyers across markets which guide the development of a parsimonious multi-country theoretical model with two-sided heterogeneity.

In the model, exporters vary in their efficiency in producing differentiated intermediate goods and pay a relation-specific fixed cost to match with each buyer. These fixed costs can be related to bureaucratic procedures, contract agreements and the customization of output to the requirements of particular buyers. Importers bundle inputs into a final product with heterogeneity in efficiency. Due to the presence of the relation-specific cost, not every exporter sells to every buyer in a market. Highly productive exporters reach many customers and their marginal customer is small; highly productive importers purchase from many sellers and their marginal supplier is small. This setup delivers parsimonious expressions for both upstream firms’ exports and downstream firms’ imports, which in equilibrium may differ because a seller can match to multiple buyers and a buyer can match to multiple suppliers. Buyer-seller matches are therefore entirely explained by selection based on heterogeneity and fixed costs. These represent the simplest possible ingredients of a model that are needed in order to explain broad features of the buyer-seller data.

Our theoretical modeling of the two-sided nature of trade brings several new insights. At
the firm-level, trade integration lowers marginal costs among downstream firms by reducing the cost of inputs and by facilitating more matches between input suppliers and final goods producers. The importance of intermediate inputs for productivity growth has strong empirical support; Gopinath and Neiman (2014) find that a collapse in imports leads to a fall in productivity among Argentinian firms during the 2001-2002 crisis, while Amiti and Konings (2007), Goldberg et al. (2010) and Khandelwal and Topalova (2011) all find that declines in input tariffs are associated with sizable measured productivity gains. The model can generate firm-level responses to trade cost shocks that are consistent with the empirical evidence. Our work highlights that measured firm-level productivity gains not only arise from falling costs or access to higher quality inputs, but also from gaining access to new suppliers.

At the macro level, global trade will depend on the magnitude of relation-specific costs: lower relation-specific costs facilitate more matches between buyers and sellers, therefore generating more trade between nations as well as improving consumer welfare. In the aggregate, the model also retains the properties of one-sided models, as it gives us a simple gravity equation of bilateral trade flows as well as the same welfare results as in Arkolakis et al. (2012). In that sense, our model nests previous work while featuring a richer micro foundation.

We explore various empirical applications of the model starting with predictions for firm-level exports. According to the model, lower variable trade costs in a destination country will lead to higher firm-level export growth when buyers in that market are less dispersed in terms of their productivity. When buyers are more similar, an exporter will find many new profitable matches, whereas if buyers are dispersed, only a few more matches will become profitable. In other words, the customer extensive margin response will be strong when buyer heterogeneity is low. We develop a theory-consistent sufficient statistic for unobservable trade costs and test this prediction based on our rich data set on buyers and sellers by exploiting variation in import shares across industries and countries over time. We find strong empirical support for the prediction from the model. An implication of our work is therefore that characteristics on the importer side (such as buyer heterogeneity) matter for firm-level adjustment dynamics. The firm-level export response after a change to trade policy, exchange rate movements or other kinds of shocks, will vary across countries depending on characteristics of the importers.
Second, based on the predictions of the model we develop an empirical methodology to evaluate downstream firms’ marginal cost response when foreign market access is changing due to a fall in trade barriers or a reduction in the pool of potential suppliers. We show that a sufficient statistic for a firm’s change in marginal costs is the level of, and the change in, intermediate import shares and the trade elasticity. Evaluating the impact of the 2008-2009 trade collapse on firms’ production costs, we find that worsened market access during the trade collapse had a substantial negative impact on production costs, especially for downstream firms with high ex-ante exposure to international markets. The empirical exercise also allows us to assess the fit of the model and to evaluate the relative importance of the supplier margin. Overall, the model does well in explaining the fall in the number of buyer-seller connections during the trade collapse.

This paper is related to several new streams of research on firms in international trade. Importing firms have been the subject of work documenting their performance and characteristics. Bernard et al. (2009), Castellani et al. (2010) and Muuls and Pisu (2009) show that the heterogeneity of importing firms rivals that of exporters for the US, Italy and Belgium respectively. Amiti and Konings (2007), Halpern et al. (2011) and Bøler et al. (2015) relate the importing activity of manufacturing firms to increases in productivity. In recent work, Blaum et al. (2015) develop a model of firm-level imports and show, as we do, that a firm’s marginal costs depend on the share of intermediates sourced domestically as well as the trade elasticity. They generalize this result and show that this holds for a wide class of models, while our framework emphasizes the two-sided nature of trade, i.e. that one firm’s exports is another firm’s imports.

Papers by Rauch (1999), Rauch and Watson (2004), Antràs and Costinot (2011) and Petropoulou (2011) consider exporter-importer linkages. Chaney (2014) has a search-based model of trade where firms must match with a contact in order to export to a destination. These papers adopt a search and matching approach to linking importers and exporters, while we abstract from these mechanisms and instead focus on the implications of buyer heterogeneity for international trade.

Our work is also related to the literature on exports and heterogeneous trade costs initiated by Arkolakis (2010, 2011). In these papers, the exporter faces a rising marginal cost of reaching
Our paper is most closely related to the nascent literature using matched importer-exporter data. Blum et al. (2010; 2012) examine characteristics of trade transactions for the exporter-importer pairs of Chile-Colombia and Argentina-Chile while Eaton et al. (2014) consider exports of Colombian firms to specific importing firms in the United States. Blum et al. (2010; 2012) find, as we do, that small exporters typically sell to large importers and small importers buy from large exporters. Their focus is on the role of import intermediaries in linking small exporters and small customers. Eaton et al. (2014) develop a model of search and learning to explain the dynamic pattern of entry and survival by Colombian exporters and to differentiate between the costs of finding new buyers and to maintaining relationships with existing ones. Monarch (2013) estimates switching costs using a panel of U.S importers and Chinese exporters and Dragusanu (2014) explores how the matching process varies across the supply chain using U.S.-Indian data. Sugita et al. (2014) study matching patterns in U.S.-Mexico trade while Benguria (2014) estimates a trade model with search costs using matched French-Colombian data. In contrast to those papers but similar to Carballo et al. (2013), we focus on the role of importer heterogeneity across destinations. Carballo et al. (2013) focus on the distribution of export sales across buyers within a product-country, while we study the implications of importer heterogeneity on exporting firms’ responses to exogenous shocks to trade barriers and the role of buyer-seller matches in the marginal cost of importers.

The rest of the paper is structured as follows. In Section 2 we document the main dataset, and present a set of facts on the role of buyers in trade, the heterogeneity of buyers and sellers, and their bilateral relationships. In Section 3 we develop a multi-country trade model with heterogeneous sellers and buyers which is guided by the basic facts in Section 2. Section 4 tests the predictions of the model with respect to the impact of trade cost shocks and the role of importer heterogeneity on firm level performance and adjustment. Section 5 develops an empirical methodology to quantify the role of market access to intermediates and number of supplier connections in explaining the impact of a supply shock on downstream firms’ marginal costs.
2 Exporters and Importers

2.1 Data

The main data set employed in this paper is based on Norwegian transaction-level customs data from 2004-2012. The data have the usual features of transaction-level trade data in that it is possible to create annual flows of exports by product, destination and year for all Norwegian exporters. In addition, this data has information on the identity of the buyer for every transaction in every destination market. As a result we are able to see exports of each seller at the level of the buyer-product-destination-year. Our data include the universe of Norwegian non-oil merchandise exports, and we observe export value and quantity. In 2005 total Norwegian non-oil merchandise exports amounted to US$41 Billion, equal to approximately 18 percent of Mainland Norway GDP (GDP excluding the oil and gas sector). The firm-level evidence from Norwegian non-oil exports looks remarkably similar to that of other developed countries, see Cebeci et al. (2012), Irarrazabal et al. (2013) and Mayer and Ottaviano (2008). Table 9 in Section A in the Online Appendix reports the top 5 exported products from Mainland Norway.

2.2 Basic Facts

This section explores the matched buyer-seller data for Norwegian exporters. We establish the relevance of the buyer dimension as a margin of trade, and document a set of facts on the heterogeneity of buyers and sellers and their relationships. We let these facts guide our model of international trade and subsequent empirical specifications.

Fact 1: The buyer margin explains a large fraction of the variation in aggregate trade.

To examine the role of buyers in the variation of exports across countries, we decompose total

\[1\] Statistics Norway identifies buyers using the raw transaction-level records; however they aggregate the data to the annual level before allowing external access to the data.
exports to country j, x_j, into the product of the number of unique exporting firms, f, the number of exported products, p, the number of unique buyers (importers), b, the density of trade, d, i.e. the fraction of all possible exporter-product-buyer combinations for country j for which trade is positive, and the average value of exports, \bar{x}. Hence,

$$x_j = f_j p_j b_j d_j \bar{x}_j$$

where $d_j = o_j / (f_j p_j b_j)$, o_j is the number of exporter-product-buyer observations for which trade with country j is positive and $\bar{x}_j = x_j / o_j$ is average value per exporter-product-buyer. We regress the logarithm of each component on the logarithm of total exports to a given market in 2006, e.g. $\ln f_j$, against $\ln x_j$. Given that OLS is a linear estimator and its residuals have an expected value of zero, the coefficients for each set of regressions sum to unity, with each coefficient representing the share of overall variation in trade explained by the respective margin. The results, shown in Table 1, confirm and extend previous findings on the importance of the extensive and intensive margins of trade. While it has been shown in a variety of contexts that the numbers of exporting firms and exported products increase as total exports to a destination increase, our results show the comparable importance of the number of importing buyers in total exports. In fact, the buyer margin is as large or larger than the firm or product margins.

It is well documented that the total value of exports, the number of exporting firms and the number of exported products are systematically related to destination market characteristics such as GDP and distance. Looking within the firm across markets, we show how the buyer margin responds to these standard gravity variables by regressing a firm’s number of customers on a firm fixed effect, distance and GDP in the destination market. The results in Table 2 show that a firm’s number of customers is significantly higher in larger markets and smaller in remote markets, i.e. importers per exporter vary systematically with GDP and distance.\footnote{Using data for Costa Rica, Uruguay and Ecuador, Carballo et al. (2013) also find support for the role of the buyer margin in explaining the variation in trade. Their findings on the relative importance of buyers versus firms and products mirror our results.}

\footnote{The response of the buyer margin to gravity variables has been confirmed by Carballo et al. (2013).}
The importance of market size is also illustrated in Figure 1. The vertical axis denotes the mean number of customers per Norwegian exporter (unweighted average across all exporters to destination j) while the horizontal axis denotes destination market GDP (log scale). The larger the market size, the greater the number of buyers for a given Norwegian exporter.

Fact 2: The populations of sellers and buyers of Norwegian exports are both characterized by extreme concentration. The top 10 percent of exporters to an OECD country typically account for more than 90 percent of aggregate exports to that destination. At the same time, the top 10 percent of buyers from an OECD country are as dominant and also account for more than 90 percent of aggregate purchases, see Table [10] in the Online Appendix. Although a handful of exporters and importers account for a large share of aggregate trade, these large firms are matching with many partners; one-to-one matches are typically not important in the aggregate. Table [3] shows that one-to-one matches represent 9.5 percent of all exporter-importer connections but account for only 4.6 percent of aggregate trade. Many-to-many matches, those where both exporter and importer have multiple connections, make up almost two thirds of aggregate trade.

This concentration of imports and exports in a small set of firms is similar to that found by Bernard et al. (2009) for the US, by Eaton et al. (2014) for Columbian exporters and Mayer and Ottaviano (2008) for other European countries.
Figure 2: Distribution of the number of buyers per exporter (2006).

Note: Log scale. The estimated slope coefficients: -1.02 (s.e. 0.010) for China, -1.02 (s.e. 0.002), for Sweden, and -1.13 (s.e. 0.005) for the U.S.

aggregate trade. These facts motivate us to develop a model allowing for suppliers to match with several customers and buyers to match with multiple sellers. Using trade data for Chile and Colombia as well as Argentine and Chile, [Blum et al. (2012)] similarly point to the dominance of large exporter-large importer matches among the total number of trading pairs. However, the theoretical model they develop fails to capture this feature of the data.

Fact 3: The distributions of buyers per exporter and exporters per buyer are characterized by many firms with few connections and a few firms with many connections. We plot the number of buyers of each exporting firm in a particular market against the fraction of exporters selling in the market who sell to at least that many buyers. We find that the shape of the distributions are remarkably similar across markets. We illustrate this in Figure 2 plotting the results for China, the US and Sweden.[5] The distributions appear to be largely consistent with a Pareto distribution

To interpret Figure 2 as the empirical CDF, let x_j^ρ be the ρth percentile of the number of buyers per exporter in market j. We can then write $\Pr[X \leq x_j^\rho] = \rho$. The distribution is Pareto if the slope is constant. If the distribution is Pareto with shape parameter a and location parameter x_0, we have $1 - \left(\frac{x_0}{x_j^\rho}\right)^a = \rho$. Taking logs gives us $\ln x_j^\rho = \ln x_0 - \frac{1}{a} \ln (1 - \rho)$, i.e. the slope coefficient equals the negative of the inverse of the Pareto shape parameter ($-1/a$).
Figure 3: Number of Buyers & Firm-level Exports (2006).

Note: The Figure shows the fitted line from a kernel-weighted local polynomial regression of log firm-destination exports on log firm-destination number of customers.

as the cdfs are close to linear except in the tails. The Pareto fails to capture the discreteness of the actual empirical distribution (the number of customers per exporter is discrete) but we view the Pareto as a continuous approximation of the discrete case.

We also plot the number of exporters per buyer in a particular market against the fraction of buyers in this market who buy from at least that many exporters (see Figure 9 in the Online Appendix). Again the distributions are approximately Pareto, except in the tails, with many buyers having a few suppliers, and a few buyers with many suppliers. The average number of buyers per seller is 4.5 in the U.S. and 3.6 in China and Sweden, see Table 10 in the Online Appendix. The average number of exporters per buyer in China, Sweden and the US is 1.7, 1.9 and 1.6, respectively.

Fact 4: Within a market, exporters with more customers have higher total sales, but the distribution of exports across customers does not vary systematically with the number of cus-

These results are largely consistent with the findings by Blum et al. (2010, 2012) and Carballo et al. (2013).
Figure 4: Number of Buyers & Within-firm Dispersion in Exports (2006).

Note: The Figure shows the fitted lines from kernel-weighted local polynomial regressions of the x'th percentile of within-firm-destination log exports on firm-destination log number of customers.

Figure 3 plots the relationship between a firm’s number of customers on the horizontal axis and its total exports on the vertical axis using log scales. The solid line is the fit from a kernel-weighted local polynomial regression, and the gray area is the 95 percent confidence interval. We pool all destination countries and normalize exports such that average exports for one-customer firms in each destination equal 1. Not surprisingly, firms with more buyers typically export more. The average firm with 10 customers in a destination exports more than 10 times as much as a firm with only one customer.

In Figure 4, we examine how the distribution of exports across buyers varies with the number of customers. Log exports are expressed relative to average log exports for one-customer firms, $\ln(Exports_{mj}) - \ln(Exports_{OCF_j})$, where $\ln(Exports_{mj})$ is log exports from seller m to market j and $\ln(Exports_{OCF_j})$ is average log exports for one-customer firms in market j. This normalization is similar to removing country fixed effects from export flows. Furthermore it ensures that the values on the vertical axis are expressed relative to one-customer firms.
ber of buyers. The plot shows the fitted lines from polynomial regressions of the 10th, median and 90th percentile of firm-level log exports (across buyers) and the log number of customers using log scales. We focus on firms with 10 or more customers because the 10th and 90th percentiles are not well defined for firms with fewer than 10 buyers. Again, we pool all destinations and normalize exports such that average exports for one-customer firms are 1. Firm-level exports to the median buyer are roughly constant, or even declining slightly, so that better-connected sellers are not selling more to their median buyer in a destination compared to less well-connected sellers. The 10th and 90th percentiles are also relatively flat. Dispersion in firm-level exports (across buyers), measured as the difference between the 90th and 10th percentiles, is constant for firms with more than 10 buyers. In our theoretical model, the variation in firm sales in a market is driven by the extensive margin of the number of customers.

Fact 5: There is negative degree assortivity among sellers and buyers. We characterize sellers according to their number of buyers, and buyers according to their number of sellers. We find that the better connected a seller, the less well-connected is its average buyer. Figure 5 provides an overview of seller-buyer relationships. The Figure shows all possible values of the number of buyers per exporter in a given market, a_j, on the x-axis, and the average number of Norwegian connections among these buyers, $b_j(a_j)$, on the y-axis. Both variables are demeaned and axes are in logs. The interpretation of a point with the coordinates (10,0.1) is that an exporter with 10 times more customers than is typical for that market, has customers
there with on average 1/10th the typical number of Norwegian suppliers. The slope of the fitted regression line is -0.13, so a 10 percent increase in number of customers is associated with a 1.3 percent decline in average connections among the customers. In recent work by Bernard et al. (2014), negative degree assortivity is also found for buyer-seller links among Japanese firms. Their Japanese dataset covers close to the universe of domestic buyer-seller links and therefore contains information about the full set of buyer linkages. Our results are also in line with those found by Blum et al. (2010) in their analysis of Chilean-Argentinian trade.

Negative degree assortivity does not mean that well-connected exporters only sell to less-connected buyers; instead it suggests that well-connected exporters typically sell to both well-connected buyers and less-connected buyers, whereas less-connected exporters typically only sell to well-connected buyers. We provide an illustration of this in Figure 10 in the Online Appendix. We divide firms into groups with 1 connection, 2-3, 4-10 and 11+ connections in Sweden, the largest market for Norwegian exporters. For each group, we then calculate the share of customers that have 1 Norwegian connection, 2-3, 4-10 and 11+ Norwegian connections. Among exporters with 1 Swedish connection, around 30 percent of the total number of matches are made with buyers with 1 Norwegian connection (the far left bar in the figure). Among exporters with 11+ Swedish connections, almost half of the number of matches made are with buyers with 1 Norwegian connection (the far right bar in the figure). Hence, better connected exporters are much more exposed to single-connection buyers.

Degree assortivity is only a meaningful measure in economic environments with many-to-

8 Using the median number of connections instead of the average number of connections as the dependent variable also generates a significant and negative slope coefficient. Estimating the relationship separately for each country, instead of pooling all countries, produces a negative assortivity coefficient for 89 percent of the countries we have sufficient data for (defined as countries with 10 or more observations in the regression). In Section II in the Online Appendix we show that the elasticity is informative of a structural parameter of the model.

9 The median, 75th percentile and 90th percentile number of number of customers per exporter is 1, 3 and 7 respectively. Patterns for other markets are broadly similar.
many matching. Moreover, negative degree assortivity can coexist with positive assortative matching on the intensive (export value) margin. For example, Sugita et al. (2014) study one-to-one matches in Mexico-U.S. trade and find evidence that more capable sellers typically match with more capable buyers. In fact, this would also be the outcome of a one-to-one matching version of our model because the profits of a match are supermodular in seller and buyer efficiency, see Section D in the Online Appendix. Section I in the Online Appendix provides additional evidence on intensive margin assortivity in our data.

Fact 6: Firms tend to follow a hierarchical pecking order in their choice of connections. We investigate the pervasiveness of buyer hierarchies following a procedure similar to Eaton et al. (2011). First, we rank every buyer in a market according to the number of Norwegian connections of that buyer, \(r_b \) (country subscripts suppressed). The probability of connecting to a buyer, \(\rho_{rb} \), is \(b \)'s number of connections relative to the number of firms exporting to that market. Under independence, the probability of connecting only to the most-connected buyer is \(p_1 = \rho_1 \prod_{r=2}^{B} (1 - \rho_r) \) where \(B \) is the total number of buyers in the market. The probability of connecting only to the most and second-most connected buyer is \(p_2 = \rho_1 \rho_2 \prod_{r=3}^{B} (1 - \rho_r) \), and so on. The likelihood of following the hierarchy under independence is therefore \(\sum_{i=1}^{B} p_i \).

We compare the likelihood of following this hierarchy under independence relative to what we find in the data, for each country in our dataset. Figure 11 in Section A in the Online Appendix also find evidence of positive assortivity on the intensive margin.

Social networks typically feature positive degree assortivity, that is, highly connected nodes tend to attach to other highly connected nodes, while negative correlations are usually found in technical networks such as servers on the Internet (Jackson and Rogers, 2007). In the friendship network among prison inmates considered by Jackson and Rogers (2007), the correlation between a node’s in-degree (incoming connections) and the average in-degree of its neighbors is 0.58. The correlation in our data is -0.31. Serrano and Boguna (2003) find evidence of negative sorting in the network of trading countries; i.e. highly connected countries, in terms of trading partners, tend to attach to less connected countries.
shows the actual shares of firms following the hierarchy on the vertical axis and the simulated shares under the assumption of independence on the horizontal axis. For the vast majority of countries, there are more firms following the hierarchy relative to the statistical benchmark (the observations are above the 45 degree line). The data therefore refutes the statistical benchmark of independence.

Section L in the Online Appendix presents a range of robustness checks for the facts presented above. We also provide external validity by showing results for a different country, Colombia. We find that the basic facts also hold in the Colombian data. Finally, one may question if the basic facts presented above can also be generated from a simple stochastic process where buyers and sellers meet randomly. We investigate this in the Online Appendix Section K, where we simulate a balls and bins model of trade similar to Armenter and Koren (2013). The main finding is that a random model fails to explain key empirical characteristics of exporter-importer connections.

3 A Model with Two-Sided Heterogeneity

In this section, we develop a multi-country trade model that provides a micro-foundation for buyer-seller relationships and allows us to examine the role of buyer heterogeneity and buyer-seller links for firm-level adjustments. As in Melitz (2003), firms (sellers) within narrowly defined industries produce with different efficiencies. We think of these firms as producers of intermediates as in Ethier (1979). Departing from Melitz (2003), we assume that intermediates are purchased by final goods producers (buyers or customers) who bundle inputs into final goods that in turn are sold to consumers. Final goods producers also produce with different efficiencies, giving rise to heterogeneity in their firm size as well as a sorting pattern between sellers and buyers in equilibrium.

3.1 Setup

Each country i is endowed with L_i workers, and the labor market is characterized by perfect competition, so that wages are identical across sectors and workers. In each country there are three sectors of production: a homogeneous good sector characterized by perfect compe-
tition, a traded intermediates sector and a non-traded final goods sector; the two last sectors are characterized by monopolistic competition. Workers are employed in the production of the homogeneous good as well as the production of the intermediates.\footnote{Adding workers to the final goods sector would only add more complexity to the model without generating new insights.} The homogeneous good is freely traded and is produced under constant returns to scale with one hour of labor producing w_i units of the homogeneous good. Normalizing the price of this good to 1 sets the wage rate in country i to w_i.

Consumers. Consumers derive utility from consumption of the homogeneous good and a continuum of differentiated final goods. Specifically, upper level utility is Cobb-Douglas between the homogeneous good and an aggregate differentiated good with a differentiated good expenditure share μ, and lower level utility is CES across differentiated final goods with an elasticity of substitution $\sigma > 1$.

Intermediates. Intermediates are produced using only labor by a continuum of firms, each producing one variety of the differentiated input. Firms are heterogeneous in productivity z, and firms’ productivity is a random draw from a Pareto distribution with support $[z_L, \infty)$ and shape parameter $\gamma > \sigma - 1$, so that $F(z) = 1 - (z_L/z)^\gamma$. As a notational convention, lower case symbols refer to intermediate producers whereas upper case symbols refer to final goods producers.

Final goods producers. Final goods are produced by a continuum of firms, each producing one variety of the final good. Their production technology is CES over all intermediate inputs available to them,

$$Z(\nu) \left(\int_{\Xi_j(\nu)} c(\omega)^{(\sigma - 1)/\sigma} d\omega \right)^{\sigma/(\sigma - 1)},$$

where productivity for firm ν is denoted by $Z(\nu)$, which is drawn from the Pareto distribution $G(Z) = 1 - Z^{-\Gamma}$ with support $[1, \infty)$. $c(\omega)$ represents purchases of intermediate variety ω and $\Xi_j(\nu)$ is the set of varieties available for firm ν in country j. To simplify the notation, the elasticity of substitution among intermediates is identical to the elasticity of substitution among final goods, both denoted by σ. This restriction does not significantly affect the qualitative
results of the paper. We also impose $\Gamma > \gamma$, which ensures that the price index for final goods is finite (see Section C in the Online Appendix).

Relationship-specific investments. Intermediate producers sell to an endogenous measure of final goods producers, and they incur a match-specific fixed cost for each buyer they choose to sell to. Hence, the act of meeting a buyer and setting up a supplier contract is associated with a cost that is not proportional to the value of the buyer-seller transaction. These costs may typically be related to bureaucratic procedures, contract agreements and costs associated with sellers customizing their output to the requirements of particular buyers.\(^{13}\) Formally, we model this as a match-specific fixed cost, f_{ij}, paid by the seller in terms of labor, and it may vary according to seller country i and buyer country j. Consequently, buyer-seller links are the result of producers of intermediates that endogenously choose their set of customers.

The total mass of buyers and sellers, N_i and n_i, in each country i is proportional to total income Y_i, so there are more firms in larger economies. As there is no free entry, the production of intermediates and final goods leaves rents. We follow Chaney (2008) and assume that consumers in each country derive income not only from labor but also from the dividends of a global mutual fund. Each consumer owns w_i shares of the fund and profits are redistributed to them in units of the numeraire good. Total worker income in country i, Y_i, is then $w_i(1 + \psi)L_i$, where ψ is the dividend per share of the global mutual fund. Section J in the Online Appendix develops an extension of the model where the number of buyers N_i is determined by a free entry condition; in that case the number of buyers N_i is indeed proportional to country income Y_i.\(^{14}\)

Variable trade barriers. Intermediates are traded internationally, and firms face standard

\(^{13}\)Kang et al. (2009) provide examples of such relationship-specific investments and analyze under what circumstances firms are more likely to make these types of investments. For example, a newly adopted just-in-time (JIT) business model by Dell required that its suppliers prepare at least three months buffering in stock. However, Dell did not offer any guarantee on purchasing volumes due to high uncertainty in final product markets.

\(^{14}\)Introducing free entry on the seller side is more complex, as there is no closed-form solution for the number of sellers in a market n_i.

16
iceberg trade costs $\tau_{ij} \geq 1$, so that τ_{ij} must be shipped from country i in order for one unit to arrive in country j15.

Sorting functions. Due to the presence of the match-specific fixed cost, a given seller in i will find it optimal to sell only to buyers in j with productivity higher than a lower bound Z_{ij}. Hence, we introduce the equilibrium sorting function $Z_{ij}(z)$, which is the lowest possible productivity level Z of a buyer in j that generates a profitable match for a seller in i with productivity z. We solve for $Z_{ij}(z)$ in Section 3.3. Symmetrically, we define $z_{ij}(Z)$ as the lowest efficiency for a seller that generates a profitable match for a buyer in country j with productivity Z. By construction, $z_{ij}(Z)$ is the inverse of $Z_{ij}(z)$, i.e. $Z = Z_{ij}\left(z_{ij}(Z)\right)$.

Pricing. As intermediates and final goods markets are characterized by monopolistic competition, prices are a constant mark-up over marginal costs. For intermediate producers, this yields a pricing rule $p_{ij} = \bar{m}\tau_{ij}w_i/z$, where $\bar{m} \equiv \sigma / (\sigma - 1)$ is the mark-up16. For final goods, the pricing rule becomes $P_j = \bar{m}q_j(Z)/Z$, where $q_j(Z)$ is the ideal price index for intermediate inputs facing a final goods producer with productivity Z in market j. The restriction of identical elasticities of substitution across final and intermediate goods also implies that the mark-up \bar{m} is the same in both sectors. Using the Pareto assumption for seller productivity z, the price index on inputs facing a final goods producer with productivity Z can be written as

$$q_j(Z)^{1-\sigma} = \frac{\gamma_2^{\gamma}}{\gamma_2} \sum_k n_k (\bar{m}\tau_{kj}w_k)^{1-\sigma} z_{kj}(Z)^{-\gamma_2},$$

(1)

where $\gamma_2 \equiv \gamma - (\sigma - 1)$.

Exports of intermediates. Given the production function of final goods producers specified

15We normalize $\tau_{ii} = 1$ and impose the common triangular inequality, $\tau_{ik} \leq \tau_{ij} \tau_{jk} \forall i, j, k$.

16Because marginal costs are constant, the optimization problem of finding the optimal price and the optimal measure of buyers simplifies to standard constant mark-up pricing and a separate problem of finding the optimal measure of buyers. We abstract from variable mark-ups in our model, although, in our data, unit values vary with respect to transaction size and destination. We leave this for future research.
above, and conditional on a match \((z, Z)\), firm-level intermediate exports from country \(i\) to \(j\) are

\[
 r_{ij}(z, Z) = \left(\frac{p_{ij}(z)}{q_j(Z)} \right)^{1-\sigma} E_j(Z),
\]

where \(E_j(Z)\) is total spending on intermediates by a final goods producer with productivity \(Z\) in market \(j\). The specific form of \(E_j(Z)\) depends on the equilibrium sorting pattern in the economy, see Section 3.3 and Appendices B-C.

3.2 A Limiting Case

Because the lower support of the seller productivity distribution is \(z_L\), a buyer (final goods producer) can potentially meet every seller (intermediate goods producer) in the economy. An implication is that we have two types of buyers: (i) buyers that match with a subset of the sellers, and (ii) buyers that match with every seller. Case (i) is characterized by \(z_{ij}(Z) > z_L\), while case (ii) is characterized by \(z_{ij}(Z) \leq z_L\).

The discontinuity of the Pareto distribution at \(z_L\) is inconvenient, as the sorting function \(z_{ij}(Z)\) will be non-smooth (not continuously differentiable) and important relationships will not have closed-form solutions. Henceforth, we choose to work with a particular limiting economy. Specifically, we let \(z_L \to 0\), so that even the most productive buyer is not large enough to match with the smallest seller. In addition, we assume that the measure of sellers is an inverse function of the productivity lower bound, \(n_i = z_L^{-\gamma} n_i'\), where \(n_i'\) is the normalized measure of sellers. Therefore, a lower productivity threshold is associated with more potential firms.\(^{17}\) When \(z_L\) declines, a given seller is more likely to have lower productivity, but there are also more sellers, so that the number of sellers in a given country with productivity \(z\) or higher remains constant. In equilibrium, the two forces exactly cancel out, so that the sorting patterns and as well as expressions for trade flows and other equilibrium objects are well defined.

The support of the buyer distribution is \([1, \infty)\), which means that a highly productive seller can potentially meet every buyer in the market. This discontinuity is analytically tractable, so we allow for this to occur in equilibrium. We denote the productivity of the marginal seller that

\(^{17}\)\(n_i'\) is constant as \(z_L \to 0\). The normalization is similar to Oberfeld (2013).
meets every buyer \(z_H \equiv z_{ij} (1) \). Hence, sellers with \(z \geq z_H \) meet every buyer in the market.

3.3 Equilibrium Sorting

Based on the setup presented in Section 3.1, we now pose the question: for a given seller of intermediates in country \(i \), what is the optimal number of buyers to match with in market \(j \)? An intermediate firm’s net profits from a \((z,Z)\) match is \(\Pi_{ij} (z,Z) = r_{ij} (z,Z) / \sigma - w_{ifi} \).

Given the optimal price from Section 3.1, the matching problem of the firm is equivalent to determining \(Z_{ij} (z) \), the lowest productivity buyer that generates a profitable match for a seller with productivity \(z \). Hence, we find \(Z_{ij} (z) \) by solving for \(\Pi_{ij} (z,Z) = 0 \). Inserting the demand equation (2) and a firm’s optimal price, we can express \(Z_{ij} (z) \) implicitly as

\[
q_j (Z)^{\sigma - 1} E_j (Z) = \sigma w_{ifi} (\bar{m}_j w_j)^{\sigma - 1} z^{1 - \sigma}.
\]

(3)

A complication is that the price index is also a function of the unknown \(z_{ij} (Z) \), and furthermore that total spending on intermediates, \(E_j (Z) \), is unknown and depends on the equilibrium sorting pattern. In Appendices B-C, we show that we can start with a guess of the functional forms for \(z_{ij} (Z) \) and \(E_j (Z) \), derive the equilibrium, and then confirm that the functional forms are indeed valid. The solution to the sorting function is:

\[
Z_{ij} (z) = \frac{\tau_{ij} w_{ij} \Omega_j}{z} \left(\frac{\bar{m}_j w_j}{w_{ifi}} \right)^{1/(\sigma - 1)},
\]

(4)

where

\[
\Omega_j = \left(\frac{\sigma}{\kappa_3} \sum_k Y_k \left(\tau_{kj} w_k \right)^{-\gamma} \left(w_{kij} \right)^{-\gamma/(\sigma - 1)} \right)^{1/\gamma},
\]

(5)

and \(\kappa_3 \) is a constant (\(\kappa_3 \equiv \mu (\Gamma - \gamma) / \Gamma \)). These expressions are valid under any distribution for buyer productivity, i.e. it is not necessary to assume Pareto distributed buyer productivity to derive this particular result.

We plot the matching function \(Z_{ij} (z) \) in Figure 6\(^\text{18}\). \(Z_{ij} (z) \) is downward sloping in \(z \), so more efficient sellers match with less efficient buyers on the margin. The point \(z_H \) on the

\[^{18}\text{The Figure is based on parameter values } \tau_{ij} w_{ij} \Omega_j \left(\frac{\bar{m}_j w_j}{w_{ifi}} \right)^{1/(\sigma - 1)} \left(\frac{Y_j}{N_j} \right)^{-1/\gamma} = 5.\]
The horizontal axis denotes the cutoff productivity where a seller matches with every buyer. A firm with efficiency z matches with lower efficiency buyers whenever variable or fixed trade costs (τ_{ij} and f_{ij}) are lower (the curve in Figure 6 shifts towards the origin). Higher wages in country i mean that exporters (from i) cannot profitably match with lower efficiency buyers. Conversely higher GDP in the destination market, Y_j, increases the range of profitable matches.

The model is multi-country in that matching costs, variable trade costs, and wages in third countries affect the buyer cutoff between i and j. A firm from i matches with a greater range of (lower efficiency) buyers in j when trade costs from third countries to j are higher (market access to j, Ω_j, is lower). This occurs because the downstream firms’ price index on inputs, $q_j(Z)$, is decreasing in market access Ω_j, see equation (19) in the Online Appendix. Ω_j in equation (5) therefore has a similar interpretation as the multilateral resistance variables in Anderson and van Wincoop (2004) and Eaton and Kortum (2002). A key difference, although, is that our Ω_j endogenizes the density of matching patterns through the fixed matching costs f_{ij}.

Highly productive downstream firms also will have a lower input price index, i.e. $q_j(Z)$ is decreasing in Z. Hence, all else equal, a given seller will face tougher competition when selling to a high productivity buyer (which will in equilibrium have many suppliers).
3.4 Firm-level Exports and Imports

Having determined the equilibrium sorting function between intermediate and final goods producers, we can now derive equilibrium expressions for firm-level exports and imports and decompose trade into the extensive margin in terms of number of buyers (suppliers) and the intensive margin in terms of sales per buyer (supplier).

Firm-level Exports Using (2), for a given firm with productivity \(z < z_H \), we can express total firm-level intermediate exports, from country \(i \) to \(j \) across all the buyers with which the firm has matched as

\[
R_{ij}^{TOT}(z) = N_j \int_{Z_j}(z) r_{ij}(z, Z) dG(Z).
\]

In the Online Appendix D, we show that firm-level intermediate exports to market \(j \) are

\[
R_{ij}^{TOT}(z) = \kappa_1 Y_j (w_i f_{ij})^{1-\Gamma/(\sigma-1)} \left(\frac{z}{\tau_{ij} w_i \Omega_j} \right)^\Gamma,
\]

where \(\kappa_1 \) is a constant (\(\kappa_1 \equiv \sigma \Gamma / [\Gamma - (\sigma - 1)] \)). The corresponding expression for firms with \(z \geq z_H \) is shown in the Online Appendix D. The \(z > z_H \) case is in our context less interesting because the seller will match with every buyer and the expression for firm-level trade therefore resembles the case with no buyer heterogeneity. It is also straightforward to determine marginal exports, i.e. exports to the least productive buyer. Using the fact that \(\pi_{ij}(z, Z) = r_{ij}(z, Z) / \sigma - w_i f_{ij} \), we get

\[
r_{ij}(z, Z_{ij}(z)) = \sigma w_i f_{ij}.
\]

Hence, marginal exports are entirely pinned down by the relation-specific fixed cost. We can also derive the optimal measure of buyers in an export market \(j \) for an upstream firm with productivity \(z < z_H \) in country \(i \) (see the Online Appendix D), which yields

\[
b_{ij}(z) = Y_j (w_i f_{ij})^{-\Gamma/(\sigma-1)} \left(\frac{z}{\tau_{ij} w_i \Omega_j} \right)^\Gamma.
\]

We emphasize two properties of these results. First, a firm will sell more in larger markets (higher \(Y_j \)), but the marginal export flow, i.e. a firm’s transaction to the smallest buyer, is unaffected by market size because the marginal transaction is pinned down by the magnitude of the
Second, the elasticity of exports and of the number of buyers with respect to variable trade barriers equals Γ, the shape parameter of the buyer productivity distribution. Hence, a lower degree of buyer heterogeneity (higher Γ) amplifies the negative impact of higher variable trade costs for both exports and the number of customers. This is in contrast to models with no buyer heterogeneity, where the firm-level trade elasticity is determined by the elasticity of substitution, σ (e.g., in Melitz (2003)). The intuition is that in markets with low heterogeneity (high Γ), there are many potential buyers that a seller can form profitable matches with after e.g. a decline in trade barriers. Consequently, trade liberalization in a destination market with low heterogeneity among importers translates into higher export growth than in a market with high heterogeneity among importers. We summarize these findings in the following proposition.

Proposition 1. For $z < z_H$, the elasticity of firm-level exports with respect to variable trade costs equals Γ, the Pareto shape coefficient for buyer productivity.

A potential concern is that this result is not robust to other distributional assumptions. Section F in the Online Appendix derives general expressions for the firm-level trade elasticity given any distribution for buyer productivity. We show that the qualitative result that the elasticity is higher in markets with less buyer dispersion continues to hold for many commonly used distributions (lognormal, exponential and Frechet).

Firm-level Imports The model also delivers parsimonious expressions for a downstream firm’s intermediate imports as well as a firm’s measure of suppliers. Section D in the Online Appendix shows that intermediate imports from country i to a downstream firm in j are

$$R_{ij}^{TOT}(Z) = \kappa_4 Y_i \left(w_i f_{ij} \right)^{1-\gamma/(\sigma-1)} \left(\frac{Z}{\tau_{ij} w_i \Omega_j} \right)^{\gamma}. \tag{9}$$

Also a higher match cost f_{ij} dampens both firm exports and the number of buyers because $1 - \Gamma/ (\sigma - 1) < 0$, given the previous restrictions that $\gamma - (\sigma - 1) > 0$ and $\Gamma > \gamma$.

19
while the measure of suppliers is

\[S_{ij}(Z) = Y_i \left(w_i f_{ij} \right)^{-\gamma/(\sigma-1)} \left(\frac{Z}{\tau_{ij} w_i \Omega_j} \right)^{\gamma}. \]

(10)

At the firm level, an upstream firm’s exports to country \(j \), \(r_{ij}^{TOT} \), are not identical to a downstream firm’s imports from \(i \), \(R_{ij}^{TOT} \). At the aggregate level, of course, total export revenue must equal total import costs between \(i \) and \(j \).

In the model, falling trade barriers or a greater number of potential suppliers lower marginal costs among downstream firms by reducing the cost of inputs and by facilitating more matches between input and final goods producers. Specifically, as shown in Section B in the Online Appendix, the price index for intermediates for a downstream firm in \(j \) is given by

\[q_j(Z)^{1-\sigma} = Z^{\kappa \frac{m^{1-\sigma}}{\sigma} \Omega_j^{\sigma-1}}, \]

(11)

i.e. the marginal cost of a final goods producer in country \(j \) is inversely proportional to the market access term \(\Omega_j \). We summarize this in the following proposition:

Proposition 2. A downstream firm’s marginal costs are inversely proportional to the market access term \(\Omega_j \).

This result follows directly from the sorting function described in equations (4) and (5). Hence, Proposition 2 holds for any distribution of buyer productivity, not just Pareto.

The importance of intermediate inputs for productivity growth has strong empirical support. Gopinath and Neiman (2014) find a large productivity decline due to an input cost shock during the 2001-2002 Argentinian crisis, while Amiti and Konings (2007), Goldberg et al. (2010) and Khandelwal and Topalova (2011) all find that declines in input tariffs are associated with sizable measured productivity gains. Hence, the model generates firm-level responses to trade cost shocks that are consistent with the empirical evidence. Moreover, our theoretical results show that measured productivity gains can arise not only from falling costs or access to higher quality inputs, but also from being able to connect to new suppliers.

While our model is able to explain a range of new facts at the micro level, it produces results on aggregate trade and welfare similar to models with one-sided heterogeneity, see the Online
Appendix Section E for details and for discussion of the difference between trade elasticities at the firm and aggregate level.

3.5 Linking Facts and Theory

We have pointed out that our theory is guided by the basic facts on buyer-seller relationships presented in Section 2.2. This section revisits the basic facts and examines the extent to which the model fits them.

According to \textit{Fact 1} and Table 2, a firm’s number of customers is increasing in GDP and decreasing in distance. As displayed in equation (8), according to the model, the number of buyers per firm increases with market size and falls with trade costs, with elasticities 1 and $-\Gamma$ respectively.

The distribution of firm-level exports $r_{ij}^{TOT}(z)$, imports $R_{ij}^{TOT}(Z)$, the number of customers per exporter $b_{ij}(z)$ and the number of exporters per customer $S_{ij}(Z)$, are all Pareto, broadly consistent with \textit{Facts 2 and 3}.\footnote{20}

\textit{Fact 4} states that while total firm-level exports are increasing in the number of customers, the distribution of exports across buyers is roughly invariant to the firm’s number of customers. In our model, the within-firm sales distribution is (see the Online Appendix Section H)

$$
\Pr [r_{ij} < r_0 \mid z] = 1 - \left(\frac{\sigma_{wij} f_{ij}}{r_0} \right)^{\Gamma/(\sigma - 1)},
$$

so that all exporters to a market j have the same Pareto distribution of sales across buyers.

\textit{Fact 5} shows that highly connected exporters to market j have, on average, customers that have few connections to Norwegian exporters. In the model, among exporters from i with b_{ij} customers in j, the average number of connections in i among these customers is (see the

\footnote{20}The distributions of buyers per seller and sellers per buyer in the model are exactly Pareto while those in the data approximate a Pareto except in the tails. Adding random matching to the model would allow the theoretical cdfs to more closely align with the empirical cdfs.
Online Appendix Section I:

\[\tilde{S}_{ij} (b_{ij}) = \frac{\Gamma}{\Gamma - \gamma} \left(\frac{b_{ij}}{b_{ij}(1)} \right)^{-\gamma/\Gamma}. \]

Hence, the elasticity is negative with a slope coefficient \(-\gamma/\Gamma\).

4 Firm-level adjustment to trade shocks

Proposition 1 states that the firm-level trade elasticity with respect to variable trade barriers is higher when importer productivity is less dispersed. In this section, we aim to test this main prediction of the model, i.e. the role of buyer heterogeneity.

A sufficient statistic. An empirical challenge is that we do not directly observe either variable trade barriers \(\tau_{ij}\) or the market access term \(\Omega_j\). We solve this by obtaining a sufficient statistic based on the predictions of the model. We proceed as follows. From equation (27), we know that the aggregate trade share is

\[\pi_{ij} = Y_i \left(w_{ij} f_{ij} \right)^{1-\gamma/(\sigma-1)} \left(\Omega_j \tau_{ij} w_i \right)^{-\gamma}. \]

Solving this for \(\Omega_j \tau_{ij} w_i\) and inserting it back into the expression for firm-level exports in equation (6) gives us

\[r_{ij}^{TOT} (z) = \kappa Y_i \left(w_{ij} f_{ij} \right)^{1-\gamma/(\sigma-1)} \pi_{ij}^{-\gamma} \pi_{ij}^{\Gamma/\gamma} z^{\Gamma}. \]

(12)

Hence, the unobserved variable trade cost and market access terms are replaced by the observable trade share \(\pi_{ij}\).

Empirical specification. We take the logs of equation (12), add subscripts \(m, k\) and \(t\) to denote firm, industry and year, respectively, and remove subscript \(i\) as Norway is always the source country in our data. Furthermore, we add a subscript \(j\) to the importer heterogeneity term \(\Gamma\), as we want to use differences in importer heterogeneity as a source of identification. This gives us

\[\ln x_{mjk} = \alpha_{mj} + \delta_j + \ln Y_{jkt} + \frac{\Gamma_j}{\gamma} \ln \pi_{jkt}, \]

where \(\ln x_{mjk}\) denotes a firm-level export variable, \(\alpha_{mj}\) is a firm-country fixed effect, which
captures time-invariant firm-country-specific factors such as idiosyncratic demand across destinations, and δ_{jt} is a destination-year fixed effect which captures time-varying country-wide shocks such as the real exchange rate or changes in relation-specific costs. We choose to work with empirical specifications exploiting industry-level variation (subscript k) because this allows us to include country-year fixed effects. This is potentially important because those fixed effects will absorb various factors that may be correlated with the trade shares π_{jkt}. In the robustness section below, we also experiment with other combinations of fixed effects.

We do not have sufficient variation in the Norwegian data to estimate every single measure of buyer dispersion Γ_j across markets. Instead we choose to calculate Γ_j using an international cross-country database (see next Section) on the firm size distribution. Specifically, we estimate

$$
\ln x_{mjk} = \alpha_{mj} + \delta_{jt} + \beta_1 \ln Y_{jkt} + \beta_2 \ln \pi_{jkt} + \beta_3 \ln \pi_{jkt} \times \Gamma_j + \varepsilon_{mjk},
$$

where we have added an error term ε_{mjk}. The error term is likely to include measurement error in log exports and buyer dispersion as well as remaining unobserved factors that also determine firm-level exports, such as idiosyncratic trade frictions or demand shocks that are not captured by the industry-level π_{jkt} and Y_{jkt}.\[21\] Because $\partial \ln x_{mjk}/\partial \ln \pi_{jkt} = \beta_2 + \Gamma_j \beta_3$, the prediction of our model is that $\beta_3 > 0$, so that the elasticity is higher in markets with less importer dispersion.

Instrumental variable approach. A concern is that changes in the trade shares π_{jkt} are endogenous. For example, high productivity growth among one or several Norwegian firms could increase Norway’s total market share, creating a causal relationship from firm-level export growth to the aggregate trade share. We deal with this by using the remaining Nordic countries’ (Denmark, Finland, Iceland and Sweden) trade share, $\pi_{Nordic,jkt}$, as an instrument for Norway’s trade share, π_{jkt}. Because of geographical and cultural proximity, as well as

\[21\] Also, note that the inclusion of firm-country fixed effects means that identification is only coming from within firm-destination changes in the variables. This implies that firms that only export to a destination j in one period (singletons) are dropped from the estimating sample. Our identifying assumption is therefore that the impact of trade barriers among singletons is identical to the impact of trade barriers among continuing exporters.
substantial economic integration among the Nordic countries, their trade shares are highly positively correlated (see Section 2.1). The exclusion restriction is that changes in the Nordic market share do not directly impact Norwegian firm-level exports. Although we cannot completely rule this out, we find it unlikely because the Nordic market shares are typically very small in other countries (see Section 4.1). We estimate the model by 2SLS using \(\ln \pi_{Nordic,jkt} \) and \(\ln \pi_{Nordic,jkt} \times \Gamma_j \) as instruments for \(\ln \pi_{jkt} \) and \(\ln \pi_{jkt} \times \Gamma_j \), respectively.

Identification. Identification comes from comparing within firm-destination export growth across industries and firms, while controlling for country-specific trends. Our approach resembles a triple differences model as we compare growth in exports both across industries and across firms. Specifically, for two firms A and B and two industries 1 and 2, the \(\beta \)'s are identified by firm A’s exports growth in country-industry \(jk \) relative to (i) its own export growth in industry 2 and (ii) other firms’ export growth in industry 2.\(^{22}\)

4.1 Measures of Dispersion

To test our hypothesis, we require data on the degree of firm heterogeneity among importers located in different countries. Ideally, in line with our theoretical model, we would want a measure of buyer productivity dispersion in different markets. A close proxy for this is a measure of dispersion in firm size.\(^{23}\) We therefore use data on the firm size distribution in different countries to calculate two measures of dispersion: a Pareto slope coefficient (\(\Gamma^1_j \)) and the standard deviation of log employment (\(\Gamma^2_j \)).\(^{24}\)

\(^{22}\)The fixed effects \(\alpha_m \) and \(\delta_{jt} \) are differenced out for \(\Delta \ln y_{mjk}'t - \Delta \ln y_{mjk}'t' \) and \(\Delta \ln y_{mjk}t - \Delta \ln y_{m'jk}'t \) where \(k' \neq k \) and \(m' \neq m \).

\(^{23}\)The relationship between productivity and size has also been documented in a set of studies for many of countries (see \(\text{Bartelsman et al.} \) (2013) for recent evidence). \(\text{Helpman et al.} \) (2004) also use the firm size distribution as a proxy for firm-level heterogeneity.

\(^{24}\)We calculate the Pareto slope coefficient by regressing the empirical \(1 - CDF \) on firm employment, both in logs, for each destination market; the resulting slope coefficient is (the negative of) the Pareto slope coefficient.
Our preferred data source is Bureau van Dijk’s Orbis database. Orbis has information on over 100 million private companies across the world.\(^{25}\) Orbis does not cover all firms and, especially among smaller firms, sampling may vary across countries. We therefore calculate dispersion based on the population of firms with more than 50 employees\(^{25}\). We calculate our two measures of dispersion for all countries with 1000 or more Orbis firms. In total, this gives us information on buyer dispersion in 48 countries, covering 89 percent of Norwegian exports (based on 2006 values). Figure 12 in the Online Appendix shows the resulting Pareto coefficients. There is substantial variation across countries, e.g. dispersion in Russia (label “RU”) is much lower than dispersion in Germany and Sweden (labels “DE” and “SE”). Also, the standard errors associated with the Pareto coefficient estimates are typically very small, suggesting that the Pareto distribution fits the empirical firm-size distribution quite well\(^{27}\).

4.2 Construction of variables

Our sufficient statistic approach requires data on Norway’s trade share, \(\pi_{jkt}\), and the Nordic countries’ trade share, \(\pi_{Nordic,jkt}\). Moreover, we need data on country income \(Y_{jkt}\). Within the context of the theoretical model, the correct proxy for \(Y_{jkt}\) is absorption. Hence, we construct \(Y_{jkt}\) as output minus exports plus imports from UNIDO’s Industrial Demand-Supply Balance Database (IDSB) which provides nominal output, total imports and exports at the 4-digit level of ISIC revision 3, for in total 127 manufacturing sectors and 121 countries over the sample period 2004 to 2012. In addition, our approach requires bilateral trade data by ISIC sector. We convert 6-digit Harmonized System bilateral trade data to ISIC revision 3 by utilizing a concordance from The World Bank.\(^{28}\) The trade shares are then calculated as \(\pi_{jkt} = \frac{X_{NOjkt}}{Y_{jkt}}\)

\(^{25}\)See http://www.bvdinfo.com/Products/Company-Information/International/ORBIS.aspx and Alfaro and Chen (2013) for a thorough discussion of the coverage of the database.

\(^{26}\)Varying this size threshold has a negligible effect on our estimates of dispersion.

\(^{27}\)Results not shown but available upon request.

\(^{28}\)Specifically, we use the COMTRADE/BACI trade database from CEPII and the WITS concordance from http://wits.worldbank.org/product_concordance.html.
Figure 7: Market shares π_{jkt} and $\pi_{\text{Nordic},jkt}$.

Note: 2004 data. The figure shows the kernel-weighted local polynomial regression of normalized log Norwegian market share π_{jkt} (vertical axis) on normalized log other Nordic market share $\pi_{\text{Nordic},jkt}$ (horizontal axis). Gray area denotes the 95 percent confidence bands. The data is normalized by taking the deviation from country means, i.e. we show $\ln \pi_{jkt2004} - \ln \bar{\pi}_{j2004}$. Sample is first trimmed by excluding the 1 percent lowest and highest observations.

and $\pi_{\text{Nordic},jkt} = X_{\text{Nordic},jkt}/Y_{jkt}$ where $X_{\text{NO},jkt}$ and $X_{\text{Nordic},jkt}$ are trade from Norway and the remaining Nordic countries, respectively. The mean (median) trade share of Norway in 2004 was 0.21 (0.004) percent. There is a strong positive correlation between π_{jkt} and $\pi_{\text{Nordic},jkt}$ in the data. Figure 7 shows a local polynomial regression of π_{jkt} on $\pi_{\text{Nordic},jkt}$ (in logs) in 2004, where the market shares are measured relative to the mean log market share in country j.\footnote{This is identical to including country fixed effects in a regression. The correlation is similar in other years.}

Hence, even after controlling for the overall market share of Norway in country j, there is a positive and significant relationship.
4.3 Results

The 2SLS results from estimating the specification in Equation 13 are shown in Table 4. Columns (1) and (2) use total firm-level exports as the dependent variable, while columns (3) and (4) use the firm-level number of buyers (both in logs). The first two columns use the Pareto coefficient as the measure of firm-level heterogeneity while the two last columns use the standard deviation of log employment.

We find that the export elasticity is significantly dampened in markets with more heterogeneity, consistent with the predictions of our model. The elasticity for the number of buyers is also consistent with the model, although the magnitude of the estimate is smaller than for the export elasticity. The coefficients for the interaction term are positive rather than negative in columns (1) and (2) since the Pareto coefficient is inversely related to dispersion. The magnitudes are also economically significant: Increasing the Pareto coefficient by one standard deviation raises the elasticity, \(\beta_2 + \beta_3 \Gamma_j \), by 33 percent, suggesting that firm heterogeneity is quantitatively important for our understanding of firm-level trade adjustment.30

We report OLS and first stage results in Table 5. The OLS estimates are close to the IV estimates. The first stage results confirm the evidence in Figure 7: the market shares among other Nordic countries are strongly associated with Norway’s market share in country \(j \).

The model predicts that the trade elasticity of exports to variable trade barriers is identical to the elasticity of the number of customers to variable trade barriers, see equations (6) and (8), while the empirical results show that the export elasticity is stronger than the customer elasticity. One possible explanation for these discrepancies is that we are testing the predictions of the model using within-firm changes in a market over time while the model is about cross-firm variation in a market at a point in time. Actual matching costs may have both sunk and fixed components.

30 \(\Gamma_j \) is normalized with mean zero and standard deviation one, hence an increase of one standard deviation increases the elasticity from \(\beta_2 \) to \(\beta_2 + \beta_3 \). Inserting the numbers from the table, we get \((\beta_2 + \beta_3) / \beta_2 \approx 4/3 \).
Robustness

A potential concern is that buyer dispersion may be correlated with other factors that also affect the trade elasticity; for example both buyer dispersion and trade elasticities may be different in low-income countries. We address this issue by adding an interaction term between GDP per capita and the trade share π_{jkt}. The 2SLS results are reported in columns (1) and (2) in Table 6. Overall the results are relatively close to the baseline case in Table 4.

We also experiment with a different set of fixed effects. In columns (3) and (4) in Table 6 we replace the firm-country and destination-year fixed effects with firm-destination-year and 2-digit ISIC industry fixed effects, essentially only exploiting variation within a single firm-destination pair, across various sectors. This reduces the magnitude of the interaction term somewhat, but it is still significant and positive.

The exclusion restriction would no longer hold if, for example, firm-level exports from Norway cause a change in the Nordic trade share $\pi_{\text{Nordic},jkt}$. We therefore introduce an alternative instrument to test the sensitivity of our results. Specifically, we calculate the Norwegian import share, defined as imports in industry k from country j at time t relative to total imports in that industry, $\pi_{\text{Imports},NO,jkt}$. We then use $\ln \pi_{\text{Imports},NO,jkt}$ and $\ln \pi_{\text{Imports},NO,jkt} \times \Gamma_j$ as instruments for $\ln \pi_{jkt}$ and $\ln \pi_{jkt} \times \Gamma_j$, respectively. In our data, $\pi_{\text{Imports},NO,jkt}$ and $\pi_{NO,jkt}$ are positively correlated, perhaps because trade barriers are to some extent symmetric. The exclusion restriction in this case is that a change in the import share from a given country does not directly cause a change in firm-level exports (other than through the impact through $\pi_{NO,jkt}$). Columns (1)-(2) of Table 7 show that this alternative instrument gives us qualitatively the same results, although the coefficient magnitudes differ somewhat compared to the baseline.

A possible concern with this alternative instrument is that firms may be importing inputs from industry-country pair jk, which may have a direct impact on exports to the same industry-

31 We also report the correlation matrix for the Pareto coefficient and various other variables in Table 11 in the Online Appendix.

32 Some country-pairs have imports close to zero or very few firms importing in that pair. We eliminate those cases by restricting the analysis to industry-country pairs with $\pi_{\text{Imports},NO,jkt} > .05$.

31
country pair. A simple way to check for this is to count how often firm-level exports to \(jk \) are associated with firm-level imports from \(jk \). We find that, across all countries and ISIC industries, the average share of firms both exporting and importing to/from \(jk \) relative to the number of firms exporting to \(jk \), is 5.2 percent (and the median is 1.0 percent). We therefore conclude that this is a relatively minor concern in our dataset.

Another concern is that our measure of dispersion from Orbis may not completely capture the degree of heterogeneity among buyers in that country (recall that in the model \(\Gamma_j \) is the dispersion parameter for final goods firms). We deal with this by introducing an alternative measure of dispersion from the Exporter Dynamics Database (EDD) from the World Bank. For each exporting country and year, EDD contains information about the coefficient of variation of log exports (the standard deviation relative to the mean), across the full population of exporters in a country.\(^{33}\) It is well known that the propensity to import is much higher for exporters than non-exporters (Bernard et al. (2007)). Therefore, dispersion in exports from EDD may be more closely related to our \(\Gamma_j \) compared to the baseline measure of dispersion from Orbis. A caveat with EDD is that the sample of countries is smaller than with Orbis (39 versus 48 countries).

Columns (3)-(4) of Table 7 show the results. The interaction term for the coefficient of variation is negative and significant, indicating that more dispersion in a market lowers the elasticity.

As an additional robustness check, we test a second prediction from the model. Recall from equation (7) that a firm’s exports to her marginal (smallest) buyer are unaffected by both market size and trade costs - exports to the marginal buyer are pinned down by magnitude of the relation-specific cost. To test this prediction, we estimate equation (13) by 2SLS using the value of a firm’s marginal export (\(\min_b y_{mb,jt} \)) and exports to the firm’s median buyer (\(\text{median}_b (y_{mb,jt}) \)) as dependent variables. According to our theory, the coefficients for absorption \(Y_{jkt} \) and market access \(\pi_{jkt} \) should be zero when the dependent variable is exports to the marginal or median buyer. The results largely confirm the predictions from the model. Table 6 shows that the marginal export flow is unrelated to market size and access. However, exports

\(^{33}\) We use 2006 data in our main specification.
to the median buyer are increasing in market size and market access.\footnote{34}

Finally, in our model, Γ_j is time invariant, whereas one may speculate that our proxies for dispersion may change over time, and perhaps even more so if trade openness π_{jkt} is changing. Again using EDD data, we can test for this by calculating the CV year by year. Regressing CV_{jt} on CV_{jt-1} gives us a coefficient of 0.95 (s.e. 0.02), showing that there is a very high degree of persistence in dispersion over time.

In sum, we confirm one of the main predictions of the model: Improvement in market access results in higher export growth to countries where firms are less heterogeneous.

5 The Role of Supply Shocks

The empirical analysis above focused on the prediction of our model with respect to the role of buyer heterogeneity. In this section we turn to the other central feature of the model: the link between downstream firms’ foreign market access, their number of suppliers and marginal costs. According to the model, a downstream firm’s production costs and measure of suppliers will depend on its access to foreign markets - the number of potential suppliers there as well as trade costs from supplier to buyer (Proposition 2). This Section asks two main questions. First, are these economic mechanisms quantitatively important in explaining changes in downstream-firms’ production costs? We will use the 2008-2009 trade collapse as a natural experiment, a period where intermediate imports and the number of suppliers declined substantially (see Sections 5.1 and 5.3). Second, we will use the same trade collapse to study how well the model can explain the observed drop in supplier connections (the out-of-sample fit of the model).

The forces driving the trade collapse are complex, see Eaton et al. (2013). Here we ask how much one particular channel, worsening market access to suppliers - e.g. due to increased trade costs (f_{ij} and τ_{ij}) and/or fewer potential suppliers (n_i) - affected firms’ production costs and supplier network. While there is little doubt that the crisis caused the exit of many firms worldwide, there is also evidence of increased trade barriers in the aftermath of the collapse in 2008 (see Evenett 2009 and Kee et al. 2013). Our approach, however, does not rule out other

\footnote{In the min and median exports regressions, we only use firms with more than 5 customers.
explanations for the trade collapse. Rather, our quantitative framework aims at isolating the part of the trade collapse that was due to a change in market access to suppliers and thus a loss of buyer-seller relationships.

5.1 Data

This quantitative exercise requires data on firms’ imports across suppliers and source countries, as well as data on firms’ total purchases of intermediate goods. In this part of the paper, we therefore use customs data on imports that have an identical structure to the export data described above. In addition, we match the import data to balance sheet data for manufacturing firms, which includes a variable for total intermediate purchases. The balance sheet data is from Statistics Norway’s Capital database, which is an annual unbalanced panel of all non-oil manufacturing joint-stock firms. It includes approximately 8,000 firms per year, which is roughly 90 percent of all manufacturing firms. In our data, the adding and dropping of suppliers constitute a significant share of aggregate import growth every year. We decompose aggregate imports into three margins: Firms that enter or exit importing, firms that enter or exit a relationship with a supplier, and continuing relationships. Specifically, the change in aggregate imports can be calculated as

\[\Delta x_t = \sum_{f \in N} x_{ft} - \sum_{f \in E} x_{ft-1} + \sum_{f \in C} \Delta x_{ft} \]

where \(f \) indexes firms, \(N \) is the set of new firms entering importing, \(E \) is the set of existing firms exiting importing, and \(C \) is the set of firms continuing to import. Furthermore,

\[\Delta x_{jt} = \sum_{j \in A_f} x_{fjt} - \sum_{j \in D_f} x_{fjt-1} + \sum_{j \in C_f} \Delta x_{fjt} \quad (14) \]

where \(j \) indexes supplier relationships, \(A_f \) is the set of suppliers added by firm \(f \), \(D_f \) is the set of suppliers dropped by firm \(f \), \(C_f \) is the set of suppliers continued by firm \(f \). In Table 12 in the Online Appendix we present decompositions based on our sample. As is well known,

\[^{35} \text{Statistics Norway’s capital database is described in Raknerud et al. (2004).} \]
global trade fell much faster than world GDP during the global recession of 2008-2009. The
global downturn hit Norwegian trade hard as well. Total intermediate imports fell by 16 percent
from 2008 to 2009. Roughly one-fifth of the decline was due to buyer-supplier relationships
breaking up. There is also significant churning in buyer-supplier relationships every year; e.g.
from 2008 to 2009, gross retired supplier relationships alone contributed to a 17 percent drop
in aggregate imports.

5.2 Methodology

The data at hand allows us to estimate the change in a downstream firm’s market access, \(\Omega_j \),
which is inversely proportional to their marginal costs, see Proposition 2. We show that we
can estimate market access using standard firm-level import data and without imposing any
assumptions on model parameters except the trade elasticity \(\gamma \).

Following Dekle et al. (2007), we solve the model in changes. Using equation (5), the
change in the market access term \(\Omega_j \) is

\[
\hat{\Omega}_{mj} \equiv \left(\sum_i \pi_{mij} \hat{\rho}_{ij} \right)^{1/\gamma},
\]

where \(\hat{x} \) denotes the the annual change \(x_t/x_{t-1} \) and \(\rho_{ij} \) is a composite index of costs as-
associated with sourcing from location \(i \), \(\hat{\rho}_{ij} \equiv \hat{Y}_i \left(\hat{\tau}_{ij} \hat{w}_i \right)^{-\gamma} \left(\hat{w}_{ij} \right)^{1-\gamma/(\sigma-1)} \). Henceforth, we
use the terminology sourcing costs for \(\rho_{ij} \). Finally, \(\pi_{mij} \) is firm \(m \)'s trade share in \(t-1 \),
\(\pi_{mij} \equiv X_{mijt-1}/\sum_k X_{mkjt-1} \). We have added a firm subscript \(m \) to the market access term \(\Omega_{jm} \)
because, at the firm level, ex-ante trade shares \(\pi_{mij} \) vary across firms.\(^{36}\)

Using equations (9) and (21), the change in a downstream firm’s import share from \(i \) is

\[
\hat{\pi}_{mij} \equiv \frac{\hat{R}_{ij}^{TOT}(Z)}{\bar{E}_j(Z)} = \hat{\rho}_{ij} \hat{\Omega}_{mj}^{-\gamma},
\]

\(^{36}\)In the model, import shares do not vary across downstream firms. One could add firm-
country specific shocks to the relation-specific fixed cost that would bring the model closer to
the data.
Using the import share $\pi_{mi j}$ instead of the value of imports R_{ij}^{TOT} is useful because it allows us to eliminate a firm’s unobserved productivity Z (which appear in R_{ij}^{TOT}, see equation (9)), thus isolating sourcing costs ρ_{ij}. By the same logic, using a firm’s import share, $\pi_{mi j}$, instead of import value, R_{ij}^{TOT}, eliminates a firm’s unobserved demand shocks, so that our estimates are not contaminated by the drop in demand during the 2008-2009 trade collapse. Intuitively, equations (15) and (16) make it clear that one can use data on the change in the import share to obtain information about the change in sourcing costs. This allows us to calculate the change in market access, $\hat{\Omega}_{mj}$, which is a weighted average of sourcing costs, using ex-ante import shares $\pi_{mi j}$ as weights. Note that the assumption that the number of firms is proportional to output is innocuous. The sufficient statistic approach ensures that we simply identify the total change in sourcing costs $\hat{\rho}_{ij}$. No assumption about the determination of the subcomponents of ρ_{ij} (n_i or Y_i, w_i and so on) is needed.

Fixed point procedure. There is no closed form solution for $\hat{\Omega}_{mj}$ because $\hat{\Omega}_{mj}$ and $\hat{\rho}_{ij}$ are non-linear functions of each other. Hence, we solve numerically for $\hat{\Omega}_{mj}$ using the following fixed point procedure. Step 1: choose initial values for $\hat{\rho}_{ij}$. Step 2: solve for $\hat{\Omega}_{mj}^y$ for firm m, using equation (15) and ex-ante trade shares $\pi_{mi j}$ for firm m. Step 3: from equation (16), calculate $\hat{\rho}_{ij} = \hat{\Omega}_{mj}^y \pi_{mi j}$. In practice, the resulting sourcing cost $\hat{\rho}_{ij}$ will vary across firms because of measurement error and firm-country specific shocks. We eliminate this noise by taking the median of $\hat{\rho}_{ij}$ across firms. We return to step 2 if the difference between the current and previous $\hat{\rho}_{ij}$ is large, and we stop if the difference is sufficiently small. The fixed point procedure converges quickly. By trial and error, the choice of starting values $\hat{\rho}_{ij}$ has no impact on the solution.

Normalization. We can only identify $\hat{\rho}_{ij}$ up to a constant because, for given m and j, one of the i elements in the vector $\pi_{mi j}$ is linearly dependent on the other elements. We normalize the change in domestic sourcing cost to one, $\hat{\rho}_{1 j} = 1$ there $i = 1$ is the domestic market.

After obtaining the solution to the change in sourcing costs $\hat{\rho}_{ij}$, one only needs one model parameter, the import elasticity γ, to calculate the firm level change in marginal costs from equation (15). The change in marginal costs will vary across firms because their ex-ante trade shares π_{ijm} differ, i.e. some firms are using imported inputs intensively while other firms are
5.3 Results and Out-of-Sample Fit

Table 8 provides an overview of observed changes in import shares and supplier connections and the results from the quantitative exercise. We calculate firm specific import shares, π_{mij}, and the related 2008 to 2009 change, $\hat{\pi}_{mij}$, for all source countries, i, including Norway itself.\[37\]

We restrict the data in two ways. First, firms with no foreign sourcing are dropped, as their $\hat{\Omega}_{mij}$ is normalized to one (see previous section). Second, we focus on the set of importing countries where a firm has positive imports in both 2008 and 2009. This is necessary because π_{mij} is not defined if a firm adds or drops a sourcing market. Third, while the raw data includes imports from every possible source, we limit the analysis to the top 30 source countries in terms of total import value. Focusing on top 30 sources ensures that we typically have more than one firm with suppliers from a given source country. With these restrictions, aggregate imports in our final sample account for 78 percent of total imports in the manufacturing sector.

Turning to the results, we find that the mean market access ($\log \hat{\Omega}_{mij}$), across all importers, fell by 2.7 percent, while the weighted mean, using firm revenue as weights, fell by 3.4 percent. This translates into substantial cost increases among the importing firms. With a trade elasticity of $\gamma = 4$, the weighted mean increase in marginal costs is roughly 1 percent ($\left(1 - 0.034\right)^{1/\gamma}$).\[38\]

There is also great dispersion across firms. For firms importing small amounts, there is almost no change in Ω_{mij}. For big importers, however, the decline in Ω_{mij} is much larger; the decline for the first decile of $\ln \hat{\Omega}_{mij}^\gamma$ is -0.08, or a 2 percent increase in marginal costs given $\gamma = 4$. Our results suggest that the trade collapse had a relatively large negative impact on

37 Firm-level domestic sourcing is calculated as total intermediate purchases minus total imports. A small number firms have imports > intermediate purchases. We set the domestic sourcing share to zero for these firms. We also drop firm-country pairs with import growth > 100 percent or import decline > 99 percent.

38 Recall that the change in domestic sourcing costs is normalized to zero. Hence, we only identify changes in marginal costs coming from changes in foreign market access.
production costs among importing firms, and was driven by changes in sourcing costs. Recall that these marginal cost estimates are not contaminated by the demand side of the economy, because the demand side was effectively differenced out in the quantitative procedure.

Model fit. Table 8 shows the median, mean and weighted mean change in firms’ import shares (\(\ln \hat{\pi}_{mi j}\)) across all firm-country pairs, in the data and in the model. Import shares fell both in the data and in the model and the model’s median change is very close to the data. This is as expected because we used data on changes in trade shares to calculate \(\hat{\rho}_{ij}\) and \(\hat{\Omega}_{mij}\). We moreover evaluate the out-of-sample fit in terms of changes in buyer-seller linkages in the economy (a moment we did not target). In the model, the change in the firm-level measure of suppliers is given by

\[
\hat{S}_{mi j} = \frac{\hat{\rho}_{ij} \hat{\Omega}_{mij}^{\gamma}}{\hat{w}_{ij} \hat{f}_{ij}}.
\]

We calculate \(\hat{S}_{mi j}\) for each firm using our estimates of \(\hat{\rho}_{ij}\) and \(\hat{\Omega}_{mij}^{\gamma}\), while keeping other factors fixed (productivity \(Z\) and relation-specific costs \(w_{ij} f_{ij}\)). Comparing the model response to data, we find that the model captures the decline in supplier connections well; the model generates an average 11 percent fall in the number of supplier connections, while the actual average decline was 8 percent.

We note that the fit for the median \(\ln \hat{S}_{mi j}\) is poor as the median log change in the data is 0. However, this occurs because \(S\) in the data is an integer and cannot take a value lower than one. If we take the median of \(\ln \hat{S}_{mi j}\) across firm-country pairs with two or more suppliers, we find a median decline in suppliers of 15 percent - slightly more than the model prediction (rows 4 and 7 in Table 8).

Looking across source countries, we also find a positive correlation between the average response in the data and in the model. Figure 8 shows the true and predicted mean for the change in the number of suppliers, \(\ln \hat{S}_{mi j}\), across all firms with one or more connection for each source country. The drop in supplier connections was particularly strong in Canada and Taiwan, both in the model and data. For other countries the fit is worse. The observed decline in the number of Japanese suppliers was relatively large, whereas in the model it was not. We conclude that the model is able to quantitatively replicate the role of diminishing buyer-seller
connections, one important margin for trade adjustments during the 2008-2009 trade collapse.

6 Conclusion

We use highly disaggregated trade transaction data from Norway to explore the role of buyers and buyer-seller relationships in international trade. We present a series of basic facts about buyer-seller relationships in international trade which point to a distinct role of buyers in explaining variation in trade, extreme concentration of exports across both sellers and buyers and Pareto shaped distributions of buyers per exporter and sellers per importer. We find that large exporters reach more customers but exports to the median customer are not increasing with the number of customers within a destination, and that there is negative degree assortivity in the exporter-importer matches. In other words, large exporters on average reach importers who buy from a relatively smaller number of Norwegian firms.

Guided by these facts, we develop a parsimonious multi-country model of heterogeneous exporters and importers where matches are subject to a relation-specific fixed cost. A central feature of the model is that lower variable trade costs will lead to higher export growth when buyers in the destination market are less dispersed in terms of their productivity. When buyers are more similar, an exporter will find many new profitable matches, whereas if buyers are dispersed, only a few more matches will become profitable. In other words, the customer extensive margin response will be strong when buyer heterogeneity is small. We test this prediction by exploiting variation in import shares across industries and countries over time and find strong
empirical support.

The theoretical model also show that firms’ access to suppliers is important for firm performance and marginal costs. To evaluate the role of these features in explaining variation in trade we develop an empirical methodology to estimate downstream firms’ marginal cost response due to exogenous shocks to foreign market access. We show that a sufficient statistic for a firm’s change in marginal costs is the level of, and the change in, intermediate import shares and the trade elasticity. The methodology is subsequently applied to evaluate the impact of the 2008-2009 trade collapse on firms’ production costs. Our results indicate that worsened market access during the trade collapse had a significantly negative impact on production costs, and especially so for downstream firms that were ex-ante highly exposed to international markets. The quantitative exercise shows that the model matches well the fall in the number of buyer-seller matches that was observed during the trade collapse.

Our results suggest that buyer heterogeneity and buyer-seller connections are important in understanding firm-level trade, as well as fluctuations in marginal costs and measured productivity. Future research might fruitfully focus on the growth and stability of exporter-importer relationships as well as the sources of heterogeneity across sellers and buyers.

References

Blum, Bernardo S., Sebastian Claro, and Ignatius Horstmann, “Facts and Figures on Intermediated Trade,” American Economic Review, 2010, 100 (2), 419–23. [1, 2, 6, 2.2]

Dragusanu, Raluca, “Firm-to-Firm Matching Along the Global Supply Chain,” 2014. [1, 10]

_ , Marcela Eslava, David Jinkins, C. J. Krizan, and James Tybout, “A Search and Learning Model of Export Dynamics,” working paper 2014. 1.4

_ , Sam Kortum, Brent Neiman, and John Romalis, “Trade and the Global Recession,” 2013. 5

Table 1: The Margins of Trade (2006).

<table>
<thead>
<tr>
<th></th>
<th>Sellers</th>
<th>Products</th>
<th>Buyers</th>
<th>Density</th>
<th>Intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports (log)</td>
<td>0.57(^a)</td>
<td>0.53(^a)</td>
<td>0.61(^a)</td>
<td>-1.05(^a)</td>
<td>0.32(^a)</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.04)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>N</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.86</td>
<td>0.85</td>
<td>0.81</td>
<td>0.81</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses. \(^a\) p< 0.01, \(^b\) p< 0.05, \(^c\) p< 0.1.

Table 2: Within-Firm Gravity (2006).

<table>
<thead>
<tr>
<th></th>
<th>Exports (log)</th>
<th># Buyers (log)</th>
<th>Exports/Buyer (log)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>-0.48(^a)</td>
<td>-0.31(^a)</td>
<td>-0.17(^a)</td>
</tr>
<tr>
<td>GDP</td>
<td>0.23(^a)</td>
<td>0.13(^a)</td>
<td>0.10(^a)</td>
</tr>
<tr>
<td>Firm FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>53,269</td>
<td>53,269</td>
<td>53,269</td>
</tr>
<tr>
<td>R(^2)</td>
<td>0.06</td>
<td>0.15</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: Robust standard errors clustered by firm. GDP data from Penn World Table 7.1 (cgdp x pop). \(^a\) p< 0.01, \(^b\) p< 0.05, \(^c\) p< 0.1.
Table 4: Market Access and Heterogeneity. 2SLS Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1) Exports</th>
<th>(2) # Buyers</th>
<th>(3) Exports</th>
<th>(4) # Buyers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y_{jklt}</td>
<td>.18(^a)</td>
<td>.05(^a)</td>
<td>.18(^a)</td>
<td>.05(^a)</td>
</tr>
<tr>
<td>π_{jklt}</td>
<td>.30(^a)</td>
<td>.07(^a)</td>
<td>.33(^a)</td>
<td>.08(^a)</td>
</tr>
<tr>
<td>$\pi_{jklt} \times \Gamma^1_j$ (Pareto)</td>
<td>.07(^a)</td>
<td>.01(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi_{jklt} \times \Gamma^2_j$ (Std. Dev.)</td>
<td></td>
<td></td>
<td>-.10(^a)</td>
<td>-.01(^a)</td>
</tr>
<tr>
<td>Firm-country FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
</tr>
</tbody>
</table>

Note: Robust standard errors clustered by firm in parentheses. \(^a\) \(p<0.01\), \(^b\) \(p<0.05\), \(^c\) \(p<0.1\). All variables in logs. Y_{jklt} and π_{jklt} are absorption and Norwegian market share in country-industry jk, respectively. π_{jklt} and $\pi_{jklt} \times \Gamma^1_j$ are instrumented with $\pi_{Nordic,jkt}$ and $\pi_{Nordic,jkt} \times \Gamma^1_j$ respectively, where $\pi_{Nordic,jkt}$ is the Nordic (excluding Norway) market share in country-industry jk.

Table 3: Types of Matches between Exporters and Importers.

<table>
<thead>
<tr>
<th></th>
<th>One-to-one</th>
<th>Many-to-one</th>
<th>One-to-many</th>
<th>Many-to-many</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of total trade value, %</td>
<td>4.6</td>
<td>26.9</td>
<td>4.9</td>
<td>63.6</td>
</tr>
<tr>
<td>Share of total number of matches, %</td>
<td>9.5</td>
<td>40.1</td>
<td>11.0</td>
<td>39.4</td>
</tr>
</tbody>
</table>

Note: 2006 data. One-to-one: Matches where both exporter and importers have one connection in a market; Many-to-one: the E has many connections and the I has one; One-to-many: the E has one connection and the I has many; Many-to-many: both E and I have many connections. The unit of observation is firm-destination, e.g. an exporter with one customer in two destinations is counted as a single-customer exporter.
Table 5: Market Access and Heterogeneity. OLS and First Stage Estimates.

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) OLS</th>
<th>(3) 1st stage</th>
<th>(4) 1st stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exports</td>
<td># Buyers</td>
<td>π_{jkt}</td>
<td>$\pi_{jkt} \times \Gamma^1_j$</td>
</tr>
<tr>
<td>Y_{jkt}</td>
<td>.17a</td>
<td>.04a</td>
<td>.01a</td>
<td>-.05a</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td>(.01)</td>
<td>(.01)</td>
<td>(.00)</td>
</tr>
<tr>
<td>π_{jkt}</td>
<td>.27a</td>
<td>.06a</td>
<td>.00a</td>
<td>.00a</td>
</tr>
<tr>
<td></td>
<td>(.02)</td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.00)</td>
</tr>
<tr>
<td>$\pi_{jkt} \times \Gamma^1_j$ (Pareto)</td>
<td>.05a</td>
<td>.00a</td>
<td>.00a</td>
<td>.00a</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.00)</td>
<td>(.00)</td>
</tr>
<tr>
<td>$\pi_{Nordic,jkt}$</td>
<td></td>
<td>.76a</td>
<td>.46a</td>
<td>(.01)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(.01)</td>
<td>(.01)</td>
<td>(.01)</td>
</tr>
<tr>
<td>$\pi_{Nordic,jkt} \times \Gamma^1_j$</td>
<td>.02a</td>
<td>.83a</td>
<td>(.01)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.02a</td>
<td>(.01)</td>
<td>(.01)</td>
<td></td>
</tr>
<tr>
<td>Firm-country FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>F-stat</td>
<td>4280.6</td>
<td>4260.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses, clustered by firm. a p< 0.01, b p< 0.05, c p< 0.1. All variables in logs. F-statistics for the joint significance of the instruments in the first stage regressions.
Table 6: 2SLS estimates. Robustness I.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exports</td>
<td># Buyers</td>
<td>Exports</td>
<td># Buyers</td>
<td>Marginal buyer</td>
<td>Median buyer</td>
</tr>
<tr>
<td>Y_{jt}</td>
<td>.18a</td>
<td>.05a</td>
<td>.24a</td>
<td>.08a</td>
<td>.02</td>
<td>.08a</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.02)</td>
<td>(.02)</td>
</tr>
<tr>
<td>π_{jt}</td>
<td>.27a</td>
<td>.07a</td>
<td>.33a</td>
<td>.11a</td>
<td>.00</td>
<td>.12a</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.02)</td>
<td>(.00)</td>
<td>(.04)</td>
<td>(.04)</td>
</tr>
<tr>
<td>$\pi_{jkt} \times \Gamma_{j}^1$ (Pareto)</td>
<td>.03a</td>
<td>.00</td>
<td>.03a</td>
<td>.00</td>
<td>.05</td>
<td>.10a</td>
</tr>
<tr>
<td></td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.01)</td>
<td>(.00)</td>
<td>(.03)</td>
<td>(.03)</td>
</tr>
<tr>
<td>GDP/capita interaction</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Firm-country FE</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm-country-year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2-digit industry FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>N</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
<td>264,544</td>
<td>14,551</td>
<td>14,551</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses, clustered by firm. $^a p<0.01$, $^b p<0.05$, $^c p<0.1$. All variables in logs. Y_{jt} and π_{jt} are absorption and Norwegian market share in country-industry jk, respectively, Γ_{j}^1 is the Pareto shape parameter. π_{jkt} and $\pi_{jkt} \times \Gamma_{j}^1$ are instrumented with $\pi_{Nordic,jkt}$ and $\pi_{Nordic,jkt} \times \Gamma_{j}^1$ respectively, where $\pi_{Nordic,jkt}$ is the Nordic (excluding Norway) market share in country-industry jk. Only exporters with > 5 buyers in columns (5) and (6).
Table 7: 2SLS estimates. Robustness II.

<table>
<thead>
<tr>
<th></th>
<th>(1) Exports</th>
<th>(2) # Buyers</th>
<th>(3) Exports</th>
<th>(4) # Buyers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y_{jt})</td>
<td>.19(^a)</td>
<td>.06(^a)</td>
<td>.18(^a)</td>
<td>.04(^a)</td>
</tr>
<tr>
<td>(\pi_{jt})</td>
<td>.51(^a)</td>
<td>.13(^a)</td>
<td>1.16(^a)</td>
<td>.15(^a)</td>
</tr>
<tr>
<td>(\pi_{jkt} \times \Gamma^1_j) (Pareto)</td>
<td>.43(^a)</td>
<td>.02(^a)</td>
<td>-.06(^a)</td>
<td>-.01(^b)</td>
</tr>
<tr>
<td>(\pi_{jkt} \times \Gamma^3_j) (CV)</td>
<td></td>
<td></td>
<td>-.06(^a)</td>
<td>-.01(^b)</td>
</tr>
<tr>
<td>Firm-country FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Country-year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>N</td>
<td>162,196</td>
<td>162,196</td>
<td>83,080</td>
<td>83,080</td>
</tr>
</tbody>
</table>

Note: Robust standard errors in parentheses, clustered by firm. \(^a \) \(p<0.01 \), \(^b \) \(p<0.05 \), \(^c \) \(p<0.1 \).

All variables in logs. \(Y_{jkt} \) and \(\pi_{jkt} \) are absorption and Norwegian market share in country-industry \(jk \), respectively, \(\Gamma^1_j \) is the Pareto shape parameter and \(\Gamma^3_j \) is the coefficient of variation. \(\pi_{jkt} \) and \(\pi_{jkt} \times \Gamma^1_j \) are instrumented with \(\pi^{Imports}_{NO,jkt} \) and \(\pi^{Imports}_{NO,jkt} \times \Gamma^1_j \) in columns (1)-(2) and \(\pi^{Imports}_{Nordic,jkt} \) and \(\pi^{Imports}_{Nordic,jkt} \times \Gamma^3_j \) in columns (3)-(4). \(\pi^{Imports}_{NO,jkt} \) is imports from \(j \) relative to total imports in industry \(k \). Only industry-country pairs with \(\pi^{Imports}_{NO,jkt} > .05 \) is used in columns (1)-(2).
Table 8: A Supply Shock: The Trade Collapse.

<table>
<thead>
<tr>
<th></th>
<th>Median</th>
<th>Mean</th>
<th>Weighted mean</th>
<th>Stdev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln , \hat{\pi}_{mij}$</td>
<td>-.101</td>
<td>-.212</td>
<td>-.212</td>
<td>1.096</td>
</tr>
<tr>
<td>\ln , \hat{S}_{mij}</td>
<td>0</td>
<td>-.083</td>
<td>-.080</td>
<td>.546</td>
</tr>
<tr>
<td>$\ln , \hat{S}_{mij}, \geq 2$ suppliers</td>
<td>-.154</td>
<td>-.212</td>
<td>-.164</td>
<td>.523</td>
</tr>
<tr>
<td>Model:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln , \hat{\Omega}_{mij}^{\gamma}$</td>
<td>-.013</td>
<td>-.027</td>
<td>-.034</td>
<td>.033</td>
</tr>
<tr>
<td>$\ln , \hat{\pi}_{mij}$</td>
<td>-.114</td>
<td>-.110</td>
<td>-.106</td>
<td>.056</td>
</tr>
<tr>
<td>\ln , \hat{S}_{mij}</td>
<td>-.114</td>
<td>-.110</td>
<td>-.106</td>
<td>.056</td>
</tr>
<tr>
<td>$\ln , \hat{S}_{mij}, \geq 2$ suppliers</td>
<td>-.110</td>
<td>-.106</td>
<td>-.117</td>
<td>.053</td>
</tr>
</tbody>
</table>

Notes: 2008 to 2009 changes. Observations for 3,306 Firms and 30 countries. Firm revenue is used as weights in weighted mean calculations. $\hat{\Omega}_{mij}^{\gamma}$ is change in market access for firm m, $\hat{\pi}_{mij}$ is change in the import share from i for firm m, and \hat{S}_{mij} is change in the measure of suppliers from i for firm m.
Online Appendix

A Additional Figures and Tables

Figure 9: Distribution of the number of exporters per buyer (2006).

Note: Log scale. The estimated slope coefficients: -0.92 (s.e. 0.002) for China, -0.88 (s.e. 0.001) for Sweden, and -0.80 (s.e. 0.001) for the U.S.

Figure 10: Matching Buyers and Sellers (2006).

Note: Destination market is Sweden. Each bar represents a group of exporters: (i) Firms with 1 connection, (ii) 2-3, (iii) 4-10 and (iv) 11+ connections. For each group, we plot the share of buyers that have 1, 2-3, 4-10, 11+ connections.
Note: All destination markets with more than 20 sellers and buyers are included (log scales). The shares on the vertical axis represent the number of exporters selling only to the top buyer, the top and second top buyer, and so on, relative to the number of exporters in that destination. The horizontal axis represents the simulated shares under the assumption that connection probabilities are independent ($\sum_{i=1}^{B} p_i$).
Figure 12: Firm-level Heterogeneity across Countries.

Note: The figure shows estimated Pareto coefficients for each country using firm-level data from Orbis. The capped spikes denote the 95% confidence interval of the estimated Pareto coefficients.
Table 9: Top Exported Products by Number of Exporters and Value.

<table>
<thead>
<tr>
<th>HS code</th>
<th>Description</th>
<th>Share of exporters, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>84799090</td>
<td>Subgroup of: 847990 Parts of machines and mechanical appliances n.e.s.</td>
<td>9.1</td>
</tr>
<tr>
<td>84733000</td>
<td>Parts and accessories for automatic data-processing machines or for other machines of heading 8471, n.e.s.</td>
<td>7.6</td>
</tr>
<tr>
<td>73269000</td>
<td>Articles of iron or steel, n.e.s. (excl. cast articles or articles of iron or steel wire)</td>
<td>5.8</td>
</tr>
<tr>
<td>39269098</td>
<td>Subgroup of: 392690 Articles of plastics or other materials of headings 3901 to 3914, for civil aircraft, n.e.s</td>
<td>4.9</td>
</tr>
<tr>
<td>84099909</td>
<td>Subgroup of: 840999 Parts suitable for use solely or principally with compression-ignition internal combustion piston engine "diesel or semi-diesel engine", n.e.s</td>
<td>4.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HS code</th>
<th>Description</th>
<th>Share of value, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>76012001</td>
<td>Subgroup of: 760120 Unwrought aluminium alloys</td>
<td>9.9</td>
</tr>
<tr>
<td>03021201</td>
<td>Subgroup of: 030212 Fresh or chilled Pacific salmon</td>
<td>5.1</td>
</tr>
<tr>
<td>75021000</td>
<td>Nickel, not alloyed, unwrought</td>
<td>4.8</td>
</tr>
<tr>
<td>89069009</td>
<td>Subgroup of: 890690 Vessels, incl. lifeboats (excl. warships, rowing boats and other vessels of heading 8901 to 8905 and vessels for breaking up)</td>
<td>1.3</td>
</tr>
<tr>
<td>31052000</td>
<td>Mineral or chemical fertilisers containing the three fertilising elements nitrogen,</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Note: 2006 data. HS8 codes refer to 2006 edition eight digit HS codes. Oil and gas exports excluded (HS 27x products).
<table>
<thead>
<tr>
<th></th>
<th>Sweden</th>
<th>Germany</th>
<th>US</th>
<th>China</th>
<th>OECD</th>
<th>non-OECD</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of exporters</td>
<td>8,614</td>
<td>4,067</td>
<td>2,088</td>
<td>725</td>
<td>1,588.2</td>
<td>98.2</td>
<td>301.7</td>
</tr>
<tr>
<td>Number of buyers</td>
<td>16,822</td>
<td>9,627</td>
<td>5,992</td>
<td>1,489</td>
<td>3,055.6</td>
<td>144.5</td>
<td>542.1</td>
</tr>
<tr>
<td>Buyers/exporter, mean</td>
<td>3.6</td>
<td>3.6</td>
<td>4.5</td>
<td>3.6</td>
<td>2.7</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Buyers/exporter, median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Exporters/buyer, mean</td>
<td>1.9</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.5</td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td>Exporters/buyer, median</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Share trade, top 10% sellers</td>
<td>.94</td>
<td>.97</td>
<td>.96</td>
<td>.86</td>
<td>.90</td>
<td>.75</td>
<td>.77</td>
</tr>
<tr>
<td>Share trade, top 10% buyers</td>
<td>.95</td>
<td>.95</td>
<td>.97</td>
<td>.89</td>
<td>.89</td>
<td>.73</td>
<td>.76</td>
</tr>
<tr>
<td>Log max/median exports</td>
<td>10.7</td>
<td>11.4</td>
<td>11.2</td>
<td>7.9</td>
<td>8.7</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Log max/median imports</td>
<td>10.8</td>
<td>10.8</td>
<td>11.7</td>
<td>8.4</td>
<td>8.4</td>
<td>4.6</td>
<td>5.2</td>
</tr>
<tr>
<td>Share in total NO exports, %</td>
<td>11.3</td>
<td>9.6</td>
<td>8.8</td>
<td>2.1</td>
<td>81.6</td>
<td>18.4</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: 2006 data. OECD, non-OECD and Overall are the unweighted means of outcomes for OECD, non-OECD and all countries. Log max/median exports (imports) is the log ratio of the largest exporter (importer), in terms of trade value, relative to the median exporter (importer).
Table 11: Correlation Matrix.

<table>
<thead>
<tr>
<th></th>
<th>Pareto</th>
<th>GDP/capita</th>
<th>Population</th>
<th>GDP</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pareto</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP/capita</td>
<td>-0.26</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population</td>
<td>-0.29<sup>b</sup></td>
<td>-0.05</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>-0.41<sup>a</sup></td>
<td>0.41<sup>a</sup></td>
<td>0.89<sup>a</sup></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-0.15</td>
<td>-0.35<sup>a</sup></td>
<td>0.23</td>
<td>0.04</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Note: GDP and population data from Penn World Tables.
^a p< 0.01,
^b p< 0.05,
^c p< 0.1.

Table 12: Decomposition of Aggregate Imports.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Importer entry</td>
<td>0.04</td>
<td>0.02</td>
<td>0.08</td>
<td>0.13</td>
<td>0.07</td>
</tr>
<tr>
<td>Importer exit</td>
<td>-0.02</td>
<td>-0.10</td>
<td>-0.14</td>
<td>-0.10</td>
<td>-0.09</td>
</tr>
<tr>
<td>Net entry</td>
<td>0.02</td>
<td>-0.08</td>
<td>-0.06</td>
<td>0.03</td>
<td>-0.02</td>
</tr>
<tr>
<td>New supplier</td>
<td>0.27</td>
<td>0.30</td>
<td>0.19</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>Retired supplier</td>
<td>-0.18</td>
<td>-0.17</td>
<td>-0.17</td>
<td>-0.17</td>
<td>-0.17</td>
</tr>
<tr>
<td>Net supplier</td>
<td>0.09</td>
<td>0.13</td>
<td>0.02</td>
<td>-0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Intensive margin</td>
<td>0.16</td>
<td>0.05</td>
<td>0.04</td>
<td>-0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>Aggregate imports</td>
<td>0.27</td>
<td>0.10</td>
<td>0.00</td>
<td>-0.16</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Notes: The table shows annual changes $\Delta x_M/x$, where Δx_M is the change in margin M from $t - 1$ to t and x is total manufacturing imports in $t - 1$. The margins are described in Section 5.1.
B Equilibrium Sorting

The solution to the sorting function is:

$$z_{ij}(Z) = \frac{\tau_{ij}w_i\Omega_j}{Z}(w_{ij})^{1/(\sigma-1)}$$

Proof. Equation (3) implicitly defines the $z_{ij}(Z)$ function. We start with the guess $z_{ij}(Z) = W_{ij}Z^s$ and the inverse $Z_{ij}(z) = (z/W_{ij})^{1/s}$, where W_{ij} and s are unknowns. Furthermore, the relationship between E and Z is not yet determined, but we start with a guess $E_j(Z) = \kappa_3Z^\gamma$, where κ_3 is a constant term, and show in Section [] that this is consistent with the equilibrium. Inserting these expressions, as well as the price index (equation (1)), into equation (3) yields

$$\sum_k n_k (\bar{m}\tau_{kj}w_k)^{1-\sigma} (W_{kj}Z^{\gamma})^{-\gamma} = \frac{\sigma w_{ij}^\gamma \gamma Z_{ij}(Z)^{\gamma-1} z_{ij}^{1-\sigma}}{E_j(Z) \gamma}$$

Hence,

$$\frac{1}{s} = \frac{1-\sigma}{s(\gamma_2 + \gamma/s)} \iff \frac{1}{s} = -1,$$

and

$$\left(\frac{1}{W_{ij}}\right)^{1/s} = \left[\frac{\sigma w_{ij}^\gamma \gamma Z_{ij}(Z)^{\gamma-1} z_{ij}^{1-\sigma}}{\kappa_3 \gamma_2} \sum_k n_k (\bar{m}\tau_{kj}w_k)^{1-\sigma} W_{kj}^{-\gamma}\right]^{1/(\gamma_2 + \gamma)} \iff W_{ij} = \left[\frac{\sigma w_{ij}^\gamma \gamma Z_{ij}(Z)^{\gamma-1} z_{ij}^{1-\sigma}}{\kappa_3 \gamma_2} \sum_k n_k (\tau_{kj}w_k)^{1-\sigma} W_{kj}^{-\gamma}\right]^{1/(\sigma-1)}.$$

In sum, the cutoff is

$$z_{ij}(Z) = \frac{W_{ij}}{Z}. \quad (18)$$

We proceed by solving for W_{ij} and q_j. Inserting the expression for the cutoff (equation (18))
into the price index in equation (1) yields

\[q_j(Z)^{1-\sigma} = Z^\gamma \tilde{m}^{1-\sigma} \frac{\gamma L}{\gamma_2} \sum_k n_k (\tau_{kj} w_k)^{1-\sigma} W_{kj}^{-\gamma}. \]

Inserting the expression for \(W_{kj} \) from equation (17) then yields

\[q_j(Z)^{1-\sigma} = Z^\gamma \tilde{m}^{1-\sigma} \frac{\kappa_3}{\sigma w_{fi}} \left(\frac{W_{ij}}{\tau_{ij} w_i} \right)^{\sigma-1}. \]

This must hold for all \(i \), so

\[(w_{fi})^{-1/(\sigma-1)} \frac{W_{ij}}{\tau_{ij} w_i} = (w_{kf})^{-1/(\sigma-1)} \frac{W_{kj}}{\tau_{kj} w_k}. \]

By exploiting this fact, we can transform the expression for \(W_{ij} \),

\[W_{ij} = (\tau_{ij} w_i)^{\sigma-1} \frac{\sigma w_{fi}}{\kappa_3} \frac{\gamma L}{\gamma_2} \sum_k n_k (\tau_{kj} w_k)^{1-\sigma} (\tau_{kj} w_k)^{-\gamma} (w_{kf})^{-\gamma/(\sigma-1)} \left((w_{kf})^{-1/(\sigma-1)} \frac{W_{kj}}{\tau_{kj} w_k} \right)^{-\gamma} \]

\[W_{ij} = (\tau_{ij} w_i)^{\gamma} \frac{\sigma}{\kappa_3} (w_{fi})^{\gamma/(\sigma-1)} \frac{\gamma L}{\gamma_2} \sum_k n_k (\tau_{kj} w_k)^{-\gamma} (w_{kf})^{-\gamma/(\sigma-1)} \]

\[W_{ij} = (\tau_{ij} w_i) (w_{fi})^{1/(\sigma-1)} \gamma L \left(\frac{\sigma}{\kappa_3} \frac{\gamma L}{\gamma_2} \sum_k n_k (\tau_{kj} w_k)^{-\gamma} (w_{kf})^{-\gamma/(\sigma-1)} \right)^{1/\gamma}. \]

We define

\[\Omega_j = \kappa_2 \left(\sum_k n_k' (\tau_{kj} w_k)^{-\gamma} (w_{kf})^{-\gamma/(\sigma-1)} \right)^{1/\gamma}, \]

where \(\kappa_2 = \left(\frac{\sigma}{\kappa_3} \frac{\gamma L}{\gamma_2} \right)^{1/\gamma} \) and given the normalization \(n_i = z_{L'} n_i' \), we get the closed form solution for the sorting function,

\[\tilde{z}_{ij}(Z) = \frac{\tau_{ij} w_i \Omega_j}{Z} (w_{fi})^{1/(\sigma-1)}. \]
We can now write the price index as

\[q_j(Z)^{1-\sigma} = Z^n \tilde{m}^{1-\sigma} \frac{\kappa_3}{\sigma_{wi fj}} \left(\frac{W_{ij}}{\tau_{jwj}} \right)^{\sigma-1} \]

\[= Z^n \tilde{m}^{1-\sigma} \frac{\kappa_3}{\sigma_{wi fj}} \left(\frac{\tau_{jwj}(w_{ij}f_{ij})^{1/(\sigma-1)}}{\tau_{jwj}} \right)^{\sigma-1} \]

\[= Z^n \frac{\tilde{m}^{1-\sigma} \kappa_3}{\sigma} \Omega_j^{\sigma-1}. \quad (19) \]

C Final Goods Producers Expenditure on Intermediates and Productivity

In this section, we derive the equilibrium relationship between final goods expenditure \(E \) and productivity \(Z \). Revenue for a final goods producer is

\[R_i = \left(\frac{P_i}{Q_i} \right)^{1-\sigma} \mu Y_i = \left(\frac{\tilde{m}q_i(Z)}{ZQ_i} \right)^{1-\sigma} \mu Y_i, \]

where \(P_i = \tilde{m}q_i(Z)/Z \) is the price charged and \(Q_i \) is the CES price index for final goods. The price index for final goods is

\[Q_i^{1-\sigma} = N_i \int_{1}^{\infty} P_i(Z)^{1-\sigma} dG(Z) \]

\[= N_i \int_{1}^{\infty} (\tilde{m}q_i(Z)/Z)^{1-\sigma} dG(Z) \]

\[= Y_i \frac{\tilde{m}^{2(1-\sigma)} \kappa_3}{\sigma} \frac{\Gamma}{\Gamma - \gamma} \Omega_j^{\sigma-1}. \quad (20) \]

Rewriting revenue as a function of \(E \) and inserting the equilibrium expressions for \(q_i(Z) \) and \(Q_i \) yields

\[\tilde{m}E_i = \left(\frac{\tilde{m}q_i(Z)}{ZQ_i} \right)^{1-\sigma} \mu Y_i \]

\[= \tilde{m}^{1-\sigma} Z^{\sigma-1} \frac{Z^n \frac{\tilde{m}^{1-\sigma} \kappa_3 \Omega_j^{\sigma-1}}{\sigma}}{\frac{\tilde{m}^{2(1-\sigma)} \kappa_3}{\sigma} \frac{\Gamma}{\Gamma - \gamma} \Omega_j^{\sigma-1}} \mu Y_i \quad \iff \]

\[E_i(Z) = \kappa_3 Z^\gamma, \quad (21) \]
where $\kappa_3 = \mu (\Gamma - \gamma) / \Gamma$. Hence, total spending on intermediates is increasing in productivity with an elasticity γ. The expression for $E_i(Z)$ is the same as the one we started with in Section [1]

D Firm-level Trade

Using equations (2) and (1), as well as the sorting function $Z_{ij}(z)$, sales for a (z, Z) match are

$$
 r_{ij}(z, Z) = \left(\frac{p_{ij}(z)}{q_j(Z)} \right)^{1-\sigma} E_j(Z) = \sigma \left(\frac{zZ}{\tau_{ij}w_i\Omega_j} \right)^{\sigma-1}.
$$

Note that revenue is supermodular in (z, Z): $\partial^2 r / \partial z \partial Z > 0$. Buyer productivity is distributed Pareto, $G(Z) = 1 - Z^{-\Gamma}$. For firms with $z < z_{ij}(Z_L) \equiv z_H$, total firm-level exports to country j are

$$
 r_{ij}^{TOT}(z) = N_j \int_{Z_{ij}(z)} r_{ij}(z, Z) dG(Z) = \kappa_1 Y_j z_{ij}(z)^{1-\Gamma/(\sigma-1)} \left(\frac{z}{\tau_{ij}w_i\Omega_j} \right)^{\Gamma},
$$

where we defined $\kappa_1 \equiv \sigma \Gamma / [\Gamma - (\sigma - 1)]$. We can alternatively express revenue as a function of the hurdle $Z_{ij}(z)$, which yields

$$
 r_{ij}^{TOT}(z) = \kappa_1 Y_j z_{ij}(z)^{-\Gamma}.
$$

For firms with $z \geq z_H$, total firm-level exports are

$$
 \tilde{r}_{ij}^{TOT}(z) = N_j \int_{Z_L}^{Z_H} r_{ij}(z, Z) dG(Z) = \kappa_1 Y_j \left(\frac{z}{\tau_{ij}w_i\Omega_j} \right)^{\sigma-1}.
$$

Using the sorting function, we can also derive the measure of buyers in country j for a firm in
country \(i \) with productivity \(z < z_H \),

\[
 b_{ij}(z) = N_j \int_{Z_{ij}(z)} dG(Z) = Y_j \left(w_{ij} \right)^{-\Gamma/(\sigma-1)} \left(\frac{z}{\tau_{ij} w_i \Omega_j} \right)^\Gamma. \tag{24}
\]

Given that \(z \) is distributed Pareto, the distribution of customers per firm (out-degree distribution) is also Pareto. For firms with \(z \geq z_H \), the measure of buyers per seller is by definition \(N_j \).

Knowing firm-level exports from equation (23) as well as the number of buyers from equation (24), the firm’s average exports is given by

\[
 \frac{r_{ij}^{TOT}(z)}{b_{ij}(z)} = \kappa_1 w_{ij}. \tag{25}
\]

Inversely, we calculate purchases from \(i \) of a final goods firm \(Z \) located in \(j \). This is

\[
 R_{ij}^{TOT}(Z) = n_i \int_{Z_{ij}(Z)} r_{ij}(z, Z) dF(z) = \kappa_4 Y_i \left(w_{ij} \right)^{1-\gamma/(\sigma-1)} \left(\frac{Z}{\tau_{ij} w_i \Omega_j} \right)^\gamma,
\]

where \(\kappa_4 = \sigma \gamma / [\gamma - (\sigma - 1)] \). The firm-level measure of sellers for a buyer located in \(j \) with productivity \(Z \) is

\[
 S_{ij}(Z) = n_i \int_{Z_{ij}(Z)} dF(z) = Y_i \left(w_{ij} \right)^{-\gamma/(\sigma-1)} \left(\frac{Z}{\tau_{ij} w_i \Omega_j} \right)^\gamma. \tag{26}
\]

Hence, given that \(Z \) is distributed Pareto, both the distribution of purchases \(R_{ij}^{TOT} \) and the distribution of number of sellers per buyer \(S_{ij}(Z) \) (in-degree distribution) are Pareto. These results are symmetric to the findings on the seller side.

Finally, equilibrium firm-level profits for intermediate producers with productivity \(z < z_H \)
is given by

\[
\Pi_{ij}(z) = \frac{r^\text{TOT}_{ij}(z)}{\sigma} - w_{ij}b_{ij}(z)
\]

\[
= \left(\frac{\kappa_i}{\sigma} - 1 \right) Y_j \left(w_{ij} \right)^{1-(\sigma-1)} \left(\frac{z}{\tau_{ij}w_i\Omega_j} \right)^\Gamma
\]

For firms with \(z \geq z_H \), firm-level profits are

\[
\tilde{\pi}_{ij}(z) = \frac{\tilde{r}^\text{TOT}_{ij}(z)}{\sigma} - w_{ij}N_j
\]

\[
= \frac{\kappa_i}{\sigma} Y_j \left(\frac{z}{\tau_{ij}w_i\Omega_j} \right)^{\sigma-1} - w_{ij}Y_j.
\]

E Aggregate Trade

Aggregate trade is given by

\[
X_{ij} = n_i \int_{z_L}^{z_H} r^\text{TOT}_{ij}(z) dF(z) + n_i \int_{z_H}^{\infty} \tilde{r}^\text{TOT}_{ij}(z) dF(z),
\]

where \(\tilde{r}^\text{TOT}_{ij}(z) \) is exports for \(z > z_H \) firms. Inserting the expressions for \(r^\text{TOT}_{ij} \) and \(\tilde{r}^\text{TOT}_{ij}(z) \) above and solving the integrals yields

\[
X_{ij} = n_i \kappa_i Y_j \left[\zeta \left(\tau_{ij}w_i\Omega_j \right)^{-\Gamma} + \tilde{\zeta} \left(\tau_{ij}w_i\Omega_j \right)^{-(\sigma-1)} \right]
\]

where \(\zeta = \left(w_{ij} \right)^{1-(\sigma-1)} \frac{z_H^{-\gamma}}{(\Gamma - \gamma)} \) and \(\tilde{\zeta} = z_H^{-(\gamma-(\sigma-1))} / [\gamma - (\sigma - 1)] \) and \(z_H = \tau_{ij}w_i\Omega_j \left(w_{ij} \right)^{1/(\sigma-1)} \).

Inserting the expressions for the weights \(\zeta \) and \(\tilde{\zeta} \), as well as \(z_H \), then yields

\[
X_{ij} = \kappa_5 n_i Y_j \left(w_{ij} \right)^{1-\gamma/(\sigma-1)} \left(\tau_{ij}w_i\Omega_j \right)^{-\gamma}
\]

where \(\kappa_5 = \Gamma\sigma\gamma / [\gamma_2 (\Gamma - \gamma)] \).
The trade share, $X_{ij}/\sum_k X_{kj}$, can thus be expressed as

$$
\pi_{ij} \equiv \frac{X_{ij}}{\sum_k X_{kj}} = \frac{Y_i (w_{ij} f_{ij})^{1-\gamma/\sigma} (\tau_{ij} w_i)^{-\gamma}}{\sum_k Y_i (w_k f_{kj})^{1-\gamma/\sigma} (\tau_{kj} w_k)^{-\gamma}}.
$$

We emphasize two implications for aggregate trade. First, higher relation-specific cost f_{ij} reduces the number of matches between exporters and importers and therefore dampens aggregate trade with a partial elasticity $1 - \gamma/\sigma < 0$. Second, the partial aggregate trade elasticity with respect to variable trade barriers, $\partial \ln X_{ij} / \partial \ln \tau_{ij}$, is $-\gamma$, the Pareto coefficient for seller productivity. This result mirrors the finding in models with one-sided heterogeneity, see e.g. Eaton et al. (2011).

It may seem surprising that the aggregate trade elasticity is γ, given that the firm-level elasticity is Γ. This occurs because the aggregate elasticity is the weighted average of firm-level elasticities for $z < z_H$ firms and $z \geq z_H$ firms. These elasticities are Γ and $\sigma - 1$ respectively (see the expression for X_{ij} above and this Online Appendix Section D). In equilibrium, the weighted average of the two becomes γ.

F Other distributional assumptions

Proposition 1 was derived under the assumption that both buyer and seller productivities are distributed Pareto. In this section, we investigate the robustness of Proposition 1 under other distributional assumptions for buyer productivity.

Consider the elasticity of firm-level exports with respect to variable trade barriers. From the expression $r_{ij}^{TOT}(z) = N_j \int_{Z_j(z)} r_{ij}(z, Z) dG(Z)$, and by using Leibniz’ rule, we get

$$
\frac{\partial \ln r_{ij}^{TOT}(z)}{\partial \ln \tau_{ij}} = \frac{\tau_{ij}}{r_{ij}^{TOT} N_j} \int_{Z_j(z)} \frac{\partial r_{ij}(z, Z)}{\partial \tau_{ij}} dG(Z) - \frac{\tau_{ij}}{r_{ij}^{TOT} N_j} \frac{\partial Z_j(z)}{\partial \tau_{ij}} r_{ij}(z, Z_j) G'(Z_{ij}).
$$

The first and second parts of this expression are the intensive and extensive margin elasticities, respectively. From equation (22) we get that $\partial r_{ij}(z, Z) / \partial \tau_{ij} = - (\sigma - 1) r_{ij}(z, Z) / \tau_{ij}$. Hence the intensive margin is
\[
\varepsilon_{\text{intensive}} = \frac{\tau_{ij}}{r_{ij}^{TOT}} N_j \int_{Z_j(z)} \frac{\partial r_{ij}(z,Z)}{\partial \tau_{ij}} dG(Z)
\]
\[
= -\frac{\tau_{ij}}{r_{ij}^{TOT}} N_j \int_{Z_j(z)} \left(\sigma - 1 \right) \frac{r_{ij}(z,Z)}{\tau_{ij}} dG(Z)
\]
\[
= -\left(\sigma - 1 \right).
\]

From equation (4) we get that \(\partial Z_{ij}(z) / \partial \tau_{ij} = Z_{ij}(z) / \tau_{ij} \). Hence the extensive margin is

\[
\varepsilon_{\text{extensive}} = -\frac{\tau_{ij} N_j}{r_{ij}^{TOT}} \frac{\partial Z_{ij}(z)}{\partial \tau_{ij}} r_{ij}(z,Z_j) G'(Z_{ij})
\]
\[
= -N_j \frac{r_{ij}(z,Z_{ij})}{r_{ij}^{TOT}(z)} Z_j G'(Z_{ij}).
\]

Inserting the expression for \(r_{ij}^{TOT} \) above, and using equations (7) and (22), we get

\[
\varepsilon_{\text{extensive}} = -\frac{Z_j^\sigma G'(Z_{ij})}{\int_{Z_j} Z^\sigma dG(Z)}.
\]

First, consider the case of a Pareto distribution for \(G(Z) \). Then \(\varepsilon_{\text{extensive}} = -\left(\Gamma - (\sigma - 1) \right) \), so that the overall elasticity is simply \(\Gamma \), as in the main text. Second, consider the case of a lognormal distribution with \(E[\ln Z] = 0 \) and with either \(\sigma_Z = \text{stdev}[\ln Z] = 1 \) or \(\text{stdev}[\ln Z] = 1.2 \). Figure 13 plots \(\varepsilon_{\text{extensive}} \) for different values of \(Z_{ij}^\sigma \), and for the two values of dispersion. As is clear from the figure, \(\varepsilon_{\text{extensive}} \) is greater (in absolute value) when \(\sigma_Z \) is low compared to when \(\sigma_Z \) is high, for all values of \(Z_{ij} \).

We also test two other distributions. Consider the case of an exponential distribution for \(G(Z) \) with rate parameters \(\lambda = 1 \) and \(\lambda = 1.2 \) and corresponding variance \(\lambda^2 \). This also generates a greater \(\varepsilon_{\text{extensive}} \) when dispersion is low compared to when dispersion is high.\(^\text{39}\) Finally, consider the case of a Frechet distribution with shape parameters \(\theta = 1 \) and \(\theta = 1.2 \). Again, \(\varepsilon_{\text{extensive}} \) is higher when dispersion is low (\(\theta \) high).

In sum, the finding that the trade elasticity is higher when dispersion is low holds under

\(^{39}\)The numerical results are available upon request.
Figure 13: Extensive margin elasticity under the lognormal distribution.

various other commonly used distributions.

G Welfare

As shown in equation (20), the price index on final goods is

$$Q_i^{1-\sigma} = \bar{m}^{2(1-\sigma)} \mu \bar{N}_i \Omega_i^{\sigma - 1}.$$

Using the expression for the trade share in equation (27), we can rewrite Ω_i as

$$\Omega_j = \left(\frac{\sigma \gamma n_j (w_{jj} f_{jj})^{1-\gamma/(\sigma-1)}}{\kappa_3 \gamma_2} \right)^{1/\gamma} \pi_{jj}^{-1/\gamma} \frac{1}{\tau_{jj} w_j}.$$

Inserting this back into the price index Q_j for final goods in j and rearranging yields the real wage

$$\frac{w_j}{Q_j} = \kappa_6 \left(n_j N_j \right)^{1/\gamma} \left(\frac{f_{jj}}{L_j} \right)^{1/(\gamma-1/(\sigma-1))} \pi_{jj}^{-1/\gamma} \frac{1}{\tau_{jj}}.$$

65
where κ_6 is a constant. Higher spending on home goods (higher π_{jj}) lowers real wages with an elasticity $1/\gamma$, mirroring the finding in Arkolakis et al. (2012).

H The Within-Firm Export Distribution

Using the expression for sales for a given (z, Z) match in equation (22) as well as the sorting function $Z_{ij}(z)$, the distribution of exports across buyers for a seller with productivity z is

$$\Pr [r_{ij} < r_0 \mid z] = 1 - \left(\frac{\sigma w_i f_{ij}}{r_0} \right)^{\Gamma/(\sigma - 1)}.$$

Hence, within-firm sales is distributed Pareto with shape coefficient $\Gamma/(\sigma - 1)$. Note that the distribution is identical for every exporter in i selling to j.

I Sorting

Extensive margin: Figure 5 shows the empirical relationship between a firm’s number of customers in destination j and average number of connections to Norwegian exporters among its customers, i.e. the correlation between the degree of a node and the average degree of its neighbors. In this section, we derive the corresponding relationship in the model.

Using equations (26) and (4), the number of connections for the marginal customer of a firm with productivity z is $S_{ij}(Z_{ij}(z)) = Y_i z^{-\gamma}$. Using equation (24), we can rewrite this as

$$S_{ij}(b_{ij}) = Y_i Y_j (w_i f_{ij})^{-\gamma/(\sigma - 1)} (\tau_{ij} w_i \Omega_j)^{-\gamma} b_{ij}^{-\gamma/\Gamma},$$

which relates a firm’s number of customers b_{ij} to the number of connections for the firm’s marginal customer, S_{ij}.

In the data, we explore the average number of connections among all the firm’s customers, not just the marginal one. The average number of connections among the customers of a firm

$$\kappa_6 = \left(\frac{\sigma \gamma}{\kappa_3 \gamma} \right)^{1/\gamma} \left(\frac{m^{2(1-\sigma)}}{\sigma} \right)^{1/(\sigma - 1)} \left(1 + \psi \right)^{-1/\gamma + 1/(\sigma - 1)}.$$
with productivity z is

$$
\tilde{S}_{ij}(z) = \frac{1}{1 - G(Z_{ij}(z))} \int_{Z_{ij}(z)} S_{ij}(Z) dG(Z)
= \frac{\Gamma}{\Gamma - \gamma} Y_i z^{-\gamma}.
$$

The average number of connections among the customers of a firm with b_{ij} customers is then

$$
\bar{S}_{ij}(b_{ij}) = \frac{\Gamma}{\Gamma - \gamma} Y_i \left(\frac{b_{ij}}{b_{ij}(1)} \right)^{-\gamma/\Gamma}.
$$

Hence, the elasticity of $\tilde{S}_{ij}(z)$ with respect to b_{ij} is $-\gamma/\Gamma$.

Intensive margin: Using the same approach as above, it can be shown that the average purchases among the customers of a firm with sales r_{ij}^{TOT} is decreasing with the same elasticity $-\gamma/\Gamma$ (i.e., the average of R_{ij}^{TOT} across the customers of an upstream firm with sales r_{ij}^{TOT}).

Figure 14 shows this relationship in the data. First, we sort Norwegian exporters according to their percentile rank of sales r_{ij}^{TOT} in market j. Denote the percentile rank ρ_j. Second, we take the average of R_{ij}^{TOT} across all the customers of Norwegian exporters belonging to percentile rank ρ_j. A complication is that R_{ij}^{TOT} and r_{ij}^{TOT} are both a function of the transaction size r_{ij}. We solve this by taking the leave-out sum, i.e. R_{ij}^{TOT} is calculated by summing across all purchases except the purchase from the Norwegian supplier in question. As a consequence, buyers with only one Norwegian supplier drop out.

Figure 14 shows the percentile rank for all destinations j on the x-axis and the average log R_{ij}^{TOT} on the y-axis. The fitted regression line is slightly positive with a slope coefficient of 0.01 (s.e. 0.001).

J Free entry

This section develops a simple extension of the model where the number of buyers in a market, N_j, is endogenous and determined by free entry. Assume that downstream firms incur a fixed cost f_e, paid in terms of labor, in order to observe a productivity draw Z. Prior to entry, expected firm profits are therefore $\int \Pi_j(Z) dG(Z) - w_j f_e$, where $\Pi_j(Z)$ is profits of a downstream firm with productivity z.
Note: 2006 data. The Figure shows all percentile ranks ρ_j of exports to destination j on the x-axis, and the average log purchases from Norway among these buyers on the y-axis. The fitted regression line and 95% confidence intervals are denoted by the solid line and gray area. The slope coefficient is 0.01 (s.e. 0.001).

with productivity Z. From equation (21), we know that a downstream firm’s revenue is

$$R_j(Z) = \bar{m}_\mu \frac{\Gamma - \gamma Y_j}{\Gamma} N_j Z^\gamma.$$

Because gross profits are proportional to revenue, $\tilde{\Pi}_j(Z) = R_j(Z) / \sigma$, we can rewrite the free entry condition as

$$\int_1^{\tilde{\Pi}_j(Z)} dG(Z) = w_j f_e$$

$$\frac{\bar{m}_\mu}{\sigma} \frac{\Gamma - \gamma Y_j}{\Gamma} N_j \int_1^{Z^\gamma} dG(Z) = w_j f_e$$

$$\bar{m}_\mu \frac{Y_j}{\sigma N_j} = w_j f_e$$

$$N_j = \frac{\bar{m}_\mu}{\sigma w_j f_e}.$$

Hence, the number of buyers in a market is proportional to income Y_j.

68
K A Random Matching Model

In this section, we ask to what extent a random matching model can replicate the basic facts presented in the main text. The main finding is that a random model fails to explain key empirical facts.

We model the matching process as a balls-and-bins model, similar to Armenter and Koren (2013). There are B buyers, S sellers and n balls. The number of bins is SB, the total number of possible buyer-seller combinations, and we index each bin by sb. The probability that a given ball lands in bin sb is given by the bin size s_{sb}, with $0 < s_{sb} \leq 1$ and $\sum_S \sum_B s_{sb} = 1$. We assume that $s_{sb} = s_s s_b$, so that the buyer match probability (s_b) and seller match probability (s_s) are independent. Trade from seller s to buyer b is the total number of balls landing in bin sb, which we denote by r_{sb}. A buyer-seller match is denoted by $m_{sb} = \{r_{sb} > 0\}$.

Parameters and simulation. We simulate the random model as follows. Focusing on Norway’s largest export destination, Sweden, we set B and S equal to the number of buyers in Sweden and exporters to Sweden (see Table 10). The number of balls, n, equals the total number of connections made (24,400). The match probabilities s_s correspond to each seller’s number of customers relative to the total number of connections made; s_b correspond to each buyer’s number of suppliers relative to the total number of connections made.

Results. We focus on the key relationships described in the main text; (i) degree distributions\footnote{The degree of a node in a network is the number of connections it has to other nodes, while the degree distribution is the probability distribution of these degrees over the whole network.}, (ii) number of connections versus total sales and within-firm sales dispersion and (iii) assortivity in in-degree and average out-degree of the nodes in:

(i) We plot the simulated degree distributions in Figure 15 in the same way as in the main text. Given that the match probabilities s_b and s_s are taken from the actual data, it is not surprising that the simulated degree distributions resemble the actual distributions in Figures 2 and 9.

(ii) The relationship between the number of customers and total exports per seller is plotted in the left panel of Figure 16. The relationship is positive and log linear. The right panel plots
the number of customers on the horizontal axis and the value of 10th, 50th and 90th percentile of buyer-seller transactions (within firm) on the vertical axis. In contrast to the actual data and our main model (see Figure 4), the large majority of firms sell the same amount to each buyer; hence both the 10th and the 90th percentile cluster at \(r_{sb} = 1 \). For the firms with dispersion in sales, the magnitude of dispersion is small, with the 90th percentile not exceeding \(r_{sb} = 2 \).

(iii) Figure 17 plots the relationship between out-degree and mean in-degree (and the opposite), as illustrated in the main text in Figure 5. The relationship is essentially flat, so that the contacts of more popular sellers are on average similar to the contacts of less popular sellers. This is also at odds with the data and our main model.

In sum, the random matching model is not able to reproduce all the basic facts from the data.
Figure 17: Degree and average degree of customers/suppliers.

L Basic Facts Revisited

L.1 Robustness Checks

The basic facts presented in Section 2 show empirical regularities between buyers and sellers irrespective of the product dimension. However, firms with many customers are typically firms selling many products. To control for the product dimension, we recalculate the facts using the firm-product as the unit of analysis. The qualitative evidence from the facts reported above remains robust to this change. These findings suggest that the basic facts cannot be explained by variation in the product dimension alone.

Products in the data are a mix of homogeneous and differentiated goods. We therefore re-calculate the facts above for differentiated products only. Specifically, we drop all products that are classified as “reference priced” or “goods traded on an organized exchange” according the the Rauch classification. The qualitative evidence from the facts section remains robust to this change. A different concern is that the data includes both arm’s length trade and intra-firm trade. We drop all Norwegian multinationals from the dataset and recalculate the facts.

43 A product is defined as a HS1996 6 digit code. Results available upon request.

44 The Rauch classification is concorded from SITC rev. 2 to 6 digit HS 1996 using conversion tables from the UN (http://unstats.un.org/unsd/trade).

45 The trade transactions themselves are not identified as intra-firm or arm’s length. Norwe-
Again, the evidence is robust to this change.

The data used in this paper is the universe of non-oil merchandise exports and a subset of the exporters are outside manufacturing. We match the customs data to the manufacturing census, which allows us to remove exporters outside manufacturing. The qualitative evidence from the facts reported above remains robust to this change.46

L.2 Data from Colombia

This section presents descriptive evidence on buyer-seller relationships using trade data from a different country, Colombia. We show that the basic facts from Section 2 also hold in the Colombian data.

The data set includes all Colombian import transactions in 2011 as assembled by ImportGenius.47 As in the Norwegian data, we can identify every domestic buyer (importer) and foreign sellers (exporters) in all source countries. However unlike the Norwegian data, transactions must be matched to firms (either exporters or importers) using raw names and thus are potentially subject to more error than the comparable Norwegian data. However, there is no reason to believe the noise in the data is systematic and thus we are comfortable using the data as a robustness check. Since we only have import data from Colombia, the roles of buyers and sellers are reversed compared to the Norwegian data, i.e. in the descriptive evidence that follows, an exporter represents a foreign firm exporting to Colombia, and an importer denotes a Colombian firm purchasing from abroad.

We reproduce the same facts as in the Norwegian data. Table 13 in this Online Appendix reports exporter and importer concentration for all imports and imports from Colombia’s largest sourcing markets in 2011, U.S., China and Mexico. Both sellers and buyers of Colombian multinational multinationals account for 38 percent of the total value of Norwegian exports.46 The export value for non-manufacturing firms is 9 percent relative to total exports in 2006. Detailed results available upon request.

imports are characterized by extreme concentration, mirroring the finding in Table 10 (basic fact 2) in this Online Appendix. Figure 18 confirms that the degree distributions in Colombia are close to Pareto, mirroring the finding in Figures 2 and 9 in the main text. Moreover, Table 14 shows that one-to-one matches are relatively unimportant in total imports (basic fact 3). Figures 19 and 20 show that while more connected exporters typically sell more, the within-firm distribution of sales is relatively constant, mirroring the finding in Figures 3 and 4 (basic fact 4). Figure 21 illustrates that more popular exporters on average match to less connected importers, mirroring the finding in Figure 5 (basic fact 5).

<table>
<thead>
<tr>
<th>Table 13: Descriptive statistics: Colombian Imports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
</tr>
<tr>
<td>Number of exporters</td>
</tr>
<tr>
<td>Number of buyers</td>
</tr>
<tr>
<td>Share trade, top 10% sellers</td>
</tr>
<tr>
<td>Share trade, top 10% buyers</td>
</tr>
<tr>
<td>Share in total CO imports, %</td>
</tr>
</tbody>
</table>

Note: 2011 data. The overall column refers to outcomes unconditional on importer country.

<table>
<thead>
<tr>
<th>Table 14: Types of matches, % : Colombia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) One-to-one</td>
</tr>
<tr>
<td>Share of value, %</td>
</tr>
<tr>
<td>Share of counts, %</td>
</tr>
</tbody>
</table>

Note: 2011 data. See Table 3 footnote.
Figure 18: Distribution of # buyers per exporter (left) and exporters per buyer (right): Colombia.

Note: 2011 data. Buyers per exporter: The estimated slope coefficients are -0.74 (s.e. 0.0004) for U.S., -0.78 (s.e. 0.001) for China and -0.78 (s.e. 0.001) for Mexico. Exporters per buyer: The estimated slope coefficients are -0.99 (s.e. 0.002) for U.S., -0.74 (s.e. 0.002) for China and -0.74 (s.e. 0.002) for Mexico.

Figure 19: Number of buyers & firm-level exports: Colombia.

Note: 2011 data. See Figure 3 footnote.
Figure 20: Number of buyers & within-firm dispersion in exports: Colombia.

Note: 2011 data. See Figure 4 footnote.

Figure 21: Matching buyers and sellers across markets: Colombia.

Note: 2011 data. The linear regression slope is -0.14 (s.e. 0.01). See Figure 5 footnote.