
Consistent Standard Errors in Panel Tobit with Autocorrelation ‡

Meghan R. Busse1

Haas School of Business, UC Berkeley

Andrew B. Bernard2

Tuck School of Business at Dartmouth

National Bureau of Economic Research

First version: March 2002

This version: August 2003

Abstract

This paper derives consistent standard errors for a panel Tobit model in the presence
of correlated errors. The problem is framed in the context of Newey and West
(1987), considering the Tobit model as a special case of a GMM estimator.

JEL codes: C23, C24

Keywords: Tobit, panel data, standard error estimation, autocorrelation, censoring

∗Haas School of Business, 2220 Piedmont Ave., Berkeley, CA 94720-1900; tel (510) 643-1426; fax (510)
643-1420; email: meghan@haas.berkeley.edu; http://faculty.haas.berkeley.edu/meghan/

†100 Tuck Hall, Hanover, NH 03755, tel: (603) 646-0302, fax: (603) 646-1308, email:
andrew.b.bernard@dartmouth.edu, http://www.andrew.bernard.org

‡We thank Steve Berry, Ed Kaplan, and Ben Polak for helpful discussions. Elena Krasnokutskaya provided
valuable research assistance. Bernard’s contribution to the research supported in part by the National Science
Foundation (SES-0241474).



1 Introduction

When estimating econometric models with panel data sets, one often has to be concerned with

whether the errors in the model are correlated over time. If so, one must account for this

autocorrelation in creating estimates of standard errors in order to have correct confidence

intervals for coefficient estimates.

In linear models, the method proposed by Newey and West (1987) is the most commonly

chosen method for adjusting standard errors to account for serial correlation. However, the

method of Newey and West is far more generally applicable than just to linear models. Their

article is written in the context of a GMM estimator, which Newey and McFadden (1994) show

is a class that includes many kinds of estimators, including maximum likelihood estimators

if their first order conditions are thought of as moments. Thus the Newey-West standard

error formula can be used for any maximum likelihood estimator. This paper considers one

such example, although the derivation presented here could be used as a guide for adjusting

standard errors for any maximum likelihood or, less directly, another GMM estimator.

This paper considers the estimation of the covariance matrix for a Tobit model in which

the errors may be correlated over time. For simplicity, the notation used in the derivation of

the estimator assumes a simple time-series data set. Since the most likely applications of the

model are for panel data, the paper also discusses how the estimator would need to be changed

to accomodate panel data.

The remainder of the paper proceeds as follows. Section 2 describes the econometric back-

ground to this problem. Section 3 derives the formula for Tobit standard errors under auto-

correlation. Section 4 expands the formula to accommodate panel data and random effects.

Section 5 concludes.

2 Background

Robinson (1982) gives early consideration to the problem of estimating a Tobit model with

serially correlated errors. He gives an expression for the limiting covariance matrix, although

it does not lend itself readily to estimation.

Newey and West (1987) simplified considerably the problem of estimating covariance ma-

trices in the presence of serial correlation. Their paper presents a simple, positive definite

estimator for the covariance matrix of a GMM (Generalized Method of Moments) estimator.

GMM estimators are a large class which includes many commonly used estimators, including

OLS and instrumental variables, as special cases. In particular, maximum likelihood estima-

tors can be considered as GMM estimators if the solutions to their first order conditions are
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considered as moments. (See Newey and McFadden (1994) for a very complete treatment of

the subject.) Estrella and Rodrigues (1998) apply Newey and West (1987) to the estimation

of standard errors for a Probit model by considering Probit as a GMM estimator.

This paper derives the consistent standard errors for a Tobit model. We also apply Newey

and West (1987) by considering a Tobit model as a GMM estimator. As a result, we are able

to derive a formula that is considerably more useful for empirical implementation than that

derived by Robinson (1982).

3 Tobit standard errors under serial correlation

The Tobit model can be considered as a GMM estimator whose moments are the first order

conditions of the log likelihood function. Following Robinson’s (1982) notation, consider the

following model:

yt =

{
β′xt + εt, if β′xt + εt > 0

0, otherwise
(1)

for t = 1, 2, ..., T , where β and xt are k × 1 column vectors and εt is distributed N(0, σ2). We

are interested in the case in which the εt’s are not independently distributed. As Robinson

(1982) shows, β can be consistently estimated with the Tobit model.

Define an indicator variable wt = I(yt > 0). The log likelihood of the Tobit model is given

by

QT (θ) =
1
T

T∑
t=1

(1 − wt) ln(1 − F (β′xt, σ)) + wt ln f(yt − β′xt, σ), (2)

where θ = (β, σ) and f(., σ) and F (., σ) are the probability density function and cumulative

density function, respectively, of N(0, σ2). 1

The first order conditions of this log likelihood function are given by a (k + 1) × 1 column

vector. The first k elements of this vector are given by the following, where ψ(β′xt, σ) =
f(β′xt,σ)

1−F (β′xt,σ) :

∂QT (θ)
∂βi

=
1
T

T∑
t=1

(1 − wt)
[
−ψ(β′xt, σ)xti

]
+ wt

[
1
σ2

(yt − β′xt)xti

]
,∀i = 1, ..., k. (3)

1In the Probit model, it is possible to identify only β/σ, so without loss of generality, one can assume that
σ = 1. In the Tobit model, σ must be estimated.
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The (k + 1)th element in the vector is given by

∂QT (θ)
∂σ

=
1
T

T∑
t=1

(1 − wt)
[
ψ(β′xt, σ)

β′xt

σ

]
+ wt

[
−1
σ

+
(yt − β′xt)2

σ3

]
. (4)

In Newey and West’s terminology, this vector is hT (θ) = 1
T

∑T
t=1 ht(θ).

The general form of Newey and West’s (1987) covariance estimator is given by

VT = (H ′
TWTHT )−1H ′

TWTSTWTHT (H ′
TWTHT )−1. (5)

WT is a weighting matrix which here, for simplicity, we assume is an identity matrix. HT

is the expected value of the partial derivatives of ht(θ), the moment conditions or first order

conditions, with respect to θ.

HT =
1
T

T∑
t=1

E(htθ(θ∗)) (6)

In a GMM model with p moment condtions and r parameters to be estimated, this would be

a p × r matrix. Since the moments in the Tobit case are the first order condtions of the log

likelihood function, the number of moment conditions equals the number of parameters to be

estimated, and HT is square (and symmetric) matrix; in the current example, the dimension

of HT is (k + 1) × (k + 1). HT can be estimated by its sample analog,

ĤT =
1
T

T∑
t=1

htθ(θ̂). (7)

Newey and West’s (1987) most important contribution is their estimator for the last term in

the covariance matrix, ST .

ST =
1
T

T∑
s=1

T∑
t=1

E
(
ht(θ∗)hs(θ∗)′

)
(8)

Newey and West’s (1987) estimator for this term is

ŜT = Ω̂0 +
m∑

j=1

(1 − j

m+ 1
)(Ω̂j + Ω̂′

j), (9)

where Ω̂j = 1
T

∑T
t=1 ht(θ̂)h′t−j(θ̂) and m is the number of sample autocovariances used to

estimate ST . If the number of nonzero autocorrelations of ht(θ∗) is known a priori, then that

can be used as m. Other procedures for choosing m are covered elsewhere in the literature, but

are beyond the scope of this paper.
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For the Tobit model, the Ω̂j ’s, and therefore ŜT , can be calculated using the expression for

ht given in Equations 3 and 4, substituting the estimated β̂ and σ̂ for β and σ. htθ, necessary

for estimating HT , can be found by taking partial derivatives of Equations 3 and 4 with respect

to each element of the coefficient vector θ = (β, σ). The form of HT is

HT =


∂QT (θ)
∂βi∂βj

∂QT (θ)
∂βi∂σ

∂QT (θ)
∂βi∂σ

∂QT (θ)
∂σ∂σ

 (10)

where the top left quadrant is k × k, the bottom right quadrant is 1 × 1 and the remaining

quadrants are conformable. The elements of HT are:

∂QT (θ)
∂βi∂βj

=
1
T

T∑
t=1

(1 − wt)ψ(β′xt, σ)
[
β′xt

σ2
− ψ(β′xt, σ)

]
xtixtj

−wt

(
1
σ2

)
xtixtj ,∀i, j = 1, ..., k, (11)

∂QT (θ)
∂βi∂σ

=
1
T

T∑
t=1

(1 − wt)ψ(β′xt, σ)
(

1
σ

) [
ψ(β′xt, σ)β′xt −

(
β′xt

σ

)2

+ 1

]
xti

−wt

[
2
σ3

(yt − β′xt)
]
xti,∀i = 1, ..., k, (12)

∂QT (θ)
∂σ∂σ

=
1
T

T∑
t=1

(1 − wt)ψ(β′xt, σ)
(

1
σ2

) [
(β′xt)3

σ2
− ψ(β′xt, σ)(β′xt)2 − 2β′xt

]
+wt

(
1
σ2

) [
1 − 3

σ2
(yt − β′xt)2

]
. (13)

As mentioned in Equation 7, HT can be estimated by subsituting (β̂, σ̂) for (β, σ) in Equations

11 through 13.

While the expressions for ŜT and ĤT may appear daunting at first, they are in fact relatively

easily assembled with matrix based software such as MATLAB or Gauss using the sample data

and estimates of β and σ produced by another package such as Stata.

4 Panel Data and Random Effects

Tobit models are most often applied in the context of cross sectional or panel data. Thus,

autocorrelation in a Tobit model is most likely to arise in a panel, rather than in a univariate

time series. With panel data, it is often desirable to have a model that allows for the individuals,

firms, countries, or groups that define a cross-sectional unit of the data to differ systematically
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in the value of the dependent variable for reasons unobserved to the econometrician. In a Tobit

model, such individual-specific, time-invariant effects are modelled as random effect, since a

fixed effects model is plagued by the incidental parameters problem (Wooldridge, 2002).

In this section, we expand the autocorrelation correction for standard errors to a panel data

setting with random effects. First, we expand the model of Equation 1.

yit =

{
β′xit + νi + εit, if β′xit + νi + εit > 0

0, otherwise
(14)

for t = 1, 2, ..., T , where β and xit are k×1 column vectors, εit is distributed N(0, σ2
ε ), and νi is

distributed N(0, σ2
ν). We assume that E(νiνj) = 0, E(νiεit) = 0, and that E(εitεjt) = 0,∀i 6= j.

We are interested in the case in which εis and εit are not independently distributed.

With the addition of νi to the model, the likelihood function becomes somewhat more

complicated than that of a simple Tobit model because the distribution of the unobserved com-

ponent of the model for any one observation is linked through νi to the unobserved components

of all the other observations in the same cross-sectional unit. The likelihood function, Pr(yi|xi),

for cross-sectional unit i is:

Li =
∫ ∞

−∞

{
Ti∏

t=1

[
f(yit − β′xit − νi, σε)

]wit

[
Φ

(
−β′xit − νi

σε

)](1−wit)
}
f(νi, σν) dνi (15)

where Φ(.) is the standard normal c.d.f. For ease of notation, we denote the product contained

within the curly braces as Ji. Equation 15 can thus be written more compactly as

Li =
∫ ∞

−∞
Ji f(νi, σν) dνi. (16)

The likelihood function for the whole sample is simply the product of the Li’s over the N

cross-sectional units, and the log likelihood is

L =
N∑

i=1

lnLi (17)

Note that the log likelihood in Equation 17 does not collapse to a sum, as it would in the case

of a purely cross-sectional or time series Tobit. (See Equation 2.) This is because the likelihood

function for a given cross-sectional unit (Equation 15) is an integral of a product instead of just

a product. The log operater cannot be carried through the integral sign, so the natural log of

the likelihood function in Equation 17 is a sum of logs of the integral in Equation 15.

We can derive the Newey-West standard error adjustment for the random effects model in
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much the same way as we derived them for the simple Tobit model in Section 3. The vector of

parameters to be estimated is θ = (β′, σε, σν), and the moment conditions are the first order

condtions of L with respect to θ. Differentiating Equation 16 with respect to the mth element

of the vector β yields:

∂Li
∂βm

=
∫∞
−∞

{
Ti∑

t=1

[
wit(yit − β′xit − νi)xitm

σ2
ε

+ (1 − wit)ψ
(
−β′xit−νi

σε

) (
−xitm

σε

)]}
·

Jif(νi, σν) dνi

(18)

where ψ
(
−β′xit−νi

σε

)
= φ

(
−β′xit−νi

σε

)
/Φ

(
−β′xit−νi

σε

)
and φ(.) is the standard normal p.d.f. For

ease of exposition, we define the summation contained within the curly braces as Rim. Thus

equation 18 can be rewritten as

∂Li

∂βm
=

∫ ∞

−∞
Rim Jif(νi, σν) dνi. (19)

Differentiating equation 17 with respect to βm and substituting in equation 19 yields the mo-

ment condition with respect to βm:

∂L
∂βm

=
N∑

i=1

1
Li

∫ ∞

−∞
Rim Ji f(νi, σν) dνi. (20)

In the random effects Tobit model, there are two variances to be estimated, σε and σν .

Differentiating equation 16 with respect to σε yields

∂Li

∂σε
=

∫ ∞

−∞
Si Ji f(νi, σν) dνi, (21)

where

Si =
Ti∑

t=1

wit

[
1
σ3

ε

(yit − β′xit − νi)2 −
1
σε

]
+ (1 − wit)ψ

(
−β′xit − νi

σε

) (
β′xit + νi

σ2
ε

)
. (22)

Thus the moment condition corresponding to σε can be written as

∂L
∂σε

=
N∑

i=1

1
Li

∫ ∞

−∞
Si Ji f(νi, σν) dνi. (23)

Differentiating equation 16 with respect to σν , the remaining element of the parameter vector

θ, yields
∂Li

∂σν
=

∫ ∞

−∞

[
ν2

i

σ3
ν

− 1
σν

]
Ji f(νi, σν) dνi (24)
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Thus the final moment condition, corresponding to σν , is

∂L
∂σν

=
N∑

i=1

1
Li

∫ ∞

−∞

[
ν2

i

σ3
ν

− 1
σν

]
Ji f(νi, σν) dνi. (25)

In order to implement the Newey-West standard error formula, we also need expressions

for the Hessian matrix of the log likelihood function. The form of the Hessian matrix is

HT =


∂L

∂βm∂βp

∂L
∂βm∂σε

∂L
∂βm∂σν

∂L
∂βm∂σε

∂L
∂σε∂σε

∂L
∂σε∂σν

∂L
∂βm∂σν

∂L
∂σε∂σν

∂L
∂σν∂σν


(26)

where the top left submatrix is k × k, the four bottom right submatrices are 1 × 1 and the

remaining submatrices are conformable. The submatrices of HT are given by the following

expressions.

To obtain ∂L
∂βm∂βp

we differentiate equation 20 with respect to βp.

∂L
∂βm∂βp

=
N∑

i=1
− 1

L2
i

∂Li
∂βp

∫∞
−∞Rim Ji f(νi, σν) dνi

+
N∑

i=1

1
Li

∫∞
−∞

[
∂Rim
∂βp

Ji +Rim
∂Ji
∂βp

]
f(νi, σν) dνi.

(27)

Of the elements of this equation, ∂Li
∂βp

is given by equation 19 and ∂Ji
∂βp

= Rip Ji. Only ∂Rim
∂βp

is

yet to be derived.

∂Rim
∂βp

=
Ti∑

t=1
wit

(
−xitp xitm

σ2
ε

)
+(1 − wit)

[
−β′xit−νi

σε
+ ψ

(
−β′xit−νi

σε

)]
ψ

(
−β′xit−νi

σε

) (
−xitp xitm

σ2
ε

)
.

(28)

To obtain the Hessian submatrix ∂L
∂βm∂σε

we differentiate equation 20 with respect to σε.

∂L
∂βm∂σε

=
N∑

i=1
− 1

L2
i

∂Li
∂σε

∫∞
−∞Rim Ji f(νi, σν) dνi

+
N∑

i=1

1
Li

∫∞
−∞

[
∂Rim
∂σε

Ji +Rim
∂Ji
∂σε

]
f(νi, σν) dνi.

(29)

Of the elements of this equation, ∂Li
∂σε

is given by equation 21 and ∂Ji
∂σε

= Si Ji. Only ∂Rim
∂σε

is yet
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to be derived.

∂Rim
∂βp

=
Ti∑

t=1
wit

(
− 2

σ3
ε

)
(yit − β′xit − νi)xitm

+(1 − wit)ψ
(
−β′xit−νi

σε

) (
xitm
σ2

ε

) [
1 − (β′xit+νi)

2

σ2
ε

+ ψ
(
−β′xit−νi

σε

)
β′xit+νi

σε

]
.

(30)

To derive the Hessian submatrix ∂L
∂βm∂σν

we differentiate equation 20 with respect to σν .

∂L
∂βm∂σν

=
N∑

i=1

− 1
L2

i

∂Li

∂σν

∫ ∞

−∞
Rim Ji f(νi, σν) dνi +

N∑
i=1

1
Li

∫ ∞

−∞

[
Rim Ji

∂f(νi, σν)
∂σν

]
dνi. (31)

Of the elements of this equation, ∂Li
∂σν

is given by equation 25, and ∂f(νi,σν)
∂σν

=
(

ν2
i

σ3
ν
− 1

σν

)
f(νi, σν).

To obtain the Hessian submatrix ∂L
∂σεσε

we differentiate equation 23 with respect to σε.

∂L
∂σε∂σε

=
N∑

i=1
− 1

L2
i

∂Li
∂σε

∫∞
−∞ Si Ji f(νi, σν) dνi

+
N∑

i=1

1
Li

∫∞
−∞

[
∂Si
∂σε

Ji + Si
∂Ji
∂σε

]
f(νi, σν) dνi.

(32)

Of the elements of this equation, ∂Li
∂σε

is given by equation 21 and ∂Ji
∂σε

= Si Ji. Only ∂Si
∂σε

needs

to be derived.

∂Si
∂σε

=
Ti∑

t=1
wit

[
1
σ2

ε
− 3

σ4
ε
(yit − β′xit − νi)2

]
+ (1 − wit)ψ

(
−β′xit−νi

σε

) (
β′xit+νi

σ3
ε

)
·[(

β′xit+νi

σε

)2
− ψ

(
−β′xit−νi

σε

) (
β′xit+νi

σε

)
− 2

] (33)

To obtain the Hessian sumbatrix ∂L
∂σεσν

we differentiate equation 23 with respect to σν .

∂L
∂σε∂σν

=
N∑

i=1

− 1
L2

i

∂Li

∂σν

∫ ∞

−∞
Si Ji f(νi, σν) dνi +

N∑
i=1

1
Li

∫ ∞

−∞
Si Ji

∂f(νi, σν)
∂σν

dνi. (34)

Of the elements of this equation, ∂Li
∂σν

is given by equation 24 and ∂f(νi,σν)
∂σν

=
(

ν2
i

σ3
ν
− 1

σν

)
f(νi, σν).

The last submatrix of the Hessian is ∂L
∂σνσν

. To obtain this, we differentiate equation 25

with respect to σν .

∂L
∂σν∂σν

=
N∑

i=1

−1
L2

i

∂Li
∂σν

∫∞
−∞

(
ν2

i
σ3

ν
− 1

σν

)
Ji f(νi, σν) dνi+

N∑
i=1

1
Li

∫∞
−∞

(
1
σ2

ν
− 3 ν2

i
σ4

ν

)
Ji f(νi, σν) +

(
ν2

i
σ3

ν
− 1

σν

)
Ji

∂f(νi,σν)
∂σν dνi.

(35)
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As above, ∂Li
∂σν

is given by equation 24 and ∂f(νi,σν)
∂σν

=
(

ν2
i

σ3
ν
− 1

σν

)
f(νi, σν).

Because the expressions for the moment conditions and Hessian matrix elements contain

complicated integrals, they must be evaluated numerically instead of analytically in order to

generate estimates of standard errors for a particular case at hand.

5 Conclusion

The advent of large panel data sets with both substantial time and cross-sectional dimensions

introduces the need for estimators that are consistent in the presence of autocorrelation. This

paper considers the estimation of the covariance matrix for a Tobit model with errors that are

correlated over time. The proposed solution is an application of the Newey-West GMM esti-

mator and suggests a general resolution to the problem of autocorrelated errors for estimators

that may be characterized as GMM in nature.
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